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Abstract—In this paper, we present a novel distributed state 

estimation approach in networked DC microgrids to detect the 

false data injection in the microgrid control network. Each 

microgrid monitored by a distributed state estimator will detect if 

there is manipulated data received from their neighboring 

microgrids for control purposes. A dynamic model supporting the 

dynamic state estimation will be constructed for the networked 

microgrids. The optimal distributed state estimation, which is 

robust to load disturbances but sensitive to false data injected 

from neighboring microgrids will be presented. To demonstrate 

the effectiveness of the proposed approach, we simulate a 12kV 

three-bus networked DC microgrids in MATLAB/Simulink. 

Residual information corresponding to the false data injected 

from neighbors validates the efficacy of the proposed approach in 

detecting compromised agents of neighboring microgrids. 

Keywords— Networked DC Microgrids, Distributed Dynamic 

State Estimation, Cyber Intrusion Detection, False Data Injection, 

Cyber-physical Systems.  

I. INTRODUCTION 

A. Literature Review 

Power outages can shut down critical infrastructures such as 

hospitals, water treatment plants, military services, and other 

emergency services. Financial consequences are significant. 

For example, disruptions in the U.S. electric power systems are 

estimated to be $25-70 billion annually [1]. During outages, 

microgrids can provide resilient energy service to critical 

infrastructure. While most power outages are the result of 

extreme weather events, there is increasing concern about 

outages caused by cyber-attacks [2]. Microgrids consist of 

distributed energy resources (DER) that provide power to local 

load devices. Effective operations of microgrids require 

advanced measurement, communication, and control via 

distributed controllers, sensors, actuators, and field devices. 

The measurement, communication, and control devices can be 

connected internally and externally via local area network or 

wide area network. Therefore, as a cyber-physical system 

(CPS), microgrids are particularly vulnerable to cyber-attacks 

due to their distributed nature and their critical resilience 

function. An extreme weather-induced outage may take weeks 

to restore and may cause significant economic and personal 

hardship [3]. Therefore, methodologies that improve 

microgrids’ situational awareness of cyber-attacks are 

important.  

In CPS, cyber intrusions are classified differently using 

different terms such as bias injection attack, zero dynamics 

attack, denial of service (DoS) attacks, eavesdropping attack, 

replay attack, stealthy attack, covert attack, and dynamic false 

data injection attacks [4]–[7]. However, all these attacks still 

focus on one or more components of CPS Data Confidentiality 

Integrity and Availability (CIA) triad, defined in common 

information security practices [8]. Individual types of attack 

have specific characteristics that influence the CIA-triad in 

individual ways. For example, while DoS attacks mainly affect 

the data availability, other attacks like replay, stealthy, dynamic 

false data injection and covert attacks influence data 

confidentiality and integrity. Attackers can manipulate the 

system control and management via 1) remote access to control 

system LAN network with poorly configured firewalls or 2) 

infected field devices [9]. 

As a CPS, microgrids can encounter the same types of 

attacks. DoS attacks can cause multiple issues to microgrids; 

however, once the DoS event occurs, the system operator very 

likely recognizes that the system is under attack. A more severe 

cyber-attack found in power systems is stealthy false data 

injection (FDI), where attackers corrupt the measurement 

and/or control data. In power transmission systems, the popular 

method used to detect bad measurement data is the static state 

estimator (SSE) based on weighted least squared (WLS). 

However, SSE can be manipulated by attackers if the power 

network topology is known [10]–[12]. Therefore, the cyber-

attacks stay undetected as the attack indicator 

(control/measurement residuals) of the method is kept under 

predefined detected level. SSE approaches are not only 

susceptible to advanced cyber-attack policies they may also not 

be applicable for microgrids as there are more dynamical 

interactions among loads, generation, and distribution devices 

in microgrids.  

There are methods for detecting FDI in microgrids in 

literature [13]–[17]. Recent relevant literature for FDI in 

microgrid can be found as follows: [13] investigated the FDI 

detection for consensus control of DC microgrids utilizing 

unknown input observer; however, the microgrid network 

model is described as quasi-static. Therefore, dynamic 



interactions within the microgrid can be omitted as the 

inductive interactions among devices are ignored. [14] 

proposed using invariants as fixed boundaries of voltages and 

currents without depending on the system model to detect the 

anomalies in a distributed control system of a DC microgrid; 

however; in many cases, a deviated voltage information, which 

still stays within the safety limit can arbitrarily drive the system 

into instability.  

 

B. Research Contributions  

In this paper, we 1) propose a novel optimal state estimation 
technique for FDI method in networked DC microgrids, 2) 
employ a dynamic model of the microgrid instead of the 
normally-used quasi-static model of DC microgrids for the 
design of optimal estimator, and 3) the proposed method is a 
distributed algorithm. 

