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Abstract—This paper presents a method for removing ro-
tational motion from an omnidirectional video captured from
the viewpoint of a spinning object. For instance, the technique
could be used to recover stable footage from spherical video
captured from within a football used for competitive sports. The
methodology uses a rotationally-invariant algorithm to obtain
feature points and descriptors for pairs of successive frames.
This information is then abstracted into three-dimensional point
clouds, from which the Kabsch algorithm can infer the rotational
motion between frames. The resulting rotational matrices are
used to remap each equirectangular frame to a reference frame,
and thereby offset the effect of frame-to-frame camera rotations.
The algorithm has been successfully tested with various styles of
footage. Additionally, the codebase implementing our algorithm
has been freely shared through an open online repository.

Keywords—Omnidirectional Video, Ball Camera, Video De-
rotation, Rotating Equirectangular Image

I. INTRODUCTION

The sports broadcasting industry is consistently striving to
give its viewers the most satisfactory and immersive experience
possible. In recent years, thanks to the emergence of robust
action cameras, it has been possible for viewer to experience
immersive action on the field. However the view from the point
most central to the action has yet to be obtained: the view from
inside the ball.

Traditional video cameras only enjoy a limited field of
view. By contrast, omnidirectional cameras allow for a full
field of view (360o × 180o) to be captured. In recent years,
consumer omnidirectional cameras have become more readily
available and websites such as Youtube and Facebook offering
free hosting of spherical video.

Neglecting the hardware engineering challenges of embed-
ding a video capturing device into a ball, a primary issue with
any footage so obtained is that the device itself would be
spinning. The result is that the footage would be unwatchable.
With omnidirectional video it is possible to simultaneously
see in every direction and therefore reference objects remain
visible in successive frames. The goal of the present project
was to develop a technique by which omnidirectional video
footage captured from the viewpoint of a spinning object (for
example a football spinning through the air) can be decoupled
from the rotational spin of said object, while preserving the

translational motion. This paper outlines the approach used to
achieve this goal.

Briefly, the developed technique derotates the video by
firstly extracting image features between frames of the video.
These features were matched, based on their descriptors, and
used to calculate a rotational matrix that relates to the rotation
of the camera between two pairs of frames. This rotational
matrix was found by exploiting the Kabsch algorithm [1] [2].
These rotational matrices are then accumulated and used to
determine the rotation trajectory of the object over time, with
respect to the initial anchor frame. A remapping transform
was applied to each frame to counteract the rotation of the
raw equirectangular images. The output of this algorithm is
omnidirectional video that maintains a fixed point of view even
thought the capturing device exhibits rotational motion. The
results of the present work can be recreated through the use
of the publicly shared codebase [3].

A. Similar Works

Similar techniques exist for the stabilisation of omnidi-
rectional video. One such technique utilises motion sensors
in unison with scene tracking video [4]. Other solutions use
purely software and computer vision techniques, [5], [6] being
two such examples. These approaches aim only to stabilize
video which is shaky, that is to say video which has minor
motions along the three degrees of movement (pitch, roll
and yaw). There is no evidence presented of these methods
being tested with omnidirectional footage that has significant
and constant spin, such as a ball in flight would experience.
The testing of these methodologies in such circumstances is
difficult without their code being publicly available.

However, there are three projects [7], [8], [9] which present
their approaches to solve the present challenges of embedding
a camera into a rotating sports ball in order to obtain usable
footage. The work in [7] has presented a methodology which
is quite similar to the approach used in this paper, as it likewise
applies its algorithm to the video in post-production, with the
same mapping projection being used. However, [7] uses an
alternative matching algorithm and a different method to obtain
rotation frame-to-frame, and is unclear on the precise method
used to rotate each individual frames within the video. The
present implementation emphasises open-source algorithms to
allow code reusability and comparative analysis of results.



Fig. 1. Example of mapping a spherical representation of earth to an
equirectangular projection.

