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Abstract—This article proposes a novel visual framework for
detecting tunnel crossings/junctions in underground mine areas
towards the autonomous navigation of Micro Aerial Vehicles
(MAYVs). Usually mine environments have complex geometries,
including multiple crossings with different tunnels that challenge
the autonomous planning of aerial robots. Towards the envisioned
scenario of autonomous or semi-autonomous deployment of
MAVs with limited Line-of-Sight in subterranean environments,
the proposed module acknowledges the existence of junctions
by providing crucial information to the autonomy and planning
layers of the aerial vehicle. The capability for a junction detection
is necessary in the majority of mission scenarios, including
unknown area exploration, known area inspection and robot
homing missions. The proposed novel method has the ability to
feed the image stream from the vehicles on-board forward facing
camera in a Convolutional Neural Network (CNN) classification
architecture, expressed in four categories: 1) left junction, 2)
right junction, 3) left & right junction, and 4) no junction in
the local vicinity of the vehicle. The core contribution stems
for the incorporation of AlexNet in a transfer learning scheme
for detecting multiple branches in a subterranean environment.
The validity of the proposed method has been validated through
multiple data-sets collected from real underground environments,
demonstrating the performance and merits of the proposed
module.

Index Terms—Visual junction Detection, Convolutional Neural
Network, Subterranean Autonomous Navigation, MAVs.

I. INTRODUCTION

Miniature aerial robotics have shown increased robustness
and technological performance in constrained and well defined
lab environments. Nevertheless, a new era is emerging for this
technology, envisioning the deployment in real-scale infras-
tructure environments and with the capability of demonstrating
levels of high autonomy [1], [2]. A characteristic example
of these developments is the integration of the Micro Aerial
Vehicles (MAVs) in various underground mine inspection op-
erations, which is also the final envisioned application scenario
of this article and with an overall objective to target inspection
of known and unknown areas with the aim to collect data for
the asset owners that in the sequel can be further analyzed.

Subterranean environments are harsh, posing obstacles for
flying vehicles, including too narrow/wide passages, reduced
visibility due to rock falls, dust, wind gusts and lack of proper
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illumination, all of which constitute necessary the development
of elaborated control, navigation, and perception modules for
these aerial vehicles. This article proposes a novel method
that identifies junctions that exist in front of the MAV, using
the on-board forward facing visual sensor. More specifically,
underground areas can have complex geometries with many
crossings among the tunnels. These crossings have major im-
pact in the navigation mission, since when not considered, they
can lead to a crash on the tunnel surface or a wrong turn, thus
decreasing the overall efficiency and performance of the aerial
platforms towards a proper mission execution. Therefore, it
becomes a critical navigation capability for the aerial vehicle
to identify a junction and to provide this information to the
aerial planner for enabling a more safe and optimal overall
mission execution.

In this article, due to the limited amount of existing data-
sets for different types of junctions in underground tunnels
and general subterranean environments, the transfer learn-
ing approach [3] has been utilized as the training method.
More specifically, the AlexNet [4] is selected for executing a
transfer learning, mainly due to the success of AlexNet pre-
trained Convolutional Neural Network (CNN) features and the
promising results that have been obtained from several image
classification data-sets with transfer learning on AlexNet [5].
Towards this approach, the junction images are extracted from
the data-sets of: a) an underground mine in Chile [6], and
b) underground tunnels in Sweden [7]. In the sequel, these
data-sets are classified manually to four categories of: 1) left
junction, 2) right junction, 3) left & right junctions, and 4)
no junctions as depicted in Figure 1. Then, the last three
layers of AlexNet are replaced to set new layers for the
classification of the four categories of images and the network
is trained from the junction data-sets. The obtained class for
each image provides information from the local surroundings
of the vehicle, which can later be utilized for the autonomous
navigation in subterranean environments.

A. Related Works

Autonomous navigation in unknown environments requires
environmental awareness, such as recognition of obstacles,
junctions, dead-ends, etc. Moreover, navigation, based on
vision based techniques for MAVs has received a significant
attention the latest years and with a big variety of application
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Fig. 1: Example of junctions’ types in the training data-
sets [6], [7].

scenarios [8], while it should be noted that the navigation,
based on a forward looking camera, has been based mainly
either on computer vision algorithms or on machine learning
methods.

