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Abstract—Digitalization in facility management has become 
an active field of research for many reasons. Among others,  it 
can provide high support by saving energy and cost in the 
building sector as well as for optimizing internal processes 
involved within the management of a facility. To enable this, 
many data about a building has to be collected and analyzed. 
Building management systems can already produce huge 
amounts of data that are analyzed for supervising, controlling 
and benchmarking buildings. However, even if numerous data 
are produced during building operation there is no much use of 
building information created during its design. In view of that, 
this research proposes a methodology and a software framework 
for closing the informational gaps between building design and 
operation. It follows data integration steps that use initial 
building information models and extend them with operation 
data as well as semantic models. These data models are used for 
interpreting energy system behaviors and performing predictive 
analyses. More specifically, a system ontology is introduced that 
supports reuse of knowledge for optimized building operation 
and maintenance. 

Keywords—building information modeling, knowledge 
management, maintenance, building operation, data analysis 

I. INTRODUCTION

The digitalization process keeps rising in the building 
industry promising new perspectives for better planning and 
operating buildings throughout their whole life cycle. In this 
context, different ICT technologies are utilized in the research 
field as well as in industry that allow for the collection and 
analysis of data related to a building and its technical services. 
Data collection appears at different stages of the life cycle of a 
building and has accordingly different purposes. During 
building operation, building management systems (BMS) are 
usually in charge of gathering information about a building 
which are for a part related to its energy behavior. BMS data 
are gained through sensors and meters that provide information 
about e.g. the operational states of technical equipment, indoor 
temperature or energy consumption. Because of its highly 
time-dependent nature, this kind of information can be 
categorized as dynamic data about a building. In addition, 
BMS also uses static data which represent the building and its 
technical systems as they are i.e. as built physical entities. This 

information encompasses the energy system components, their 
technical characteristics and their layout in the building. This 
static information is intrinsically associated to dynamic data 
which can provide insights into the operational behavior of the 
physical system. In that context, digitalization can be somehow 
measured as the extent of static and dynamic information 
which is collected about a building. The actual trend shows an 
exponential increase in the use of dynamic data in building 
operation. In the actual state of technics, monitoring systems 
are able to provide very high amounts of data which are 
managed and analyzed with the help of established methods 
(cf. Big Data, Internet of Things). 

Unlike the building operation phase, the design phase 
focuses on the collection respectively creation of static data. 
Digitalization in building design is nowadays associated to the 
field of building information modeling (BIM) [1] which has 
brought a set of data standards as well as a methodology for 
enhancing collaboration and interoperability by building 
projects. The emancipation and gradual establishment of BIM 
in the design phase of buildings results in the production of 
many information of different nature. Indeed, more than only 
the geometrical model of a building, BIM enables the 
enrichment of building data with e.g. technical specifications, 
analysis models e.g. for energy analysis and cost analysis, 
production schedules, etc. This information integration process 
is also known as nD modeling [2].  

Despite the bright source of information offered by BIM, 
there still exists a large informational gap between the design 
and the operation phase. In practice, there is no reuse of BIM 
design information during the operation phase. Even if the 
design phase of a building engages much information and 
relies on high quality CAD models, the transfer of all created 
information to operation actors and systems is either poor or 
inexistent. It is generally recognized that software systems 
embedded into BMS or developed for computer-aided facility 
management (CAFM) could take benefit of such a stock of 
information, but in practice they still rely instead on well-
delineated and proprietary data models [3]. Those data models 
necessitate manual efforts in the commissioning phase for 
configuring them and gathering all static information again. 
Related software systems are specifically customized for each 
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new building. By their first configuration, empty data points 
are instantiated in some database memory units which must be 
then all manually initialized and associated with building 
layout drawings or mechanical, electrical and plumbing (MEP) 
schematics. As a matter of fact, the static information used by 
such systems is much more limited in scope than BIM 
information. 

In view of this informational gap between building design 
and operation, the purpose of this article is to propose a 
methodology for reusing BIM data during building operation. 
In this context, an information integration and semantic 
enrichment process is formalized as a BIM process. Moreover, 
analysis use cases are introduced which focus on predictive 
maintenance. They rely on the analysis of operation data 
which, combined with BIM information, provides necessary 
outcomes for assessing energy system operational states and 
behavior. In view of that, it is explained how energy system 
operation and maintenance can be supported by BIM standards. 
Furthermore, the followed approach puts accent on the reuse of 
engineering knowledge that can be applied for planning FM 
actions and configuring BMS. That way, knowledge 
complements initial BIM static and dynamic data thus 
enriching it with engineering best practice. 

