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Abstract—This article presents a Convolutional Neural Net-
work (CNN) method to enable autonomous navigation of low-cost
Micro Aerial Vehicle (MAV) platforms along dark underground
mine environments. The proposed CNN component provides on-
line heading rate commands for the MAV by utilising the image
stream from the on-board camera, thus allowing the platform to
follow a collision-free path along the tunnel axis. A novel part of
the developed method consists of the generation of the data-set
used for training the CNN. More specifically, inspired from single
image haze removal algorithms, various image data-sets collected
from real tunnel environments have been processed offline to
provide an estimation of the depth information of the scene,
where ground truth is not available. The calculated depth map
is used to extract the open space in the tunnel, expressed through
the area centroid and is finally provided in the training of the
CNN. The method considers the MAV as a floating object, thus
accurate pose estimation is not required. Finally, the capability
of the proposed method has been successfully experimentally
evaluated in field trials in an underground mine in Sweden.

Index Terms—Mining Aerial Robotics, Deep Learning for
Navigation, MAV

I. INTRODUCTION

In the past decade, significant progress has been made in
the development and deployment of Micro Aerial Vehicles
(MAVs). These platforms are employed in a wide range
of applications for monitoring, exploring an unknown area
and minimizing service times, such as underground mine
inspection [1], infrastructure inspection [2], and search and
rescue operations [3]. Moreover, deployments of MAVs can
provide high impact on the mine industry, as these platforms
are able to realize an autonomous and unsupervised inspection
of unreachable, dark, complex, and dangerous locations. Since,
autonomous MAVs could directly enter in the areas and
perform their instructed tasks, without the need of pilots
and reduce the human exposure to danger environments (e.g.
blind openings, areas after blasting, etc.), while providing
valuable information, such as images, gas levels, dust levels,
3D models, etc of the environment under exploration.

However, underground mines are challenging environments
for deploying MAVs, due to the general lack of illumination,
narrow passages, wind gusts and dust, while Figure 1 depicts
the flying MAV in the visited under study underground mine,
where is also visible the lack of natural illumination and
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the existence of uneven surfaces. In such cases, the func-
tionalities for the obstacle detection and collision avoidance
are essential components for successful and safe autonomous
MAV navigation, especially towards the deployment in real-
world environments. Generally, in order to provide a stable and
reliable autonomous navigation, the MAVs should be equipped
with high-end and expensive components and sensor suits.
However, the long-term operation of these platforms, in harsh
environments, such as an underground mine, degrades their
performance and integrity over time.

In this article, a regression Convolutional Neural Network
(CNN) method is proposed to enable the autonomous naviga-
tion with a low-cost platform in unknown dark underground
mines. Initially, the collected data-sets are prepossessed in
order to obtain the depth information by utilizing the work
reported in [4]. The depth image is then segmented into regions
and the region with the highest depth is extracted, while in
the sequel, the centroid of this region is calculated. This is
a novel way to generate multiple training data-sets for the
CNN, when an absolute reference is not available and the
access to the field is limited. In the next step, the images
are resized from 512 × 512 to 128 × 128 pixels, converted
to gray scale and the CNN is trained based on images and
centroid information. The trained regression CNN provides
heading rate commands by extracting the centroid position in
the horizontal axis of the image plane from a looking forward
camera (Figure 1). It should be highlighted that for obtaining
an accurate heading angle estimation, especially for a low-
cost navigation system, is a challenging task. Thus, in the
proposed method, the obtained centroid position, is converted
to a heading rate for the platform. Moreover, the MAV is
considered as a floating object with a constant altitude, while
an obstacle avoidance algorithm, based on potential fields, is
implemented as a higher level collision avoidance scheme.
Finally, the proposed method is evaluated experimentally in
a real underground mine environment in Sweden.

A. Background & Motivation

Autonomous navigation in unknown environments is highly
coupled with collision avoidance and obstacle detection. More-
over, obstacle detection and navigation based on vision based
techniques for MAVs received significant attention and in
different application scenarios [5]. Visual stereo or monocular
camera systems are able to provide depth measurements for



Fig. 1: The proposed regression CNN approach for extracting
the centroid with the highest depth based on a forward look-
ing camera to navigate autonomously in underground mines.
Supplementary Video: https://youtu.be/WKHEvcovXqk

obstacle avoidance, while the obstacle detection methods,
based on a monocular camera, in the corresponding literature
are based mainly either on computer vision algorithms or on
machine learning methods.

