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Abstract—In this paper, an energy management strategy 
based on microgrid power forecasting is applied to a residential 
grid-connected electro-thermal microgrid with the aim of 
smoothing the power profile exchanged with the grid. The 
microgrid architecture under study considers electrical and 
thermal renewable generation, energy storage system (ESS), and 
loads. The proposed strategy manages the energy stored in the 
ESS to cover part of the energy required by the thermal 
generation system for supplying domestic hot water to the 
residence. The simulation results using real data and the 
comparison with previous strategy have demonstrated the 
effectiveness of the proposed strategy. 

Keywords—microgrids, energy management, renewable energy 
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I. INTRODUCTION 
The increase in the use of Renewable Energy Sources 

(RES) has attracted the attention of the research community 
during the last years [1], since they are inexhaustible at human 
scale, non-polluting, and provide energy independence and 
allows the implementation of Distributed Generation (DG) 
systems [2]. However, their integration with the utility grid in 
an efficient and reliable manner without excessive investment 
still remains a challenge. 

To overcome this new challenge, Microgrids (MGs) have 
emerged as an important solution to integrate RES into the 
electric system. MGs can use different elements, most 
commonly, RES and energy storage system (ESS), to control 
the grid power profile [3]. The heart of the MG is the Energy 
Management System (EMS), which is in charge of controlling 
the elements belonging to the MG [4]. An adequate strategy 
linked to the EMS leads to an efficient MG performance. This 
is the reason that several energy management strategies have 
been developed in recent years aiming to cover a number of 

different objectives [5]. In general, the energy management 
strategy depends on the MG architecture and its goal, which in 
most cases is related to the microgrid operating cost [6]. 
However, the suitable control of the grid power profile can 
concurrently produce an economic benefit of the microgrid and 
facilitate the grid operator control. 

A residential MG scenario has attracted great attention in 
recent studies [7]–[9]. In this regard, the authors have designed 
several energy management strategies to smooth the grid power 
profile of a residential MG being the most relevant [10]–[13]. 
Two architectures have been studied: electrical MG and 
electro-thermal MG. The first architecture considers only 
electrical loads (e.g., household appliances, including space 
heating and cooling) whereas the second architecture considers 
also a controllable thermal load, namely, a heater for domestic 
hot water. In addition, two different scenarios have been 
studied; a first scenario where power forecasting is not 
considered and a second scenario considering MG power 
forecasting.  

In this regard, the study detailed in [14] presents an 
extension of the fuzzy energy management strategy based on 
MG energy rate-of-change [12] applied to an electro-thermal 
MG architecture. This study, [14], considers a local prediction 
of the battery state-of-charge (SOC) to anticipate the MG future 
behavior and highlights the advantages of introducing thermal 
elements in the MG with the aim of improving the grid power 
profile. Given the positive results obtained in the previous 
study, this work presents an approach of using the energy 
management strategy described in [13] applied to a new 
microgrid power architecture, namely electro-thermal 
microgrid. This approach extends the study of [14] analyzing 
the microgrid behavior (i.e., grid power profile smoothing, 
battery SOC evolution) when a thermal load and microgrid 
power forecasting is considered in the energy management 
strategy. 



This paper is organized as follows. Section II describes the 
MG architecture under study and presents the variable 
definition of the system. Section III details the design of the 
fuzzy-based energy management strategy applied to an electro-
thermal MG. Section IV presents the simulation and 
comparison results with previous strategy. Finally, Section V 
presents the main conclusions of this work. 

II. MICROGRID SYSTEM ARCHITECTURE

The residential electro-thermal microgrid under study is 
presented in Fig. 1 and includes a photovoltaic generator (PV), 
a wind turbine (WT), an electric ESS consisting of a lead-acid 
battery bank, a domestic load demand, and a domestic hot 
water system (DHW), which comprises an electric water heater 
(EWH), a solar collector array, a thermal demand, and a 
thermal storage consisting of a hot water tank.  