The remaining of the paper is organized as follows: Section 
II elaborates the proposed distributed state estimation 
methodology for networked DC microgrids. Section III provides 
case studies, and analyzes and discusses the results. Section IV 
concludes the achievements of the paper. 
 

 

II. DISTRIBUTED STATE ESTIMATION FOR NETWORK DC 

MICROGRIDS 

In this section, the model of networked DC microgrids that 

support distributed state estimation will be elaborated. The 

model is then partitioned for our proposed distributed optimal 

state estimation. 

A. DC Microgrid Dynamic Modeling and Partitioning 

In this paper, we utilize a similar dynamic model developed in 

[18] for networked DC microgrids. The model we develop will 

include droop parameters as they are normally applied to 

control multi-terminal microgrids [19]. The dynamics of the 

system will reveal the nature of cyber-attacks/other physical 

incidents. 

To have an equivalent model for networked DC 

microgrids, we will start with a three-bus networked DC 

microgrid as shown in Figure 1. Each microgrid can be modeled 

as an equivalent circuit with unknown internal load devices. In 

the figure, the equivalent circuit of microgrid 1 (MG1) is 

expanded for visualization. Equivalent droop control is 

implemented in each microgrid with the droop gain (𝑅𝑑1). For 

simplification, dynamics of the equivalent source 𝑉𝑔1  is 

omitted in the modeling of the system. Based on that, MG1 can 

be modeled dynamically as follows: 
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where  

𝜏1 = −
𝑅𝑑1 + 𝑅1

𝐿1

 , 𝜏12 = −
𝑅12

𝐿12

, 𝜏13 = −
𝑅13

𝐿13

. 

(1) is the representation for MG1 coupling with MG2 and MG3. 

However, every microgrid can be generalized as a microgrid 𝑖, 
which interconnects with its neighbor 𝑗 (𝑗 = 1,2, … , 𝑁𝑗 ). The 

dynamic model of the a microgrid 𝑖 in the network is shown as 

𝑥̇𝑖 = 𝐴𝑐𝑖𝑥𝑖 + 𝐵𝑐𝑖𝑢𝑖 + 𝐸𝑐𝑖𝑑𝑖 + ∑ 𝐴𝑐𝑖𝑗𝑥𝑖𝑗

𝑁𝑖

𝑗=1

+ 𝑤𝑖  

𝑦𝑖 = 𝐶𝑐𝑖𝑥𝑖 + 𝑣𝑖 , (2) 

where 𝑥𝑖 is the local state vector with state matrix 𝐴𝑐𝑖, 𝑢𝑖 is the 

control input vector with control matrix 𝐵𝑐𝑖 ,  𝑑𝑖  is the 

disturbance with known disturbance structure 𝐸𝑐𝑖 , 𝑤𝑖  is the 

zero-mean process noise with covariance matrix 𝑄𝑖 , 𝑦𝑖  is the 

measurement output, and 𝑣𝑖  is the zero-mean measurement 

noise with covariance matrix 𝑅𝑖 , 𝑥𝑖𝑗  is the coupling states of 

neighbor 𝑗 with coupled-state matrix 𝐴𝑐𝑖𝑗 .  

Take the three-bus networked microgrid as an example, the 

local state for MG1, 𝑥1 = [𝑉1, 𝐼𝑔1, 𝐼12, 𝐼13]
𝑇

. The control 

variable, 𝑢1 = 𝑉𝑔1, the disturbance, 𝑑1 = 𝐼𝐿1, the measurement 

𝑦1 = [𝑉1, 𝐼𝑔1, 𝐼12, 𝐼13]
𝑇
, and the neighboring states 𝑥1,𝑗=1 = 𝑉2, 

𝑥1,𝑗=2 = 𝑉3 . The representation of the matrix components is 

detailed in the Appendix. 

To detect the false data injected from neighbors, the 

neighboring states 𝑥𝑖𝑗  will be referred to as additional inputs of 

system (2). Therefore, (2) can be rewritten as 

 

Figure 1. Representation of a three-bus DC microgrid circuit. 



𝑥̇𝑖 = 𝐴𝑐𝑖𝑥𝑖 + 𝐵𝑐𝑥𝑖𝑢𝑥𝑖 + 𝐸𝑐𝑖𝑑𝑖  + 𝑤𝑖  

𝑦𝑖 = 𝐶𝑐𝑖𝑥𝑖 + 𝑣𝑖 , (3) 

where  𝐵𝑐𝑥𝑖 = [𝐵𝑐𝑖  𝐴𝑐𝑖𝑗], 𝑢𝑥𝑖 = [𝑢𝑖
𝑇 , (𝑥𝑖𝑗)

𝑇
]
𝑇

.  