Towards computer vision based obstacle detection methods,
in [6], a mathematical model to estimate the obstacle distance
to the MAV was implemented for collision avoidance. How-
ever, the method provided poor results at high velocity and
low illumination environments. In [7] it was described the
combination of multiple vision based components towards au-
tonomous aerial vehicles. The proposed system used multiple
sensing modalities for localization, mapping and obstacle free
navigation. The obstacle avoidance scheme was consisted of 3
stereo cameras for 360◦ coverage of the MAV’s surroundings
in the form of a pointclouds. However, the proposed method
relied on sufficient illumination, landmark extraction and high
processing on-board power. In general, the performance of
the computer vision-based algorithms mainly relies on the
surrounding environment with good distinctive features and
good illumination and lighting conditions [6]. Furthermore,
these methods require a high computation power to process
the images and extract landmarks, factors that could limit
the usage of these methods in real-life underground mine
applications.

Additionally, machine learning methods, such as CNN are
gaining more attention in various machine vision tasks, due
to the state of the art performance. However, these methods
require a large amount of data and a high computation power
for training. Eventually and after the training, the CNN can be
used for enabling an autonomous navigation with much lower
computation power, especially when compared to the training
phase. The works using CNN for navigation, such as [8], [9],
utilized the image frame of on-board camera to feed the CNN
for providing heading commands to the platform. These meth-
ods formulated the problem as a classification task with a fixed
number of classes e.g. move straight, turn left or turn right and
required data-sets with assigned labels in the training phase.
In [10] the autonomous MAV navigation in an outdoor urban
environments was considered where the yaw-rate command

was a regression problem and the collision prediction was
addressed as a binary classification problem. Moreover, in [11]
a real-time obstacle avoidance, by a regression CNN that
predicted the distance to the collision, based on a monocular
looking forward camera was proposed and the network was
trained based on real-distance data-sets. These works have
been evaluated and tuned in out-door and indoor environments
and with a good illumination for the camera, thus providing
rich data about the surrounding of the platforms. Moreover, in
these cases a ground truth reference was available for labeling
the data-sets. Furthermore, preliminary and limited studies of
MAV navigation in an underground mine using CNN was
presented in [12], however the method was evaluated in off-
line collected data-sets from two underground tunnels, without
the MAV in the loop.

B. Contributions

Based on the aforementioned state of the art, the main
contributions of this article are provided in this section. The
first and major contribution of this work is the development
of the regression CNN for providing heading rate commands
for the MAV to navigate towards open space areas. Moreover,
for training the network, the region with highest depth of the
data-sets is extracted by depth map estimation of the scene
in an offline procedure. For the best of our knowledge, this
is the first work that considers generating data in an offline
approach by depth map estimation by utilizing a single image,
when the absolute reference is not available and access to the
field for collecting data-sets is limited, which is one of the
main restrictions, specially in real-life applications. Moreover
the trained regression CNN requires less computation power
when compared to depth map estimation methods and provides
online performance for enabling autonomous navigation of the
MAV.

The second contribution, stems from the development and
evaluation of the low-cost MAV for autonomous navigation in
unknown dark underground tunnels, while accurate pose esti-
mation is not available and the platform operates as a floating
object. The proposed method is evaluated in an underground
mine and at a 790 m depth without a natural illumination,
while the corresponding experimental results demonstrate the
performance of the proposed method towards the establish-
ment of an autonomous MAVs in deep underground mines.
The following link https://youtu.be/WKHEvcovXqk provides
a video summary of the system.

As a final contribution this work will release the collected
data-set with open source access, providing data-sets from un-
derground mine tunnel areas that are not easily accessible for
the robotics community, thus enabling further developments
in the field.

C. Outline

The rest of the article is structured as follows. Initially,
Section II presents the problem formulation of the proposed
method and describes the developed components for the
MAV. Then, the algorithm for the centroid extraction and



the corresponding CNN implementation are presented in Sec-
tion III. The experimental setup and the extended experimental
evaluation of the proposed method in an underground mine
are presented in Section IV, while the article concludes by
summarizing the findings while presenting some directions for
future research in Section V.

II. SYSTEM ARCHITECTURE

The MAV is considered as a floating object , which does
not depend on the position estimation on x and y-axes, while
only the estimation of velocities, attitudes, and altitude are
required. The state of the system is X = [z, vx, vy, vz, φ, θ]

>.
Furthermore, the Nonlinear Model Predictive Control

(NMPC) [13] is implemented to track the desired altitude
zd,x and desired velocities [vd,x, vd,y]> and generate the
corresponding thrust and attitude commands [Td, φd, θd]

> for
the low level controller, which is responsible for generating
the motor commands [n1, . . . , n4]> for the MAV.