II. FACILITY MANAGEMENT INFORMATION WORKFLOW

 The building life cycle involves different stakeholders who 
play specific roles and have their own impact on the operation 
of a building. Some main actors include building owners, users, 
facility managers, designers and engineers. They all use and 
share certain amounts of information that practically all belong 
to an overall workflow. For a rational use of information during 
building operation, all data about the building produced during 
design and commissioning phases shall be used as basis. More 
than a pure geometrical model, parts of the available 
information stock should include among others technical 

specifications, requirements and simulation results. Operating a 
building can then follow a BIM-centered workflow as the one 
from Fig. 1 expressed with the business process model and 
notation (BPMN) standard. In the diagram, the rows define 
interacting domains that represent the stakeholders’ roles 
mentioned above. The additional BIM domain in the middle is 
responsible for building information management. This 
workflow is defined as a continuous and iterative process 
describing different tasks that are performed manually for a 
part by FM actors and automatically for another part by 
software applications or services. The resulting framework 
aims at automatizing building operation and maintenance as 
much as possible while maximizing the reuse of BIM 
information.  

 First of all, based on the technical characteristics of the 
building energy system and the performance requirements of 
users and owners, the FM domain accordingly configures the 
energy system and applies specific settings like e.g. set points. 
Requirements and settings can be gathered into a key metric 
model containing reference “to be” quantitative values (indoor 
temperature, supply temperature, nominal power of 
components, efficiency rate, etc.) and key performance 
indicators (KPI). The BMS fulfills its role of continuously 
collecting operation data, referred to as building automation 
and control system (BACS) data in Fig. 1, and storing them in 
a dedicated database. The number of data points available 
reflects a certain level of monitoring (LoM) that conditions the 
feasible analyses. An important step in reusing design 
information is to associate building data from CAD design with 
operation data so that the BIM model does not remain a static 
building system representation but becomes a dynamic 
information model. Then, the BIM model is converted into an 
ontology using an existing semantic web tool [4]. The use of an 
ontology enables to semantically enrich the BIM model later 
on in order to assist the targeted analyses and provide support 
for FM decisions. This new BIM system ontology is named 

Fig. 1. BIM process for facility management
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energy system information model (ESIM) as it is centered on 
the energy system. The ESIM ontology is complemented by 
additional information from heterogeneous sources and acts as 
an integrated semantic BIM model. Part of additional 
information is characterized by knowledge models that are 
useful for analyzing, interpreting and curing the energy system 
operational state. In practice, this knowledge can be generic i.e. 
independent from buildings and FM stakeholders (stored in 
BIM domain), but also firm-specific (contained in FM domain 
or in analysis domain). Using that knowledge and BACS data, 
an inference engine can then classify and interpret energy 
system operational states. By need and if corresponding 
analysis models are available, a predictive analysis can be 
performed which shall give insights into the aging and 
reliability of energy system components. Finally, on the basis 
of the identified operational states and the analysis results, 
predefined operation and maintenance measures can be 
retrieved from the knowledge base for supporting FM 
decisions. 

III. INTEGRATION OF STATIC AND DYNAMIC DATA

A. Integration of design and operation data 
An efficient use of building information models within the 

operation phase relies on their association with collected 
operation data. This association opens a certain number of 
possibilities. In our case, it shall give support for performing 
data-driven analyses in the context of energy efficiency 
analysis, aging and failure analysis, as well as decision making.  
For coupling building information models and real data, we 
apply a procedure that enables direct reuse of building CAD 
design models and semi-automatic linking of both static and 
dynamic data. In that context, it is assumed that CAD models 
produced within the design phase reach a certain degree of 
quality and a sufficient level of development [5]. Indeed, in 
building design different disciplines are involved in the 
planning process like architectural, structural, MEP and BACS 
design. This latter discipline, which plays a major role in rather 
late design or in commissioning stages, shall provide sufficient 
information about the building automation system (e.g. sensors, 
meters and controllers) in order to map it with monitoring data.  