B. Devices for Capturing Omnidirectional Video

There is a considerable variety of camera configurations ca-
pable of capturing omnidirectional videos, which vary widely
in complexity, number of cameras, size and cost. The focus
of the present research is on the processing of spherical video
footage, rather than on how this can be captured. The video
used as input to the algorithm has to meet certain criteria.
Firstly, that the footage captured is fully omnidirectional (some
camera configurations do not capture footage at the poles of
the cameras POV). Secondly, each frame of the video should
be stored as an equirectangular projection of the scene. This is
the format that is currently used by the popular video hosting
websites, such as Facebook and YouTube. Finally, any video
used in the algorithm should have rotational motion. No sensor
data is used and all data acquired was from the omnidirectional
video using computer vision techniques.

II. METHODOLOGY

A. Equirectangular Projection

The map projection used to store the omnidirectional video
is the equirectangular projection. This projection is widely
used because it can be easily viewed through a viewer,
which dynamically maps the projection onto a sphere with
the viewer’s POV located at the centre. This projection also
fully depicts the surface of a spherical object, meaning it
describes the full scene, 360o × 180o degrees, captured by
the omnidirectional camera. The type of projection can also
be referred to as equidistant cylindrical projection, geographic
projection, or la carte paralllogrammatique projection. The
invention of the projection has been attributed to the Greek
mathematician and geographer Marinus of Tyre some time in
the period around 100 AD [10].

An example of this projection used on a spherical repre-
sentation of earth can be seen in figure 1. The projection is
used to map a 2D image onto a 3D sphere or vice versa. One
useful property of the equirectangular projection is that the x
and y coordinates on the map have a linear relationship with
the longitude φ and latitude θ. This is particularly convenient
from a computational perspective for mapping an image onto
a sphere. The relationship between the spherical coordinates
of the sphere and their Cartesian equivalents is described by
equations 1, 2 and 3. Note these equations are defined for a
3D unit sphere.

x = cos(θ)cos(φ) (1)

y = cos(θ)sin(φ) (2)

z = sin(θ) (3)

Note that there are considerable distortions present in the
equirectangular projection, particularly at the poles of the map
and they are stretched to fit to the equirectangular map. This
is an artefact of projecting a spherical surface onto a flat
surface. This distortion at the poles is taken into consideration
when performing feature extraction and matching as the raw
projection does not accurately capture the scale of the scene
in these regions.

B. Feature and Descriptor Extraction

Motion was tracked between successive frames using fea-
ture points and feature descriptors. Features are the points in
an image that are visually distinctive. They can be identified
between images via a keypoint descriptor, which presents
a mathematical descriptions of the region about the feature
points [11].

The feature and descriptor extractor algorithm selected for
the present work was Orientated Fast and Rotated Brief (ORB)
[12]. The algorithm was chosen for its vital properties of scale
and rotational invariance. Scale invariance means that features
and descriptor found in an image should not vary based on the
scale of the image. Scale invariance is important due to the na-
ture of the scaling distortions introduced at regions of high and
low latitudes in the equirectangular projection. Additionally,
rotational invariance is an essential property required from the
ORB algorithm because the footage used in the algorithm will
fundamentally have a significant rotational shift between each
frame. The ORB algorithm uses the Features from Accelerated
Segment Test [13] keypoint detector and the Binary Robust
Independent Elementary Features [14] feature extractor.

It should be noted that ORB was chosen over SIFT [15]
and SURF [16] for the purposes of this project because the
latter two methods are patented algorithms, which hinders the
availability and reproducibility of the algorithm. All three offer
similar performance from a speed and accuracy perspective.

C. Feature Matching

Features were extracted for pairs of frames, a train and
a query image, where the query image precedes the train
image. The features between the two images were matched
using a brute-force method. The descriptors of each keypoint
were used for matching. Additionally, crosscheck was used
to improve the quality of the results, by producing only a
minimum number of outliers in the features matched. The
matched features were then sorted in terms of descending
order, based on the shortest distance between matched feature
points of the image pair. The result was a list of sorted matches.