In the discrete domain, the system state is expressed as 

𝑥𝑖,𝑘+1 = 𝐴𝑖𝑥𝑖,𝑘 + 𝐵𝑥𝑖𝑢𝑥𝑖,𝑘 + 𝐸𝑖𝑑𝑖,𝑘  + 𝑤𝑖,𝑘  

𝑦𝑖,𝑘 = 𝐶𝑖𝑥𝑖,𝑘 + 𝑣𝑖,𝑘. (4) 

This partitioned state-space system architecture will be utilized 

for the optimal state estimator proposed in the next sub-section. 

B. Distributed Optimal State Estimation 

The proposed distributed optimal estimator for the three-bus 

example is shown in Figure 2. Each agent (A1, A2, or A3) 

exchange information 𝑥𝑖𝑗  (bus voltage) with each other for the 

bus-voltage control purpose (Figure 3). Any agent or 

communication channel can be the target of cyber-attack. For 

example, A2 is compromised and start sending the false 

information to A1 and A3 to in order to disrupt the cyber-

physical system.  

An optimal state estimation that rejects the effects of 

unknown disturbances for detecting faults in a single control 

system was proposed in [20]. However, the method has not 

been analyzed for cyber-attack detection. In this paper, a 

distributed optimal estimation method is proposed for 

distributed FDI detection method. In this case, each distributed 

agent 𝐴𝑖  ( 𝑖 = 1,2,3 ) performs a distributed optimal state 

estimation (5) with information exchanged with their 

neighbors.  

𝑧𝑖,𝑘+1 = 𝐹𝑖,𝑘+1𝑧𝑖,𝑘 + 𝑇𝑖𝐵𝑥𝑖(𝑢𝑥𝑖,𝑘 + 𝑓𝑢𝑖𝑗,𝑘)  + 𝐾𝑖,𝑘+1𝑦𝑖,𝑘  

𝑥̂𝑖,𝑘+1 = 𝑧𝑖,𝑘+1 + 𝐻𝑖𝑦𝑖,𝑘+1, (5) 

where 𝑎𝑢𝑖𝑗 = [0 𝑎𝑖𝑗
𝑇 ]

𝑇
 in which 𝑎𝑖𝑗  is the attack vector 

generated by neighbor 𝑗 . With this observer, the state 

estimation error 𝑒𝑖,𝑘+1 = 𝑥𝑖,𝑘+1 − 𝑥̂𝑖,𝑘+1  in agent 𝑖  can be 

expressed as 

𝑒𝑖,𝑘+1 = 𝐹𝑖,𝑘+1𝑒𝑖,𝑘 − 𝐾𝑖,𝑘+1
1 𝑣𝑖,𝑘 − 𝐻𝑖𝑣𝑖,𝑘+1 

+(𝐼 − 𝐻𝑖𝐶𝑖)𝑤𝑖 − (𝐹𝑖,𝑘+1 − (𝐼 − 𝐻𝑖𝐶𝑖)𝐴𝑖 + 𝐾𝑖,𝑘+1
1 𝐶𝑖)𝑥𝑖,𝑘 

+(𝐼 − 𝐻𝑖𝐶𝑖)𝐸𝑖𝑑𝑖,𝑘 − [𝐾𝑖,𝑘+1
2 − 𝐹𝑖,𝑘+1𝐻𝑖]𝑦𝑘  

−[𝑇𝑖 − (𝐼 − 𝐻𝑖𝐶𝑖)]𝐵𝑥𝑖𝑢𝑥𝑖,𝑘 − 𝑇𝑖𝐵𝑥𝑖𝑎𝑢𝑖𝑗,𝑘 ,  (6) 

where 𝐾𝑖,𝑘 = 𝐾𝑖,𝑘
1 + 𝐾𝑖,𝑘+1

2 .  