Fig. 1. Residential grid-connected electro-thermal microgrid [14]. ©2016 
IEEE, Reprinted, with permission, from D. Arcos-Aviles, D. Sotomayor, 
J. L. Proano, F. Guinjoan, M. P. Marietta, J. Pascual, L. Marroyo, and P. 
Sanchis, “Fuzzy energy management strategy based on microgrid energy 
rate-of-change applied to an electro-thermal residential microgrid,” in 
2017 IEEE 26th International Symposium on Industrial Electronics 
(ISIE), 2017, pp. 99–105.  

From configuration shown in Fig. 1, the following 
expressions can be deduced: 

GEN PV WTP P P= + (1) 

,GRID LOAD WH E GEN BATP P P P P= + − − (2) 

where PGEN is the renewable power generation, PPV is the 
photovoltaic power, PWT is the wind power, PBAT is the battery 
power (i.e., PBAT > 0 for discharging process and PBAT < 0 for 
charging process), PGRID is the power exchanged with the grid 
(i.e., PGRID > 0 for power absorbed from the grid and PGRID < 0 

for power injected in the grid), and PWH,E is the power required 
by the EWH to keep the water temperature in the deposit tank 
between 45 °C and 65 °C [14].  

Defining the MG net power as:  

,LG LOAD WH E GENP P P P= + − (3) 

the grid power profile (2) can be rewritten as: 

GRID LG BATP P P= − (4) 

Moreover, considering the DHW system shown in Fig. 1, 
the thermal balance of the storage tank could be defined as: 

, , ,ST T SC WH T DHW LOSS TQ Q Q Q Q= + − − (5) 

where QST,T is the thermal storage capacity of the water storage 
tank, QDHW is the house DHW consumption, QLOSS,T represents 
the thermal losses in the storage tank, QSC,T is the rate of energy 
collected from the solar thermal collectors, and QWH,T is the rate 
of energy transferred from the EWH. A detailed description of 
these variables and their calculation are presented in [14]. 

Furthermore, in an electro-thermal microgrid scenario the 
thermal storage, i.e., water deposit tank in this case, is 
responsible of improving the system performance under sudden 
peak loads or loss of solar input [15], since it gives another 
degree of freedom for controlling the system. In this regard, the 
water temperature inside the thermal storage is needed in order 
to simulate the EWH control. The current water temperature is 
calculated as follows: 

, 1 ,
s

WD WD ST T
W P

TT T Q
C V−= + ⋅

ρ ⋅ ⋅
(6) 

where TWD is the current water temperature (°C) in the deposit 
tank after sampling period Ts, TWD,-1 is the water temperature 
(°C) of previous sampling period Ts, ρW  is the water density
(kg/m3), CP is the water specific heat capacity (kJ/kg∙°C), and V 
is the storage tank volume (m3). 

III. FUZZY-BASED ENERGY MANAGEMENT STRATEGY

The energy management strategy presented in this work 
tries to extend the study presented in [13], [16] for the case of 
an electro-thermal microgrid. The goal still remains the same, 
i.e., to smooth the power exchanged with the grid, now with the 
help of the energy stored in the battery ESS to cover part of the 
energy required by the EWH for keeping the water temperature 
in the tank between maximum and minimum temperatures. 

In this regard, as well as previous studies [13], [16], the 
power exchanged with the grid is defined as the sum of three 
components, as follows: 

*( ) ( ) ( ) ( )GRID CTR SOC FLCP n P n P n P n= + + (7) 

where *
CTRP  establishes the MG average power profile, PSOC 

tries to keep the battery SOC center close to the 75% of the 
rated battery capacity, and PLFC improves the grid power profile 
according to the battery SOC and the MG forecast error. 



The block diagram of the proposed Fuzzy-based energy 
management strategy is presented in Fig. 2. Note that in this 
study, the EWH operates as a passive load and it will beyond 
the control of the energy management strategy. In this context, 
the EWH consumption, PWH,E, is obtained through a hysteresis 
control to keep water temperature in the tank between 45 °C 
and 65 °C. The description blocks depicted in Fig. 2 is 
presented next. 