For the integration of static and building data we rely on the 
use of the open BIM standard IFC (Industry Foundation 
Classes) [6]. This choice is made to ensure a maximum 
interoperability with usual CAD programs used by 
practitioners. Indeed, the IFC format is commonly supported 
by most CAD vendors. The IFC data specification covers a 
wide variety of domains and project relevant information in a 
single data format. It is divided in several hierarchical class 
layers and domains. For our purpose, we focus on the so called 
building controls domain which provides several concepts 
related to the field of building automation. More specifically, it 
defines data objects for representing e.g. sensors, meters and 
controllers. For modeling such technical components in a CAD 
model, one can utilize BIM component catalogues. Many 
BACS components from several manufacturers are represented 
and available in such catalogues. Nevertheless, many specific 
components still do not exist. Moreover, because each BIM 
catalogue product disposes of its own custom set of properties 

Fig. 2. View of an IFC 3D CAD model containing a temperature sensor and 
information about its relations to building topology. 

(e.g. name, manufacturer, manufacturer reference…), we 
define higher-level BIM entities i.e. templates that represent a 
certain category of components and that dispose of a common 
set of properties. For the example of sensors, we define a 
specific sensor template which contains general properties. 
Among these properties, some are defined for mapping purpose 
with the monitoring database while some others are defined for 
proper representation of the sensor in the IFC data format. 
More precisely, we use the IFC classes IfcSensor, 
IfcSensorType and IfcSensorTypeEnum [6]. In practice, each 
virtual sensor, as the one shown in Fig. 2, refers to some 
template and disposes of a valid representation in IFC.  

Because the IFC are not sufficient and adapted to represent 
dynamic information, we couple the CAD model with a 
monitoring relational database that is used to collect all data 
related to building operation from a BMS. This data are usually 
collected in the form of time series with different time intervals 
and additional metadata about their type, unit, related data 
device and position in the building. Because both virtual 
sensors from the CAD model and data points in the database 
share similar information, an internal database service performs 
then an automatic mapping to create explicit associations 
between static and dynamic data. More concretely, the 
mapping is based on the relations the sensor data points have 
with technical components as well as with building topology. 
As a result, the data points get linked to virtual sensors from 
the IFC model. For that purpose the IFC globally unique 
identifier (GUID) are used as association keys. 

B. Integration of Additional heterogeneous Information 
In addition to mapping virtual building models with their 

operation data, further data integration steps are necessary for 
allowing and especially automating the targeted analyses. 
Indeed, there are several reasons why integration of additional 
information is of interest. First of all, even if the IFC schema 
specification covers a wide variety of information domains, 
these still are limited in scope, hence extensions are necessary 
for performing specific analyses. As an example, in the field of 
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BIM-based energy analysis several works like in [7] have 
demonstrated that additional non-IFC information about e.g. 
occupancy, climate forecasts or energy behavior of HVAC 
components is necessary to make reliable predictions. The IFC 
schema is not designed to represent such kinds of information. 

In a similar manner and for the purpose of BIM-based 
operation and maintenance, we aim in our research at 
extending the IFC information space for following reasons: 

For fastening and automating predictive analyses within 
FM, we couple the CAD model with a library of 
analysis models. These models consist of aging models 
for different HVAC components and reliability models. 

We integrate also a knowledge model that provides 
support in analysis of the operational state of a building 
and in planning of FM actions. This model covers three 
main information areas: 

o a classification of operational and behavioral states 
of building energy systems and their components 
which are associated to key metrics,  

o causality relations between system and component 
states, 

o operation and maintenance templates that describe 
predefined classes of FM measures like 
maintenance plans or control strategies. 

For managing previously mentioned heterogeneous 
information and for driving the process described in 
Chapter 2, there is a need for a metamodel that (1) 
represents all involved information at a more abstract 
level, (2) that provides means of interlinking it and (3) 
that defines rules and constraints for processing it (e.g. 
which sensor data are required for which analysis model 
at which building information level of detail?). 

 For the above mentioned purposes, we introduce an 
ontological data structure which is implemented in the energy 
system information model (ESIM) mentioned earlier and 
described in next chapter. 

IV. ONTOLOGY-BASED ENERGY SYSTEM REPRESENTATION

The energy system information model (ESIM) is a domain-
specific model that represents energy systems at building level 
as well as at urban level, and that includes automation and 
control equipment. It has been initially developed in the scope 
of the EU project eeEmbedded [8]. It provides a data structure 
that enables functional, structural and physical descriptions of 
entire energy systems. Fig. 3 shows the core superclasses and 
property groups of the ESIM. Besides the description of 
complex systems, it has been also developed for enabling 
integration of further system-related information. Concretely, 
the ESIM is built as an ontology that applies semantic web 
standards [9] like RDF/OWL. Beside their functionalities, these 
standards can guaranty interoperability with several systems in 
future applications of the information model. Fig. 4 shows the 
five main functions of the ESIM. First, this information model 
is meant to enable a comprehensive system description which 
encompasses the physical components, their hierarchy and their  

