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Abstract—This work presents a variational mode decompo-
sition (VMD) based detector for bearing fault in electrical
machines. Its performance is compared to that of the ensemble
empirical mode decomposition (EEMD) based. A notch filter
based Pearson correlation was developed and used to extract
the dominant mode. Experimental results showed that the VMD
outperformed in terms of statistical features. As a result, the
VMD-based notch filter could be a promising methodology for
bearing fault detection and degradation prediction.
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I. INTRODUCTION

Electrical machines have became unavoidable device in

industrial and domestic applications, for producing mechanical

power or transforming it into electrical power. Despite electri-

cal machines are robust devices, they remain subject to faults

and downtime, hence, affecting their reliability performances.

According to the defected component and the type of the

electrical machine, faults can classified in three categories:

− Stator related fault: including electrical failures affecting

the stator winding such as short-circuits, inter-turn short

circuits and open-circuits [1].

− Rotor related fault: including electrical failures affect-

ing the rotor winding, commutators/slip rings/brushes

failures for all rotor wounded machines, and broken

rotor bars and end-rings for squirrel-cage machines,

and permanent magnet demagnetization or cracks for

permanent magnet motors.

− Mechanical related fault: includes bearing failures, rotor

eccentricity and shaft misalignment.

Figure 1 depicts the distribution of machines failures ac-

cording the rate of the electrical machines [1]. Whatever the

category of the faults, the safety and reliability of electrical

machines are related directly to these faults, hence affecting

the operation and maintenance cost. So, in order to be more

reliable, condition monitoring systems with integrated fault

detection algorithms must be implemented. For this purpose,

many techniques and tools were developed in order to prevent

failures and prolong their working life cycle as reviewed in [2].

Most of these techniques use the existing and pre-installed

sensors for fault detection and monitoring, so, electric machine

Fig. 1. Distribution of electrical machine failures depending on the voltage
supply level [1].

quantities can be used as a fault transducer, and various survey

papers [3]–[5], have indexed the well-established methods

as: electrical quantities signature analysis (current, power...),

vibration monitoring, temperature monitoring, and oil monitor-

ing. However, the signature analysis of the electrical quantities

is considered as a low cost technique, because there is no

need to use additional sensors, since the electrical quantities

are already used for control purpose and easily accessible

during operation, i.e. the current can be acquired by current

sensor, the voltage via a voltage sensor, and the power by

computation [6]. Therefore, analysis of the machine electrical

quantities needs the use of signal processing techniques. So,

depending on the behavior of the electrical machine operation,

specific signal techniques were investigated and developed,

for example for steady-state operations, the most popular

technique is the Fast Fourier Transform (FFT) and other tech-

niques based on it [5], but for non stationary signals, FFT is

difficult to interpret and it is difficult to extract features in time

domain. To bridge the gap for non-stationary behavior, time-

frequency and time-scale representations are investigated in
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electrical engineering community, Spectrogram and Quadratic

Wigner-Ville are presented in [7], [8] for instance, and time-

scale analysis (wavelet) have been proposed in [9], however,

these techniques have limitations such as high complexity

poor resolution and presence of cross terms. Always in con-

text of non stationary signals, parametric methods based on

estimation of parameters of a known model are developed

in [10], nevertheless, these methods have drawbacks they are

formulated through integral transforms and analytic signal

representations [11], hence they depend on data length and

the accuracy of the model. To overcome the accuracy of the

model dependency in a non stationary context, a data driven

approach based on the Empirical Mode Decomposition (EMD)

is introduced by [12], and The merits of the EMD were

highlighted in various diagnostic and fault detection literature

and applications. However this approach presents also some

limitations and drawbacks, such as:

− The lack of mathematical theory

− The mixed mode presence

− The sensitivity to noise and sampling

− The result of decomposition is highly dependent on the

sifting process and stopping criterion

So, to alleviate the mixed mode and sensitivity to noise

and sampling problems, the Ensemble Empirical Mode De-

composition (EEMD) was introduced, and this technique has

demonstrate its performances to detect fault [2]. However,

both EMD and EEMD or other techniques based on them

still suffer from the lack of theoretical background, for this

purpose an other approach based on the variational mode

decomposition (VMD) algorithm, and this paper attempts to

assess the performances of EEMD and VMD for bearing fault

detection. The study was carried out using experimental data

from 0.75kW test bench.

This paper is organized as follows. Section II highlights the

EEMD and VMD algorithms, and focuses on signal decom-

position into intrinsic mode function and variational mode,

section III describes the notch filter based on measurement

of the statistical distance between the original signal and

the dominant mode, since section IV presents the statistical

criterion for fault detection. Section V presents the obtained

results and analyzes the performances of the EEMD and VMD

algorithms.