Moreover, the classical potential field method [1] is im-
plemented to generate a linear x-axis and y-axis velocity
commands [vd,x, vd,y]>, in order to avoid collisions to the
walls or any other obstacles standing in the way of the MAV,
while the heading rate commands ψ̇d are provided from the
regression CNN to move towards open spaces. The potential
field algorithm uses range measurements R = {ri|ri ∈
R+, i ∈ Z ∩ [−π, π]} from a 2D lidar, placed on top of the
MAV, to obtain repulsive velocity commands for both the x
and y-axis when flying close to obstacles, while the attractive
velocity command is given a constant value on the x-axis.

The overall control structure is presented in Figure 2. The φ
and θ are provided from the Inertial Measurement Unit (IMU)
measurements [ax, ay, az, wx, wy, wz]

> through an Extended
Kalman Filter (EKF), where ax, ay , az , wx, wy , and wz are
linear and angular accelerations along each axis. The vx and
vy are calculated from a down-ward optical-flow sensor and
the single beam lidar provides altitude z estimation. Moreover,
the image stream from the looking forward camera and the
estimated states are indicated as I and ˆ respectively.

III. METHODOLOGY

A. Centroid Extraction

In this work the CNN has been trained using information
of the open space along the tunnel in sequential frames. This
information is expressed through the extraction of the centroid
of the identified free tunnel space. The overall concept is
based on the depth map estimation of the scene using a single
acquired image, while an image can be expressed using the
atmospheric scattering model [14] as follows:

I(u, v) = J(u, v) · tr(u, v) +A[1− tr(u, v)] (1)

where I(u, v) is the observed image, J(u, v) is the original
image from the captured scene, tr is the transmission map,
(u, v) are the pixel coordinates, where u = 0, ...,m − 1 and
v = 0, ..., n − 1 with m the width and n the height of the

image, and A is the color atmospheric light. The transmission
map tr can be defined as:

tr(u, v) = e−βD(x,y) (2)

with d(x, y) to be the scene depth image for (x, y) pixel
coordinates and β is the scattering coefficient. A widely used
method to extract the transmission map is the Dark Channel
Prior (DCP), proposed by [15], in order to estimate the depth
map of an image:

tr(u, v) = 1− ω
[Idark(u, v)

A

]
,

Idark(u, v) = min
C∈R,G,B

[ min
ip∈Ω(u,v)

Ic(ip)]
(3)

where ω is a number controlling the desired level of restoration
with 1 the highest possible value, Imin(u, v) is the dark
channel, Ω(u, v) is a patch of 15 × 15 pixels centered on
(u, v), IC is the color channel of the image I and ip represents
the index of the pixel of Ω(u, v). [4] proposed a MultiLayer
Perceptron (MLP) module to refine the transmission map
outcome targeting the application of image dehazing, as it
follows:

tr′(u, v) = MLP [tr(u, v)] (4)

where MLP is a Multilayer Perceptron that has been trained
on a number of images in order to refine the transmission
map tr(u, v) to tr′(u, v). In this work, the training data-set
for the CNN has been generated by applying Equation 4 for
the collected images. The processed images reflect the refined
transmission maps and are perceived as a means for estimating
the scene depth from single images, without requiring ground
truth depth measurements. The method does not rely on
accurate depth metrics, since the extracted transmission maps
can be used for calculating the free area along the tunnel.

Moreover, every estimated depth map image is segmented
into several clusters using the K-means algorithm [16]. The
cluster with the maximum average intensity (which represents
the cluster of pixels with high depth values) is isolated and the
centroid [17] of this cluster is calculated û, while v̂ expresses
the centroid of the tunnel.

B. CNN Architecture and Training

The Deep Learning (DL) methods require large amount of
data in order to train the model, however proper data-sets are
not available in all the real-life application scenarios. Thus,
in this article, the centroid information from the collected
underground mine data-sets is extracted offline for training
the CNN. In this way, data-sets without depth information
can be used and it is not needed for collecting data-sets with
depth information, specially when there is a limited access to
the field. The overview of the proposed method is depicted in
Figure 3.

Figure 4 depicts the architecture of the proposed CNN [18],
while it receives a fixed-size image as an input and provides
the centroid position of the tunnel open space. A CNN is
composed of an input layer, a number of hidden layer and an
output layer. The main advantage of these Neural Networks is



Fig. 2: Control scheme of the proposed method. The NMPC generates thrust and attitude commands, the low level controller
generates motor commands, and the CNN provides heading rate commands, while the state estimation is based on IMU, optical
flow, and one beam lidar.