Fig. 3. Core taxonomic parts and property groups of the energy system 
information model [8]. 

relationships in terms of physical and communication 
interactions. With a similar goal, parallel researches try to 
establish information models like e.g. IEC Common 
Information Model (CIM), Smart Grid Architecture Model 
(SGAM) or Facility Smart Grid Information Model (FSGIM) 
[10]. These models have been developed for information 
exchange among energy management systems and stakeholders 
of the energy market. However, they focus more exclusively on 
electrical networks. As a second function, the ESIM model is 
built for integrating other data structures by the means of links. 
Especially, it allows a full integration of the IFC data structure 
by using the ifcOWL ontology format which belongs to the 
open BIM standards [4]. That way, the ESIM ontology can 
provide extensions to the initial IFC CAD model developed 
within the design phase. Among these extensions, the ESIM 
ontology can be interlinked with a requirement model 
including key metrics (KPIs, normative restrictions, control 
settings, reference values and thresholds) as well as a cost 
model. For the sake of data integration again, the third and 
fourth functions of the ESIM cover respectively the integration 
of analysis models and operation data. Analysis models are 
organized in a library that includes different computational 
algorithms about e.g. energy behavior, aging and failures of 
MEP components. As those algorithms are data-driven and rely 
on building operation data, the ESIM provides an interface to 
the monitoring database. This relies on the mapping described 
in Chapter 3 between the IFC CAD model and data points. The 
ESIM ontology includes additional metadata to sensor 
templates like e.g. time intervals which are missing in native 
IFC. Templates compose the fifth function and represent 
whether abstract or pre-defined energy system components and 

Fig. 4. Five main functions of the energy system information model [8]. 
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BACS elements as well as O&M strategies and procedures. 
They are used for modular and fastened design of energy and 
BACS systems as well as for supporting FM decisions. 

V. ENERGY SYSTEM STATE ANALYSIS AND PREDICTION

Through several steps of the FM BIM process presented in 
Chapter 2, the ESIM model is configured as an integrated BIM 
model. For that purpose, building information from initial CAD 
model is associated to related operation data and then 
converted into a system ontology described by the ESIM. For 
performing the further tasks presented next, the ESIM 
integrates also knowledge and analysis models. These tasks 
consist of (1) the identification of energy system operational 
states, (2) a predictive analysis about future outcomes of such 
states and (3) a contingency plan implmented as FM actions. 

A. System state classification and interpretation 
For assessing the operational state and behavior of the building 
energy system, we rely on expert knowledge. This knowledge 
reflects facility managers’ and engineers’ know-how and 
experience about technical building systems. It is formalized 
and contained in a knowledge model that is associated to the 
ESIM ontology. The retrieval and application of that 
knowledge relies on semantic reasoning. For that purpose, we 
apply semantic web reasoning technics [9]. Practically, an 
inference engine takes facts about the energy system as input 
and produces statements as output on the basis of the expert 
knowledge. The facts are provided by the ESIM ontology and 
are of two kinds. Static facts consist of building information 
containing the type of technical systems, their description and 
interactions. Dynamic facts consists of operation data that are 
handled in condition monitoring. The purpose of the condition 
monitoring task is to analyze the evolution of different data 
points and identify certain changes in energy system behavior. 
The analysis of these changes relies on the key metric model 
previsouly introduced. This model describes several variables 
and measurements that have a strategic character and that are 
associated with a thresholds system. As illustrated in Fig. 5, 
when a metric passes a threshold value, a changed condition 
can be identified and by need a preventive or corrective O&M 
action can be triggered. These metrics can be derived directly 
from raw monitoring data (e.g. temperature, rotation speed, 
vibrations…) or indirectly computed (e.g. efficiency rate). 
Alternatively, metrics and metric ranges may also be computed 
by data analysis algorithms using e.g. machine learning 
methods like clustering by complex and ambiguous data sets. 

Fig. 5. Association of risk states with several metric values using two 
thresholds: risk tolerance and risk target. 

Fig. 6. Ontology classes structure of the key metric and the interpretation 
knowledge models. 