Towards computer vision based navigation, most of the
works focused on obstacle detection methods, thus in [9],
a mathematical model to estimate the obstacle distance to
the MAV was implemented for collision avoidance. How-
ever, the method provided poor results at high velocities and
low illumination environments. In [10] it was described the
combination of multiple vision based components towards the
navigation of autonomous aerial vehicles, while the proposed
system used multiple sensing modalities for localization, map-
ping and obstacle free navigation. In this case, the obstacle
avoidance scheme was consisted of 3 stereo cameras for a
360° coverage of the MAV’s surroundings in the form of
pointclouds. However, the proposed method relied on sufficient
illumination, landmark extraction and high processing on-
board power. In [11], random trees were generated to find the
best branch, the method was evaluated in indoor environments
and the paths were calculated on-line, while the occupancy
map of the perceived environment was conducted. This method
required in general a high computation power to process the
images, to calculate the best next point and to accurately
localize and store the previous information of the map in
order to avoid revisiting the area. In general, the performance
of the computer vision-based algorithms mainly relies on the
surrounding environment with good distinctive features and
good illumination and lighting conditions [9]. Furthermore,
these methods require a high computation power to process
the images and extract landmarks, factors that could limit
the usage of these methods in real-life underground mine
applications.

There are few works using machine learning techniques for
the problem of navigation in in-door and out-door environ-
ments, mainly due to the fact that these methods require a large
amount of data and a high computation power for training in
most cases a CNN, which is an off-line procedure. However,
after the training, the CNN can be used for enabling an
autonomous navigation with much lower computation power,
especially when compared to the training phase. The works
using CNN for navigation, such as [12], [13], [14], utilized
the image frame of on-board camera to feed the CNN for
providing heading commands to the platform. These works
have been evaluated and tuned in out-door environments and
with a good illumination with the camera, thus providing rich
data about the surrounding of the platforms, while none of the

works consider the recognition of the junctions. In [15] a CNN
binary classifier was proposed for outdoor road junction detec-
tion. Besides that, authors also considered the use of proposed
architecture for navigation and experimentally evaluated it on
commercially available MAV Bebop 2 from Parrot. The prob-
lem of junction detection for outdoor environments was also
addressed by [16], where machine learning approach was used.
In [17] authors propose an architecture that combines CNN,
Bidirectional LSTM [18] and Siamese [19] style distance
function learning for junction recognition in videos. In [18]
a road intersection detection module has been proposed. The
developed method addressed the problem as a binary classi-
fication, using Long-Term Recurrent Convolutional Network
(LRCN) architecture to identify relative changes in outdoor
features and eventually detecting intersections. These methods,
mainly use binary classifier, while in real-life scenarios more
complex type of junctions exist and the junction recognition
should recognize the different types of junctions.

B. Contributions

Based on the aforementioned state-of-the-art the main con-
tributions of this work are provided in this Section. Initially,
the first and major contribution stems from the development of
a vision based approach for junction detection, being among
few works that study junction detection using monocular
camera as the sensing modality. The system combines the
AlexNet supervised CNN image classifier with transfer learn-
ing, introducing new classification categories. The proposed
novel categories include 1) junction on the left side, 2) junction
of the right side, 3) junctions on both the left and right side
and 4) no junction, providing valuable information on the
topological existence of junctions in the vehicle. The outcome
is in the local surroundings of the vehicle leveraging the data
stream from the single forward facing camera. The proposed
method aims to have a general applicability for both high-end
and lightweight aerial vehicles relying on single visual sensor,
which can be found in both type of platforms. This is the
reason why we used a wide known CNN [20] and Transfer
Learning [21] making our method highly reproducible.

The second contribution of the proposed method stems
from the evaluation process, using data-sets captured from
real underground environments: 1) available online, and 2)
from sites with limited access to the public, showing the
applicability of the method in a variety of cases, enabling
further developments in the field.

C. Outline

The rest of the article is structured as follows. Initially, Sec-
tion II presents the AlexNet architecture and the corresponding
transfer learning. Then, in Section III the data-set collection,
the training of the network and the evaluation of the trained
network is presented, while finally Section IV concludes the
findings.



II. UTILIZING ALEXNET FOR JUNCTION RECOGNITION

This section initially provides a brief description of the
AlexNet framework, while in the sequel the concept of transfer
learning is explained.