Fig. 2. Residential grid-connected electro-thermal microgrid 

A. Block 1 – EWH Control  
This block is used in [14] to compute the amount of energy 

contributed by the battery for the EWH consumption, B
WHP (n). 

Considering a battery threshold, SOCR, for power injection 
from the battery to the EWH, B

WHP (n) is assigned as follows: 

, ,( ) , if ( ) & ( ) 0
( )

0 , otherwise
WH E R WH EB

WH

P n SOC n SOC P n
P n

> >
= 


(8) 

Consequently, the MG net power (3) is reduced as follows: 
* ( ) ( ) ( )B

LG LG WHP n P n P n= − (9) 

B. Block 2 – CMA filter  
This block computes the first component, *

CTRP , of the grid 
power profile through a 24-hours Central Moving Average 
(CMA) filter [13], [16], [17], considering the modified MG net 
power, *

LGP (n), and the modified forecast of the MG net power, 
*

,LG FCP (n). The CMA filter uses 12 *H
LGP (n) of the previous 

12-hours and 12 *
,
H

LG FCP (n) for the next 12-hours to estimate the 
MG net power average [13], [16]. Being M12 the number of 
samples in 12-hours, *

CTRP is computed as follows: 

* 12 * 12 *
,( ) ( ) ( ) 2H H

CTR LG LG FCP n P n P n = +  (10) 

12
12 * *

112

1( ) ( )
M

H
LG LG

k
P n P n k

M =

= − (11) 

12
12 * *

, ,
112

1( ) ( )
M

H
LG FC LG FC

k
P n P n k

M =

= + (12) 

Similarly to PLG, the use of the battery energy to supply part 
of the power required by the EWH implies a reduction of the 
MG load demand. Therefore, the load demand and 
consequently the forecast of the MG net power (i.e., *

LOADP (n) 
and *

,LG FCP (n), respectively) are modified as follows: 

* ( ) ( ) ( )B
LOAD LOAD WHP n P n P n= − (13) 

* *
, , ,( ) ( ) ( )LG FC LOAD FC GEN FCP n P n P n= −   (14) 

Note that the renewable power generation is not affected by 
the use of the EWH, thus, the forecast of power generation, 
PGEN,FC, is maintained. Fig. 3 presents the block diagram of the 
MG net power forecast where both the renewable power 
generation and load forecasts are estimated using the MG 
power forecasting procedure presented in [13]. 

Fig. 3. Block diagram of the Microgrid net power forecast 

C. Block 3 – 3H filter 
This block computes the MG power forecast error of the 

previous 3-hours (being M3 the number of samples in 3-hours) 
considering the modified MG net power and its forecasted 
value, as follows: 

3
3 * *

13

1( ) ( )
M

H
E E

k
P n P n k

M =

= − (15) 

* * *
,( ) ( ) ( )E LG LG FCP n P n P n= − (16) 

D. Block 4 – LPF  
Similarly to the energy management strategy described in 

[13], [16], this block is used to compute the second component, 
PSOC, of the grid power profile. which is in used to keep the 
battery SOC center close to the 75% of the rated battery 
capacity, CBAT, [11], [13], [16]. As it can be seen in Fig. 3, PSOC 
is proportional to the error between a SOC reference, 
SOCREF = 75%, and the average SOC of the previous 24-hours, 
SOCAVG, as follows: 

[ ]( ) ( )SOC e REF AVGP n k SOC SOC n= − (17) 



24

124

1( ) ( )
M

AVG
k

SOC n SOC n k
M =

= − (18) 

where M24 is the number of samples in 24-hours and ke is the 
proportional gain constant, which is set ke = 0.05 kW/% 
according to [11], [13], [16]. 