 

Define the following conditions: 

(𝐼 − 𝐻𝑖𝐶𝑖)𝐸𝑖 = 0 

𝑇𝑖 − (𝐼 − 𝐻𝑖𝐶𝑖) = 0 

𝐹𝑖,𝑘+1 − (𝐼 − 𝐻𝑖𝐶𝑖)𝐴𝑖 + 𝐾𝑖,𝑘+1
1 𝐶𝑖 = 0 

𝐾𝑖,𝑘+1
2 − 𝐹𝑖,𝑘+1𝐻𝑖 = 0, (7) 

Solutions of (7) if exist will be 

𝐻𝑖 = 𝐸𝑖[(𝐶𝑖𝐸𝑖)
𝑇𝐶𝑖𝐸𝑖]

−1(𝐶𝑖𝐸𝑖)
𝑇 

𝑇𝑖 = (𝐼 − 𝐻𝑖𝐶𝑖) 

𝐹𝑖,𝑘+1 = (𝐼 − 𝐻𝑖𝐶𝑖)𝐴𝑖 − 𝐾𝑖,𝑘+1
1 𝐶𝑖 

𝐾𝑖,𝑘+1
2 = 𝐹𝑖,𝑘+1𝐻𝑖 , 

(8a) 

(8b) 

 (8c) 

(8d) 

where 𝐾𝑖,𝑘+1
1  needs to be found for the stable and optimal 

observer. If these conditions hold, (6) will become  

 

Figure 3. Optimal state estimation for distributed estimator 𝑖. 

 

Figure 2. Distributed state estimation architecture in cyber-physical systems 

(networked microgrid), where a control agent is compromised. 



𝑒𝑖,𝑘+1 = 𝐹𝑖,𝑘+1𝑒𝑖,𝑘 − 𝐾𝑖,𝑘+1
1 𝑣𝑖,𝑘 − 𝐻𝑖𝑣𝑖,𝑘+1 

+𝑇𝑖𝑤𝑖 − 𝑇𝑖𝐵𝑥𝑖𝑎𝑢𝑖𝑗,𝑘.  (9) 

Based on this relationship, define the variance of 𝑒𝑖,𝑘+1 as 

𝑃𝑖,𝑘+1, where 

𝑃𝑖,𝑘+1 = 𝐹𝑖,𝑘+1𝑃𝑖,𝑘𝐹𝑖,𝑘+1
𝑇 + 𝐾𝑖,𝑘+1

1 𝑅𝑖,𝑘𝐾𝑖,𝑘+1
1𝑇  

−𝐻𝑖𝑅𝑖,𝑘+1𝐻𝑖
𝑇 + 𝑇𝑖𝑄𝑖,𝑘+1𝑇𝑖

𝑇 − 𝑇𝑖𝐵𝑥𝑖𝑆𝑢𝑖𝑗,𝑘(𝑇𝑖𝐵𝑥𝑖)
𝑇 .  (10) 

The parameter 𝑆𝑢𝑖𝑗,𝑘 is the unknown variance of 𝑎𝑢𝑖𝑗,𝑘. 

Therefore, without the attack, the variance will become  

𝑃𝑖,𝑘+1 = 𝐹𝑖,𝑘+1𝑃𝑖,𝑘𝐹𝑖,𝑘+1
𝑇 + 𝐾𝑖,𝑘+1

1 𝑅𝑖,𝑘𝐾𝑖,𝑘+1
1𝑇  

−𝐻𝑖𝑅𝑖,𝑘+1𝐻𝑖
𝑇 + 𝑇𝑖𝑄𝑖,𝑘+1𝑇𝑖

𝑇 .  (11) 

Therefore, the optimal observer can be achieved via 

minimization of 𝑇𝑟𝑎𝑐𝑒(𝑃𝑖,𝑘+1) with respect to 𝐾𝑖,𝑘+1
1𝑇 .  

Min
𝐾𝑖,𝑘+1

1
(𝑇𝑟𝑎𝑐𝑒((𝑃𝑖,𝑘+1))) the estimator will be independent of 

disturbance, least dependent on measurement noise, and 

sensitive to the attack. 𝐾𝑖,𝑘+1
1  can be found as 

𝐾𝑖,𝑘+1
1 = (𝐼 − 𝐻𝑖𝐶𝑖)𝐴𝑖𝑃𝑖,𝑘𝐶𝑖

𝑇(𝐶𝑖𝑃𝑖,𝑘𝐶𝑖
𝑇 + 𝑅𝑖,𝑘)

−1
. (12) 

Therefore, the optimal observer parameters are iteratively 

obtained via (8), (11), and (12). 

From (9), the residual 𝑟𝑖,𝑘 = 𝑦𝑖,𝑘 − 𝑦̂𝑖,𝑘 generated from 

the optimal observer will be 

𝑟𝑖,𝑘 = 𝐶𝑖𝑒𝑖,𝑘+1 + 𝑣𝑖,𝑘 

𝑟𝑖,𝑘 = 𝐶𝑖𝐹𝑖,𝑘+1𝑒𝑖,𝑘 + (𝐼 − 𝐶𝑖𝐾𝑖,𝑘+1
1 )𝑣𝑖,𝑘 − 𝐶𝑖𝐻𝑖𝑣𝑖,𝑘+1 

+𝐶𝑖𝑇𝑖𝑤𝑖 − 𝐶𝑖𝑇𝑖𝐵𝑥𝑖𝑎𝑢𝑖𝑗,𝑘. (13) 

Therefore, 𝑟𝑖,𝑘 is most sensitive to the attack vector 𝑎𝑢𝑖𝑗,𝑘 and 

can be used to detect the attack event. In the next section, case 

studies will validate the feature of the proposed algorithm. 