A. AlexNet

AlexNet [4] is one of the most used and studied CNN
methods [22] that has 60 million parameters and 650,000
neurons. Thus, a large data-set is required to train it, however
due to the limited available data-sets of junctions, the transfer
learning is selected in this article. In this approach, the input
of the AlexNet is an Red, Green and Blue (RGB) image with
fixed size of 227 x 227 x 3 pixels and it follows with 2D
convolutional layers of size 11 x 11 with an output size of
55 x 55 x 96. Then it follows a 2D Max pooling layer of
size 3 x 3 and an output of 27 x 27 x 96, followed with 2D
convolutional layers of 5 x 5 and an output of 27 x 27 x 256.
In the sequel there is another max pooling of size 3 x 3
and with an output of 13 x 13 x 256, which passes through
2D convolutional layers of 3 x 3 with a same size output.
Next, another 2D convolutional layers of 3 x 3 with an output
size of 13 x 13 x 256, followed with a max pooling of size
3 x 3 with an output of 6 x 6 x 256. The output passes
through two fully connected layers and the last layer results
are fed into a softmax classifier with 1000 class labels. To
summarize, AlexNet consists of eight layers, five of them
that are convolutional layers and three of them that are fully
connected layers. Each one of the first two convolutional
layers are followed by an Overlapping Max Pooling layer. The
other three convolutional layers (third, fourth and fifth) are
connected directly. Finally the last convolutional layer (fifth)
is followed by an Overlapping Max Pooling layer. Figure 2
depicts the overall utilized AlexNet structure.
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Fig. 2: AlexNet architecture and the transfer learning method.

Max pooling layers are usually used in CNNs in order to
reduce the size of the matrices while keeping the depth the
same. On the other hand overlapping max pooling uses adja-
cent windows which overlap each other in order to compute
the max element from a window each time. It has been proven
that this kind of max pooling reduces the top-1 and top-5 error
rates [4].

Also, one of the main aspects of the AlexNet is the use of
the Rectified Linear Unit (ReLU) [23]. The authors [4] proved
that by using the ReLU nonlinearity, AlexNet could be trained
a lot quicker than using classical activation functions like
stgmoid or tanh [24]. Actually, they tested their hypothesis
on the CIFAR-10 dataset [25] and the ReLU-AlexNet achieved
the same performance (25% training error) with the Tanh-
AlexNet in one sixth of the epochs.

B. Transfer Learning

Transfer learning [23], [26] for CNNs is usually referred
as the process of using an already trained CNN in another
data-set, where the number of classes to be recognized are
different from the initial data-set, while it has been used in
various problems and with various data-sets. There are two
main strategies for Transfer Learnin, woth both of them to
be using the same weights from the trained AlexNet on the
images from the ImageNet database [27].

The first one treats the CNN as a feature extractor by
removing the last fully connected layer. Then, one can use
the features extracted from the trained AlexNet in order to
train a classifier like [28] for the new data-set. The second
one replaces the last connected layer and retrains the whole
CNN for the new data-set. This allows for a fine tuning of the
trained weights.

In this article, the last three fully connected layers of the
AlexNet are replaced with a set of layers that will classify
instead of 1000 classes the number of the desired 4 classes
(no junction, left junction, right junction, left & right junction)
as depicted in Figure 2.

III. RESULTS

This section describes the data-sets from Chilean under-
ground mine and Sweden underground tunnel, that the network
was trained, while evaluation merits were also provided.

A. Data-Set

For transfer learning of the AlexNet, two data-sets from
underground mine and tunnels are selected. The first one is
from the Chilean underground mine data-set [6], which is
collected by a Point Grey XB3 multi-baseline stereo camera,
mounted with a forward facing orientation on the Husky A200.
The camera was operated at 16fps and with a resolution
of 1280 x 960 pixels. The second data-set is collected from
Luled Sweden underground tunnels [7] which was collected
manually with GoPro Hero 7 with resolution of 2704 x 1520
pixels and a frame rate of 60fps. In order to reduce the
over-fitting of the CNN, the images from the cameras are
down-sampled and few images are selected when the camera
approaches to the junction and passes it. As an example,
Figure 3 depicts the multiple images collected for the branch
in the left of the tunnel. It should be highlighted that the data-
sets from the Chilean underground mine contains more variety
of branches, especially when compared to the Lulea Sweden
underground tunnels data-set. Table I shows the overall num-
ber of images extracted from the video streams, due to the



Fig. 3: Examples of extracted images from the visual camera in case of a left branch in the tunnel. The images are extracted
while the camera approaches to the junction and passes it (continuous with a direct heading).

Frame Per Second (fps) of the camera most of the images
are similar in both data-sets and only 488, 339, 333, and 350
images are extracted for left junction, left & right junctions,
right junction, and no junction respectively.

TABLE I: The number of extracted images for each category
from the two data-sets, while the redundant images are ex-
cluded from the data-set.

left | left & right | right | no junction
Chilean mine data-set 339 279 239 250
Sweden tunnels data-set | 149 60 104 100

In the sequel, the data-set is manually classified to four
categories of left junction, right junction, left & right junctions,
and no junction. Figures 4 and 5 depict sample images of
different areas of the Chilean underground mine data-set and
the Luled Sweden underground tunnels respectively.