E. Block 5 – SOC Estimator  
This block is used to estimate the SOC of the ESS for 

simulations purposes. This estimator has been extensively 
described in [12]–[14], [16]. In short, the current battery SOC, 
SOC (n), is obtained considering the previous battery charge, 
SOC (n-1) and the battery SOC variation during the sampling 
period Ts, ∆SOC (n), as follows: 

( ) ( 1) ( )SOC n SOC n SOC n= − − ∆ (19) 

( )( ) 100 ( 1)BAT BAT sSOC n C P n T∆ = ⋅η⋅ − ⋅ (20) 

( ) ( ) ( )MG B
BAT BAT WHP n P n P n= + (21) 

( ) ( ) ( )MG
BAT LG GRIDP n P n P n= − (22) 

Note that different battery efficiencies are considered, i.e., 
ηC and ηD, for battery charging and discharging processes, 
respectively. Additionally, battery SOC should satisfy the 
constrains defined in [13], this is, SOCMIN ≤ SOC (n) ≤ SOCMAX, 
SOCMIN = (1-DOD)∙SOCMAX considering a maximum the Depth 
of Discharge (DOD) of 50%. 

F. Block 6 – Fuzzy Logic Control  
This block is used to compute the third component, PFLC, of 

the grid power profile. This component is used to improve the 
power exchanged with the grid according to the battery SOC 
and the MG power forecast error of the previous 3-hours [13], 
[16]. The FLC assumes a Mamdani-based inference and Center 
of Gravity defuzzification [18] with two-inputs, one-output, 
and 25-rules. The FLC design procedure: selection of five 
Membership Functions (MF) for each input, nine MF for the 
output, its type (i.e., triangular) and mapping, is the same of the 
one presented in [13], [16].  

All fuzzy logic parameters, such as MFs and mapping, are 
adjusted in order to minimize a set of quality criteria defined in 
[12], [13]. The off-line adjustment follows the procedure 
described in [19]. It makes use of real data (i.e., PV, WT, and 
load power) measured along one year in the microgrid installed 
at Public University of Navarre (UPNa), Pamplona, Spain, to 
train the FLC. In short, the adjustment procedure includes the 
following steps: a) initial FLC design setting (i.e., set the MFS 
of inputs and outputs, set the initial fuzzy rule-base which is 
created according to the heuristic knowledge about the MG 
behavior), b) adjust the inputs and outputs MFs and the initial 
rule-base to minimize the quality criteria defined in [12], [13]. 

Thus, given the new objective of the energy management 
strategy, the adjustment procedure [19] establishes an output 
variation range of the FLC between PN = -0.8 kW and 
PP = 1.35 kW (Fig. 4). In addition, the adjustment procedure 
leads a set of rules that minimizes the quality criteria defined in 
[11]–[13], which is presented in TABLE I.  
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Fig. 4. Membership functions for the FLC output [16]. ©2016 IEEE, 
Reprinted, with permission, from Arcos-Aviles D, Guinjoan F, Marietta 
MP, Pascual J, Marroyo L, Sanchis P. Energy management strategy for a 
grid-tied residential microgrid based on Fuzzy Logic and power 
forecasting. IECON 2016 - 42nd Annu. Conf. IEEE Ind. Electron. Soc., 
Florence, Italy: IEEE; 2016, p. 4103–8 

TABLE I. FLC RULE-BASE 

PFLC (n) 
3 *H

EP  (n) 

NB NS ZE PS PB 

SOC (n) 

NB PB PM PS PM PB 

NS PM PS PSS PS PM 

ZE NS ZE ZE PSS NSS 

PS NM NS NSS NS NM 

PB NB NSS NM NM NB 

IV. SIMULATION RESULTS AND ANALYSIS

Using real data from July 2013 to July 2014 provided by 
Public University of Navarre (UPNa), the results are obtained 
through numerical simulations using MATLAB®. The main 
objective of the proposed strategy is using the energy stored in 
the ESS to supply part of the energy required by the EWH and 
to improve the grid power profile. The use of battery power to 
supply part of the energy required by the EWH reduces the 
total load, coming from the mains, required by the MG, as 
shown in Fig. 5(a). Hence, the strategy modifies the load 
demand forecast considering the modified load demand, which 
leads to decrease the load forecast, as can be appreciated in Fig. 
5(b). Consequently, the MG net power and its forecasts are 
modified, as displayed in Fig. 5(c) and Fig. 5(d) respectively. 