D. Data Abstraction

These sorted matches between the train and the query
images were then converted into equivalent Cartesian coor-
dinates. This was achieved in a number of steps. Firstly, the
pixel location was converted into an equivalent longitude and
latitude spherical coordinate values. Secondly, the spherical
coordinates were then converted into corresponding Cartesian
coordinates using equations 1, 2 and 3 to build a three-
dimensional point cloud of image features. Only the best m



matches were stored (the choice of the value for m is discussed
later) The result of this data abstraction was two point clouds,
a point cloud for train image Pt and the query image Pq .
Each row element of both point clouds Pt and Pq contains
the location of the same feature point in three-dimensional
Cartesian space for the respective frames. Pt and Pq matrices
are identical in shape and size and have the following form:

Pq =


x0 y0 z0
x1 y1 z1
...

...
...

xm−1 ym−1 zm−1

xm ym zm

 (4)

E. Rotation Matrix

Each pair of point clouds can be used to infer a rotational
matrix, which describes the cameras physical rotation between
the train and query image. The method used to relate the point
cloud pairs is the Kabsch algorithm [17], which calculates a
(3 × 3) optimal rotational matrix U , which describes how to
rotate one point cloud to best correspond to the other. The
method can be summarised into the following steps:

1) Translation of both point clouds so that the centroid
is located at the origin.

2) Computation of covariance matrix.
3) Computation of optimal rotational matrix U .

The algorithm requires that each of the inputted point
clouds be of equal shape and size. An (m×3) matrix was used.
Each row of the respective matrices contains the coordinates
(Cartesian coordinates) for a point. The number of rows, m,
correspond to the number of feature points used and was a
configurable parameter.

F. Accumulating Motion

Using the preceding techniques, a series of rotational
matrices U has been obtained for each frame, as shown in
figure 2. Each matrix describes the relative rotation between
successive frames.

Using the same terminology as [9], the anchor frame is
defined as the reference frame, and is used to relate all the
other frames in the sequence via a rotational matrix. The
anchor frame sets the viewing direction for all frames in the
subsequent video sequence. For this project it was chosen as
the first frame in the video sequence but any other frame in
the sequence could be used. The rotational matrix that relates
each frame of the video to the anchor frame was calculated by
multiplying the preceding series of rotational matrices, as was
calculated on a frame-by-frame basis. The resulting vector Ua
contains rotational matrices. It is summarised in equation 5,
where n is the number of frames in the video sequence. Each
row element in the vector describes a rotational matrix Un−1

that can be used to relate the nth frame to the anchor frame.

Ua =


U0

U0U1

...
U0U1 . . . Un−2Un−1

U0U1 . . . Un−1

 (5)

Fig. 2. Illustration of data acquired.

G. Transformation of Equirectangular Frames

Once the motion has been appropriately aggregated there
exists a rotational matrix to relate each frame to the anchor
frame. This rotational matrix can then be used to rotate the
raw equirectangular frames to their corrected orientations. The
steps used to rotate each frame within the sequence of images
is as follows:

1) Each pixel in the equirectangular image was con-
verted into its equivalent longitude and latitude value.
The resulting values will vary significantly depending
on the resolution of the image but had the same
maximum and minimum range.

2) These longitude and latitude values are converted into
Cartesian coordinates using equations 1, 2 and 3.

3) The three-dimensional coordinate representations of
each pixel position are then rotated by multiplication
with the relevant rotational matrix, to give a translated
Cartesian coordinate for each pixel.

4) These values are then converted back their spherical
representations using equations 6 and 7.

φ = arctan(
z√

x2 + y2 + z2
) (6)

θ = arctan(
y

x
) (7)

5) Finally the RGB colour value of the initial pixel was
saved into the new pixel location of the translated
equirectangular position.