Right Branch Lefi & Right Branch Left Branch

No Branch

Fig. 4: Examples of acquired images from the Chilean under-
ground mine data-set [6].

B. Training and Evaluations of the CNN

Both data-sets are combined for training the AlexNet, while
the junctions that are not included in the training data-set are

Left Branch

Right Branch Left & Right Branch

No Branch

Fig. 5: Examples of acquired images from the Luled Sweden
underground tunnels.

used for validation of the network. Moreover, the images are
resized to 227 x 227 x 3 pixels. The network was trained
on a workstation equipped with an Nvidia GTX 1070 GPU
with mini-batch size of 10, maximum number epochs of 6,
a selected initial learning rate of 10~* and solved by the
stochastic gradient descent [29] with momentum optimizer.
The trained network provides an accuracy of 100% and 89.2%
on training and validation data-sets respectively. Figure 6
shows the accuracy and loss of the training and validation
data-set respectively, while the loss function for multi-class
classification is defined as a cross entropy loss [23], [30].
Moreover, Figure 7 depicts the confusion matrix of the
validation data-set, while the rows correspond to the predicted
class from the validation data-sets and the columns correspond
to the actual class of the data-set. The diagonal cells show
the number and percentage of the correct classifications by
the trained network. As an example, in the first diagonal,
45 images are correctly classified to the left branch category,
which corresponds to 25.9% of the overall number of images.
Similarly, 20 cases are correctly classified to left & right
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Fig. 6: Accuracy and loss of the network on training and
validation data-sets.

branch that correspond to 19.5% of all the validation data-
set. Moreover, the off-diagonal cells correspond to incorrectly
classified observations, e.g. 2 and 3 images from the left
branch are incorrectly classified to left & right branch and
right branch respectively, which corresponds to 10% of the left
branch validation data-set or 1.1% and 1.7% of all the data-
sets respectively. Similarly, for the right branch 12 images are
incorrectly classified to left & right branches. Furthermore,
the right gray column displays the percentages of all the
images predicted to belong to each class that are correctly
and incorrectly classified. On the other hand, the bottom row
depicts the percentages of all the examples belonging to each
class that are correctly and incorrectly classified. The cell
in the bottom right of the plot shows the overall accuracy.
Overall, 90.2% of the predictions are correct and 9.8% are
wrong.

Moreover, Figure 8 depicts 12 images from the validation
data-set, while the correct label and the classification of the
AleXNet are shown for each image. It should be highlighted
that, these images are excluded from the training data-sets. It
is observed that the network has incorrectly classified the left
Jjunction and right junctions images to left & right junctions,
these images are from Chilean data-set.

Furthermore, Table II compares the training time, accuracy
percentage and loss [23] between three well-known pre-trained
CNN architectures AlexNet, GoogleNet [31], and the Incep-
tionv3Net [32]. As one can see from this table, the validation
accuracy is smaller for the GoogleNet and significantly smaller
for the Inception3Net. We think that this is due to the large
number of Convolutional layers of these two Networks when
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Fig. 7: The confusion matrix from the validation data-set.
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Fig. 8: Examples of validation data-set, while the correct label
is written in the left of the images and the estimated class form
AlexNet is written on top of each image.

compared to the AlexNet. Thus, more data-set is needed for
these two networks and this support our choice for the AlexNet
network.

IV. CONCLUSIONS

This work proposed a novel framework based on CNN
for detecting tunnel crossing/junctions in underground mine
areas, envisioning the application of MAVs autonomous de-
ployment for inspection purposes. Within the emerging field
of underground MAVs junction detection it has been iden-



TABLE II: The comparison of transfer

learning between

AlexNet, GoogleNet, and Inceptionv3Net.

AlexNet | GoogleNet | Inceptionv3Net
Training Time [sec] 995 891 1438
Training Accuracy 100% 100% 100%
Validation Accuracy 89.2% 74.1% 63.79%
Training Loss 0.01 0.01 0.17
Validation Loss 0.29 0.82 0.93

tified as a fundamental capability for the aerial vehicle’s
autonomous navigation. Moreover, inspired by the concept
of lightweight aerial vehicles, this work aims to provide a
generic solution, keeping the hardware complexity low, relying
only on a single visual sensor. It feeds the image stream
from the vehicle’s on-board forward facing camera in a CNN
classification architecture expressed in four categories: 1) left
junction, 2) right junction, 3) left-right junction, and 4) no
junction in the local vicinity of the vehicle. The AlexNet
model has been incorporated in a transfer learning scheme for
the novel proposed classification categories, detecting multiple
branches underground. The method has been validated by
using data-sets collected from real underground environments,
demonstrating it’s performance and merits.
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