II. SIGNAL PRE-PROCESSING

In various electrical applications, the ideal case is to get

a pure sine wave electrical current with only the supply

fundamental component, however, due to various phenomena

such as eccentricity, slot, saturation,... the electric current

contains more than the supply fundamental component, but

also additional harmonics [13], and eventually a component

introduced by the bearing failure.So, in order to detect the

component introduced by the bearing failure in the electrical

current, it is proposed to investigate an emerging signal

processing algorithm known as the EEMD and the VMD. The

EEMD is an empirically based data analysis method, since the

VMD is also data driven approach but with a mathematical

theories.

A. Ensemble empirical mode decomposition principle

The EEMD is introduced by [12] to improve the EMD

algortihm [14], and has become a tool for the analysis of non-

stationary and nonlinear data [15] in a wide range application

in signal processing [16] and fault detection [6], [17], [18].

The EEMD algorithm is depicted in 2 and its implementation

is described step by step in [2] So, through EEMD algorithm,

Fig. 2. EEMD algorithms for signal decomposition.

a signal x(t) can be expressed as a sum of k modes or IMFs

as follow

x(t) =
k

∑

i=1

IMFi(t) + res(t) (1)

B. Variational mode decomposition principle

The VMD is an emerging signal processing algorithm. It

has been proposed by [19] to answer the lack of theoretical

background of the EMD algorithm. It has the ability to analyze

non-stationary and nonlinear data, and was investigated in

various fields such as in crude oil risk forecasting [20] and

bearing fault detection [21], [22] [23]. The VMD is considered

as a self-adaptive and quasi-orthogonal and entirely non-

recursive signal processing method, unlike the EMD/EEMD

wich are self-adaptive but recursive methods. The core of the

VMD algorithm is based on classical Wiener filtering, Hilbert

transform, and heterodyne demodulation. Like the EEMD, a
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signal x(t) can be decomposed by VMD algorithm into a k
modes or sub-signals uk(n), and each mode is compact around

a center pulsation ωk(t) [21], and x(n) can also be expressed

by ?? as follows:

x(t) =
k

∑

i=1

Modei(t) + res(t), (2)

In addition, for VMD algorithm a constrained variational

problem has to minimize the sum of each Mode component’s

bandwidth.

Consequently, the mathematical model of constrained vari-

ational problem can be given as follows [19] [24]:

min
{uk},{ωk}

{

K
∑

k=1

||∂t

{[

δ (t) +
j

πt

]

∗ uk (t)

}

e−jωkt||22

}

(3)

s.t.
∑

k

{uk (t)} = x (t) ,

where uk = {u1, u2, . . . , uk} represents the modal function

vector, ωk = {ω1, ω2, . . . , ωk} is the central frequency vec-

tor.To resolve the constrained problem it must be transformed

into an unconstrained problem, for this purpose a quadratic

penalty factor η and Lagrangian multiplier λ (t) are introduced

in [19], hence a new unconstrained variational problem expres-

sion is obtained as follows:

Γ (uk, ωk, λ) = η
∑

k=1

||∂t

{[

δ (t) +
j

πt

]

∗ uk (t)

}

e−jωkt||22

+ ||x (t)−
∑

uk (t)||
2
2

+

〈

λ (t) , x (t)−
∑

uk (t)

〉

(4)

Then to resolving this unconstrained problem we investigate

the algorithm developed in [19], where its straightforward

implementation is described step by step in 1.

III. NOTCH FILTER BY DISTANCE MEASUREMENT

As mentioned in previous subsections, the decomposition of

signal x(t) through EEMD and VMD leads to a sum of modes

or sub-signals as expressed in 1 and 2 respectively, among

these modes, at least one mode is closely representative to

the original signal, this mode is the dominant mode denoted

Moded(n). Assuming that the occurrence of a fault introduces

a new component in the original signal, hence a specific

mode or sub-signal denoted Modee is introduced in the mode

decomposition of this original signal. Therefore the sampled

signal x(n) (n = 1, · · · , N ) can be decomposed through both

algorithms as follows:

x(n) = Moded(n) +

k<j
∑

i=1

Modei(n) + res(n), (5)

The aim of the notch filter is to extract Moded(n), for this we

propose to use a statistical tool based on the measurement of

the distance between each Modek(n) and the original signal

x(n).

Algorithm 1 VMD

1: Initialize:
{

u1
k

}

,
{

ω1
k

}

, λ1,n← 0
2: repeat

3: n← n+ 1
4: for k = 1 to K do

5: Update uk

6: un+1

k ← arg min
{uk}

L
(

{

un+1

i<k

}

,
{

un+1

i≥k

}

, {ωn
i } , {λ

n}
)

7: end for

8: for k = 1 to K do

9: Update ωk

10: ωn+1

k ← arg min
{ωk}

L
(

{un
i } ,

{

ωn+1

i<k

}

,
{

ωn+1

i≥k

}

, {λn}
)

11: end for

12: Dual ascent:

13: λn+1 ← λn + τ

(

f +
∑

k

un+1

k

)