To highlight the advantages of the proposed strategy, a 
comparison with energy management strategy presented in 
[14], hereinafter referred to EMS1, is presented next. Fig. 6 
shows the grid power profile comparison between EMS1 and 
the proposed strategy. As it can be seen, the proposed strategy 
minimizes the grid power fluctuations achieving a maximum 
power injected by the grid of 2.563 kW and a maximum power 
absorbed by the grid of -1.892 kW. Note that the negative sign 
in the grid power profile implies power injection from the MG 
to the mains.  
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Fig. 5. MG original and modified variables comparison (a) load demand, 
(b) load demand forecast, (c) MG net power, and (d) MG net power 
forecast. 

Fig. 6. Grid power profile comparison between energy management strategy 
EMS1 and the proposed strategy. 

The improved grid power profile is evidenced when 
comparing the grid power profile ramp-rates (i.e., the slope in 
two consecutive samples) achieved by the EMS1 and the 
proposed strategy. As it can be seen in Fig. 7 the slopes in the 
grid power profile are reduced by the proposed strategy 
reaching a maximum value of 846 W/h in the year under study 
(1052 W/h for EMS1).  

In addition, Fig. 8(a) and Fig. 8(b) present the battery SOC 
and the daily average SOC profile comparison, respectively, 
between the EMS1 and the proposed strategy. As shown in Fig. 
8(a), the battery SOC achieved by the proposed strategy is 
close centered to the battery SOC reference (75% of the rated 
battery capacity), which can be noticeably appreciated when 
analyzing the daily average SOC profile presented in Fig. 8(b). 
Moreover, the improved battery SOC evolution of the proposed 

strategy can be evidenced in Fig. 9, where it can be noted that 
the battery SOC is kept in a range between 70% and 80% of the 
rated battery capacity during the 45.83% of the year under 
study. Conversely, the EMS1 keeps the battery SOC in this 
range the 36.96% of the year. This enhanced behavior causes 
the battery to be prepared to compensate the grid power 
fluctuations that may presents in the MG. 

Fig. 7. Maximum grid power profile ramp-rate achieved by the proposed 
strategy. 

Fig. 8. (a) Battery SOC comparison. (b) Daily average SOC profile 
comparison. 

Fig. 9. Histogram of the battery SOC ranges achieved by the EMS1 and the 
proposed strategy. 

In relation to the energy saved obtained by applying the 
proposed strategy in an electro-thermal MG scenario, it can be 
observed in Fig. 10 that the battery ESS contributes with the 



EWH load consumption to keep the water temperature in the 
deposit tank in a range between 45 °C to 65 °C. In the year 
under study, the energy supplied by the ESS reaches 
318.5 kWh, which represents an energy saving of 18.5% in the 
MG energy consumption. 
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Fig. 10. Distribution of the energy required by the EWH between the battery 
ESS and the mains for three consecutive days. 

V. CONCLUSIONS 
The fuzzy energy management strategy based on microgrid 

power forecasting applied to an electro-thermal microgrid 
scenario has been presented in this study. The proposed 
strategy has improved the grid power profile and the battery 
SOC evolution with respect to previous work where microgrid 
power forecast is not considered. The proposed strategy has 
minimized power fluctuation in the grid power profile 
achieving a maximum power fed into the grid of 1.89 kW and a 
maximum power injected by the grid of 2.56 kW. In addition, 
the enhanced behavior of the proposed strategy has improved 
the battery SOC evolution in the year under study where the 
battery has kept the 45.8% of the year in a range between 70% 
and 80% of the rated battery capacity. Finally, the use of 
thermal elements within the microgrid has contributed with the 
reduction of the 18.5% of the total energy required by the 
microgrid reducing its operating costs. Future work will be 
focus on changing the controller's philosophy to smooth the 
grid power profile considering restrictions imposed by the grid 
operator and demand side management. 
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