The use of interpolation was required on any of the
resulting rotations that were not purely yaw (rotation about
the vertical axes). The reason for this is due to the shift of
an area with a low pixel density to an area with a high pixel
density, for instance the centre region of the equirectangular
projection where the pixel density is much higher than polar
regions of the equirectangular image. This resulted in regions
of missing pixels. Nearest neighbour interpolation is used to
fill in these missing pixel values.

III. RESULTS

The algorithm was implemented in Python (version 2.7.12)
with the OpenCV libraries (Version 2.4.13). The main libraries
used in this project were Numpy and Matplotlib for scien-
tific computing and data visualisation purposes, respectively.
Additionally, the Python Imaging Library (PIL) was used in
assisting the remapping of the equirectangular projection.

A consumer omnidirectional camera was used to capture
footage for testing purposes. The specific camera used was the
LG 360 and was chosen for its relatively inexpensive price, full
omnidirectional capturing capabilities and its small form factor.
It captured two separate images using wide angle lenses for
both sides of the device. These images were then stitched in
order to produce an equirectangular image. The device captures
footage with a resolution of 2560 × 1440 and a frame rate of
30 fps.

A. Number of Feature Points

For this implementation the parameter m which determined
the number of points in the point cloud and features matched
was set at m = 40. This was found to yield the best results.
It was found that increasing m by an order of magnitude
decreased the accuracy of the rotational matrix U obtained.
The reason for this is that the number of outliers inputted
to the Kabsch algorithm increased. It was also noticed that
the run-time to obtain the rotational matrix also increased.
When m was reduced by an order of magnitude the quality
of the matched feature points returned increased, with fewer
false positives. However, there was not enough points in the
point clouds Pt and Pq for the Kabsch algorithm to return an
accurate rotational matrix. More rigorous testing over a range
of resolutions is required on the algorithm in order to determine
the optimal choice of m.

B. Map Rotations

Examples of rotations applied to a single frame can be seen
in figures 3 and 4. The sample image used for rotation is an
equirectangular projection of a world map. Figure 4 depicts
rotation about the y axis by π

2 radians. This process of ro-
tating each equirectangular image is the most computationally
intensive part of the present algorithm. It was noticed that as
the pixel resolution of the inputted video increased, so too did
the run-time of the algorithm. Even after vectorisation of the
relevant code it is seen that approximately ninety percent of
the total run-time is spent on rotating the frames of the video
sequence.

Additionally, there is deterioration in the image quality
after applying the rotation, with noticeable introduction of
artefacts. A side-by-side comparison example is shown in

Fig. 3. Example of an equirectangular projection of earth, the orange ellipses
illustrate how distortions increase at the poles of the projection (credit for this
and derivative images: Eric Gaba / Sting under CC-BY-4.0)

Fig. 4. Equirectangular projection rotated about the y axis by π
2

radians.

figure 5. This illustrates the artefacts were introduced as a
result of interpolation. This occurred due to the mapping of
one region of the equirectangular projection which had a
lower pixel density to a region with higher pixel density. Any
rotations about the vertical axes provided the best results in
the rotation of the image projection. The reason for this is
because it only requires a horizontal shifting of pixels in the
image. For this reason the best overall results attained from
this algorithm are obtained when the input video only has
rotations about the vertical axes. It would also be of benefit to
use bilinear interpolation, as it would make the interpolation
less noticeable.

C. Test Footage

In order to validate the algorithm suitable test footage was
required for different cases of usage. Various test videos were
captured, and can be viewed in both their raw and corrected
form at [18]. It is recommended to view these videos while
reading this section of the paper. Two representative cases are
presented here for analysis.

1) Test: Yaw With Translational Motion: A test was estab-
lished to determine how the algorithm behaved in conditions
where the camera experienced both yaw and translational
motion simultaneously. The omnidirectional camera was hung
from the roof of a tall agricultural building via a string. The
camera was spun so that it rotated about the axis of the rope,
and then pushed to mimic the swing of a pendulum. This can
be visually seen in figure 6. The resultant footage captured
both rotational and translational motion which aligned with
the movement of the device.