These methods represent further development steps of the 
presented research. As for the example of risk events which is 
illustrated in Fig. 5 and 6, different operation risks are 
catalogued and grouped in an interpretation ontology using the 
RDF data standard and more precisely its overlying Web 
Ontology Language (OWL). More specifically, they are 
associated to different metric ranges using the ontology 
modeling principle of value partition. As illustrated, each 
metric can refer to several risks according to the range its value 
belongs to. That way, each energy system condition can be 
automatically classified into specific risks and criticalities. In 
that case, the key metrics are used as main knowledge access 
points. For performing this state classification, a set of rules are 
defined using the semantic web rule langage (SWRL) and 
executed by the inference engine on the basis of the facts 
provided by the integrated semantic BIM model. Using this 
approach different risks and conditions can be identified like 
excessive stress, aging or energy inefficient usage. 

B. Predictive analysis 
According to the system states interpreted within the 

previous task a predictive analysis can be necessary. In case of 
predictive maintenance, the overall aim is to allow for an 
estimation of the remaining working time in a certain 
efficiency range or before failure of a component or a system. 
For that purpose, the BIM process relies on a library of analysis 
models. Each analysis model has a certain function and 
implements a specific mathematical approach e.g. a physical 
aging model or a stochastic model. They are associated to 
certain types of components or sub-systems that are formalized 
in the ESIM taxonomy. The selection of an analysis model 
depends then on the component or system of interest, its 
identified condition as well as some informational constraints 
like the level of monitoring (LoM) and the level of detail (LoD) 
of the building information model. As stated by [11], there 
exist two causes of failure in reliability theory: aging and 
excessive stress. As a result of the combination of both 
phenomena, failures can be differentiated into three categories: 
gradual failures, aging failures and sudden failures. Gradual 
failure propagation may be directly measured by one or several 
indicators (condition monitoring - CM). In that case no 
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subsequent analysis model is necessary. Nevertheless, it 
requires a certain LoM for the CM task to be performed i.e. the 
related data points must be available in the monitoring 
database. If the LoM is not sufficient, the failure might be 
simulated through a stochastic model. By aging failures, the 
failure probability is age dependent, that is, there is a 
predictable wear-out limit which can be computed by an aging 
model. In contrast, sudden failures are of complete 
randomness. Such failures cannot be predicted by condition 
monitoring and aging analysis. In that case, components’ 
failures can be simulated using stochastic models in which time 
to failure is described by e.g. an exponential or a Weibull 
distribution. As for components, an analysis model can be used 
at system scale. In that case, the computed failures of single 
components can be used as inputs for analyzing their effects on 
the whole system. As shown in Fig. 7, this can rely on the 
system graph that is intrinsically provided by the ESIM 
ontology and based on IFC. To deduce failure occurrences of 
the whole system, it is necessary to describe the interactions 
between its components. For that purpose, an ontological 
representation is composed at instance level of the HVAC 
model contained in the ESIM and, at an abstract level, of a 
reliability knowledge model that describes known failure 
dependencies according to component interaction types. 

Fig. 7. Exploitation of the ESIM system graph for analyzing failures and 
malfunctions at system level based on system reliability knowledge.  

C. Knowledge-Based O&M Decision Support 
The last task of the BIM process consists of supporting the 

facility manager in taking decisions for an optimized 
maintenance and a more efficient use of energy. As for the 
system state identification, this task relies on rule-based 
semantic reasoning that takes the outcomes of the previous 
tasks as input for pre-selecting best fitting O&M measures. 
These measures are formalized and predefined as knowledge 
templates in the knowledge model. The O&M templates are 
described by several properties like the following: 

Type: preventive or corrective, 

Action: repair, replace, exhaust… 

Used resources: technical parts, men power, costs… 

Maintenance schedule: period, sequence of actions... 

Control settings: temperature set points, AHU settings 
(pre-heater, pre-cooler, valve positions)… 

As each building use case is specific and unique, the 
knowledge templates mainly represent types of O&M measures 
which are pre-instantiated after semantic reasoning. They are 
only pre-selected according to some criteria as possible FM 
action candidates that can then be further elaborated and 
implemented by FM managers. 

VI. CONCLUSION

The presented methodology intends to bridge building 
design and building operation with the support of digitalization. 
For that purpose it relies on BIM standards and proposes a 
building operation workflow in which several FM stakeholder 
roles interact through a software framework. As central 
component, an integrated semantic BIM model is built as an 
ontology and is used for data integration, knowledge 
management as well as energy system behavior analysis. Some 
parts of the framework are at prototypical state while others are 
at conceptual state and do not exist yet. 
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