14: until convergence:
∑

k ||u
n+1

k − un
k ||

2

2
/||un

k ||
2

2
< ǫ

A. Statistical distance measurement

In statistic and information theories, a statistical distance

quantifies the distance between two statistical quantities, which

can be two random variables, or two probability distributions

or samples. In statistics literature various approaches have been

indexed and investigated in various fields, particularly for fault

detection and diagnostic [25], [2]. The statistical tool knowen

as Person correlation is used to measure the distance, and

to give a weight to dependency between two two temporal

series x(n) and y(n) [26]. This dependency is weighted by a

coefficient denoted r (x, y) and defined by 6, a value of this

coefficient close to −1 or 1, indicates that x(n) and y(n) are

highly correlated positively or negatively, respectively, while a

value around 0 indicates that there is no dependency between

x(n) and y(n).

r (x, y) =

∑

n

[(x (n)−mx) ∗ (y (n)−my)]

√

∑

n

(x (n)−mx)
2
.
√

∑

n

(y (n)−my)
2

(6)

where mx and my are the means of x and y, respectively.

B. Dominant Mode filtering

The cancellation of the dominant Mode (i.e. IMf) is is

illustrated in Fig. 3. The cancellation of the dominant Mode

algorithm can be implemented in three steps:

− Step 1: The VMD (i.e. EEMD) is applied to calculate

the set of modes (i.e. IMfs) contained in the analyzed

signal,

− Step 2: Pearson Correlation coefficient is calculated

using 6 as many times as there are modes, and then

rc ≈ 1 indexes the Moded,

− Step 3: Then, the indexed Moded is subtracted from the

analyzed signal x(n) and the result denoted x(n)c and

expressed by 7, can therefore be used to detect bearing
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Fig. 3. Dominant Mode Cancellation [2].

failure .

xc(n) = x(n)−Mode˙dc(n) (7)

IV. FAULT DETECTOR

For fault detection, several detectors based on statistics

features are proposed in literature, in this work we investigate

the statistical feature of the resultant signal xc obtained after

dominant Mode subtraction. This statistical feature is the

variance denoted σ2 expressed by 8, the advantage of such

fault detector is its needless of training sequence [27]

The variance denoted σ2 is expressed by [27]:

σ2 =
1

N

N−1
∑

n=0

(|xc(n)|−µ)
2

(8)

where µk is the average of |xc(n)|, i.e.

µ =
1

(N)

N
∑

n=1

|xi(n)| (9)

Therefore, the test to detect a fault is based on the following

hypothesis:

− If σ2 < γ, the machine is healthy;

− If σ2 > γ, the machine is faulty.

where γ is a threshold which can be set subjectively.

V. ASSESSMENT OF THE EEMD AND VMD BASED NOTCH

FILTER

For assessment purposes, a 0.75kW induction motor is used.

The experimental setup details can be found in [2]. In this

context, Figs. 4, 5, 6, 7 displays the set of modes obtained

after variational mode decomposition of the analyzed signal

x(n) for healthy case, cage defect case, ball defect case and

inner race defect case, respectively.

Figures 8 and 9 illustrate Pearson correlation coefficients

for both algorithms EEMD and VMD. This shows that both

algorithms are able to extract the dominant dominant mode

(i.e. IMF), but not at the same rank, for EEMD the 5th imf

Fig. 4. Healthy VMD.

Fig. 5. Cage defect case VMD.

Fig. 6. Ball defect case VMD.

is the dominant mode while for the VMD it is the 1st one.

After the dominant mode subtraction, the fault detector σ2

is evaluated for different cases, and the results are depicted

in figure 10. It will be noted that σ2 is not null even in

healthy machine case for both algorithms. However, it can be

noticed that σ2 for faulty case is greater than one under healthy
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Fig. 7. Inner race defect case VMD.

Fig. 8. Pearson correlation coefficients for EEMD.

condition. Under faulty condition, σ2 is 5 times higher than σ2

for tσ2he healthy case for EEMD algorithm and is multiplied

by 65 for VMD algorithm. The ratio σ2
f /σ2

h is reported in

table Ifor both algorithms and for each fault.

VI. CONCLUSION

Variational mode decomposition-based notch filter for bear-

ing fault detection has been proposed and compared to EEMD-

based notch filter. The filtering operation was carried out

following three steps: the first step concerns the decompo-

sition of the phase machine current into variational mode

functions using the VMD algorithm, then et the second step

the dominant mode is subtracted from the original signal, and

finally in the last step a statistical feature is used as a fault

TABLE I
RATIO OF σ

2 FOR FAULTY CASE TO σ
2 FOR HEALTHY CASE.

Algorithm Cage defect Ball defect Inner race defect

EEMD 5.131 4.997 4.676

VMD 65.492 66.740 64.415

Fig. 9. Pearson correlation coefficients for VMD.

Fig. 10. Fault criterion σ
2 for both EEMD and VMD.

detection criterion, this criterion is performed to discriminate

between healthy and faulty. The achieved experimental results

have shown that the proposed method performs well for

bearing faults regardless the mode rank. the performance of

the proposed approach are compared to the ensemble empirical

mode decomposition one in term of fault detection criterion.

The achieved results clearly show that the variational mode

decomposition outperforms the ensemble empirical mode de-

composition.
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