Fig. 5. Example of distortions introduced by nearest neighbour interpolation.

Fig. 6. Yaw with translational motion experiment

The resulting corrected video can be seen in figure 7.
It corrects for the rotational motion by removing it but still
preserves the translational component of the motion. The
roof of the agricultural building can be seen as relatively
stationary from frame to frame within the derotated video.
The result of this test is paramount because it shows that the
algorithm can work for omnidirectional video where there is
both rotational and translation motion present in the recording
device. Additionally, it shows that the algorithm works for
footage where there is a change in the direction of translational
motion.

An additional feature of the algorithm is the ability to infer
the rotational velocity of the camera from Ua, the accumulated
rotational motion vector. Arbitrarily defining the point x =
0, y = 1 and z = 0 as the initial starting orientation of the
camera, it is multiplied by each of the rotation matrices in
the Ua vector. This path is plotted and can be seen in figure
8. The plot demonstrates the rotational motion of the camera
over time, indicating the start and end points. The video used
to generate this graph was the same footage that was obtained
by the experiment illustrated in figure 6. From the graph, it
should be noted that the rate in change of colour overtime
gives an indication to rate of change in speed. As the rate of
change in colour remains relatively constant, it can be assumed
that the speed of rotation is somewhat consistent as well. It
can be remarked that the viewpoint of the user changes over
time and that the motion is primarily about the z axis. This is
an intuitive result based on the actual viewing of the footage.

2) Test: Thrown Camera: A test was run on the algorithm
with footage that was captured from the camera while it was
thrown in the air. The camera was thrown from one person to

𝑇𝑖𝑚𝑒

RawDerotated

Fig. 7. Derotated footage vs raw footage from a camera with translational
and rotational motion.

Fig. 8. Rotational trajectory of the camera for the footage used in the yaw
with translational motion test

another with rotation of the device being random and about
multiple axes. A visual illustration of the camera’s motion is
shown in figure 9.

In this scenario, the algorithm failed to work satisfactorily
after its initial run. However, the algorithm was able to correct
some of the rotational motion within the video. The footage
had significant roll pitch and yaw motion which could not
be recovered with a single run of the algorithm. Each time
the video was passed through the algorithm, the rotational
motion of the camera was reduced. There was a significant
noise component present in the form of rolling shutter effects.
The camera was also moving rather fast through the air with
motion not easily captured, making the reference objects move



Fig. 9. Experiment illustration, the camera was passed by throwing resulting
in random rotational motion

quite quickly relative to the camera. The result of correcting the
video is illustrated in figure 10. Observing this it is clear that
in the derotated footage there is a consistent viewing direction.

Furthermore, it is observed that the resulting corrected
footage has a significant reduction in quality. The reason for
this is due to the loss of information through interpolation,
introduced with each iteration of the rotation algorithm. An
improved implementation of the algorithm would be to obtain
an accumulated rotational matrix over a number of iterations of
the algorithm. This in turn would be applied directly to the raw
video. This would not only result in a significant increase in
output quality but also result in an improvement of the overall
run-time of the algorithm.

IV. CONCLUSION

This paper outlined a method by which footage obtained
from a rotating omnidirectional camera can be derotated. It
used a rotationally invariant feature and descriptor extractor
to match images between frames and obtain representative
point clouds. From these point clouds the rotations between
frames in the video can be inferred using the Kabsch algorithm.
A method was outlined to use these rotational matrices to
derotate each frame of the video. The underlying code for this
algorithm can be viewed, edited and expanded upon through
the public available repository. Although there is room for
improvements in the algorithm the key methodology is outlined
and it presents a novel solution to the problem of how to
decouple footage from a camera embedded in a spinning
object. It was also shown that this algorithm helps to reveal
information in a scene that was previously unseen. It has
potential applications in the entertainment industry to collect
footage which is currently unobtainable, such as from cameras
mounted within balls used for competitive sports.
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