III. CASE STUDIES  

To demonstrate the proposed method, we utilize a 3-bus 12-kV 

DC system model. Each bus contains a microgrid, which has 

identical parameters shown in Table I. Each microgrid is rated 

at 50 MW and has an equivalent droop parameter of 5%. 

Process and measurement noise variances are shown in the 

Appendix. 

 

 

Table I. 12-kV DC Microgrid i’s parameters with interconnecting parameters 

Symbol Description Value 

𝑅𝑖 Equivalent internal resistance 0.05 Ω 

𝐿𝑖 Equivalent internal inductance 3 mH 

𝐶𝑖 Equivalent output capacitance 10 µF 

𝑅𝑖𝑗 Line resistance 0.1 Ω 

𝐿𝑖𝑗 Line inductance 0.5 mH 

 

 

Figure 4. load profile of one MG. 

 
 

 

Figure 5. Distributed estimator 1’s performance against load disturbance. 

(a)

𝑥𝑘 𝑦̂𝑘

(b)



Based on the parameters, we perform the following 

simulation case. We assume that a cyber attacker compromises 

distributed controller of MG2 and MG3 then sends false voltage 

data to MG1 at 6s and 4s with the corresponding biases of 100 

V and 150 V, respectively. In this case, the load of each MG 

has a large range of current variation as shown in Figure 4. 

Estimated current and voltage of MG1 are shown in Figure 5. 

Residuals are shown in Figure 6. At 8s, the loads of MGs 

increase their current consumption by 2000 A. 

As seen in Figure 5, the optimal state estimator eliminates 

the effect of load disturbance as prior to the attack events at 4s, 

the estimated values track the measured value. The residual 

indicators in Figure 6 also show the zero-mean residuals before 

4s. 

The first attack conducted by MG3 at 4s is detected as the 

estimated current (Figure 5b) 𝐼13  start to deviate from the 

measured current 𝐼13 . This is also shown in the residual 

component 𝑟𝐼13
= 𝐼13 − 𝐼13  as it changes to a non-zero 

component at 4s. As the current 𝐼13  represents the coupling 

between MG1 and MG3, the MG1 could infer that the attack 

was conducted by MG3. Similarly, Figure 5b also shows that 

the estimated 𝐼12 starts deviating from the measured current 𝐼12 

at 6s. On the other hand, the residual 𝑟𝐼12
= 𝐼12 − 𝐼12 

representing the coupling between MG1 and MG2 changes to a 

non-zero residual. This proves the attack at 6s originates from 

MG2.  

At 8s, the load changes cause the increased consumption 

current and made the bus voltage drop; however, the residuals 

remained constant. This prove that the load disturbance at 8s is 

totally decoupled from the cyber-attacks.  

Therefore, the proposed method effectively detects the 

attack in networked DC microgrids and is robust to load 

disturbance. 

IV. CONCLUSION 

In this paper, we proposed a novel distributed state estimation 

methodology to detect cyber-attacks in distributed networked 

microgrids. A dynamic model was utilized for attack detection. 

Each MG will have the capability to detect compromised 

neighbor so that the control system can be informed for the 

system reconfiguration and attacks isolation. We demonstrated 

the proposed method in a three-bus microgrid network. 

APPENDIX 

The model of MG1 and its coupling part is as: 
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1
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1
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𝑄
1
= 𝑑𝑖𝑎𝑔{𝑞1, 𝑞2, 𝑞3, 𝑞4}, 𝑅1 = 𝑑𝑖𝑎𝑔{𝑟1, 𝑟2, 𝑟3, 𝑟4}, (14) 

where 𝑛1 is the size of the state matrix 𝐴1 , 𝑚1 is the number of 

measurements, and 𝑞1- 𝑞4 and 𝑟1- 𝑟4 are the variances of the 

process and measurement noise. Using the parameters indicated 

in Table I, parameters in (14) can be calculated except the 

variances. The process noise and measurement noise variances 

are assumed and calculated as 

 

𝑄1 = 𝑑𝑖𝑎𝑔{10,10,10,10}, 𝑅1 = 𝑑𝑖𝑎𝑔{100,100,10,10}. 
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