Fig. 3: Overview of the proposed method, while the training
data-sets are generated offline by centroid extraction method
and the CNN provides online heading rate commands, based
on images from the looking forward camera.

the fact that do not rely on feature extraction from the images
but the features are extracted automatically and learned during
the training process. This is achieved via the convolution
operation that is employed with different type of filters in the
initial image and allows a number of features to be extracted
from the initial image. Furthermore, the convolution operation
reduces the number of parameters due to weight sharing.
Finally the extra layer of pooling simplifies the output by
nonlinear down sampling using e.g. the Rectified Linear Units
(ReLUs) function.

In order to reduce the number of the initial inputs and the
computation time for the training process, grayscale acquired
images have been utilized. The reason for doing this was bi
fold: a) first the object recognition process based on gray-scale
images can outperform recognition based on color images [19],
and b) the RGB sensors do not provide any extra information
about the mine environments.

The input layer of the CNN is a matrix of 128 × 128,
followed by a sequence of two 2D convolutional and pooling
layers as feature extractors, a fully connected layer to interpret

the features, and with a dropout layer to reduce the over
fitting [20] and finally an output layer with a sigmoid activa-
tion [21] to provide outputs between 0 and 1. Depending on the
MAV equipped camera, the input image of the CNN can have
different sizes, however to reduce the computational power,
the image stream of the camera is resized to 128×128 pixels,
while for offline centroid extraction, the data-set is resized to
512 × 512 pixels for providing better information, then the
centroid position û is mapped to [0,1] ([0, 511] → [0, 1]) for
training the CNN.

Thus, the output ocnn of the CNN is a continuous value
between [0 − 1] for representing the centroid position û, e.g.
0, 0.5, and 1 are the location of the centroid in the left
corner (û = 0), center (û = 63) and right corner (û = 127)
of the image with 128 × 128 pixels respectively. Then the
output of the CNN is mapped to the heading rate command
([0, 1] → [−0.2, 0.2] rad/sec), where the heading rate of
−0.2 rad/s, −0.0 rad/s, and 0.2 rad/s corresponds to the
centroid in the left, center, and right corner in the image
plane. The algorithm 1 provides the overview of the proposed
method for generating heading rate commands. The CNN has
been implemented in Python by Keras [22] as a high-level
neural network Application Programming Interface (API). The
loss function is Mean Absolute Percentage Error (MAPE), the
optimization is based on an Adam optimizer [23], the learning
rate is 0.001, and the learning rate decay is 5×10−6 over each
update. Finally a workstation has been utilized, equipped with
an Nvidia GTX 1070 GPU for the training of the network with
200 epochs and 150 steps per epoch, while the trained network
is evaluated online on the on-board MAV main processing unit.

To train the CNN, the data-sets collected from moving the
camera by an operator in different directions and from flights
in the underground mine are used. For training the CNN 5067



Fig. 4: Architecture of the proposed CNN for the estimation of the centroid with highest depth.

Algorithm 1 Calculate heading rate command.

Input: I
Output: ψ̇d

1: Im×n×3 → I128×128×1 //converting the RGB image with
m×n pixels to gray scale and resizing to 128×128 pixels

2: CNN(I128×128×1 ) → ocnn ∈ [0, 1] //Output of the CNN
3: ψ̇d = ocnn−0.5

2.5 //Mapping [0, 1]→ [−0.2, 0.2] rad/sec

images corresponding to 50 m tunnel length are selected, while
the data-set is shuffled and 70% are used for training and
30% for the validation in an offline procedure. The trained
network provides MAPE of 10.4% and 12.9% on training and
validation data-sets.

IV. RESULTS

This section describes the experimental setup and exper-
imental evaluation of the proposed novel CNN method for
sending heading rate commands at a MAV, autonomous flying
at a deep underground mining environment. The follow-
ing link provides a video summary of the overall results:
https://youtu.be/WKHEvcovXqk.

A. Experimental Setup

In this work, a low-cost quadcopter has been utilized in an
underground mine, which was developed at Luleå University
of Technology based on the ROSflight [24] flight controller.
The developed platform is presented in [25], while Figure 5
depicts the platform equipped with playstation camera.

B. Experimental Evaluation

The performance of the proposed CNN method is evaluated
in an 790 m deep underground mine, while the underground
tunnels did not have strong corrupting magnetic fields, their
morphology resembled an S shape environment with small
inclination. The dimensions of the area where the MAV navi-
gates autonomously were 6(width)×4(height)×20(length)m3.

The ROSflight based quad-copter is equipped with a
PlayStation Eye camera, which is operated at 10 fps and with

Fig. 5: The developed ROSflight based quad-copter [25]
equipped with 2D and one beam lidars, optical flow, PlaySta-
tion camera and LED bars.

a resolution of 640 × 480 pixels, while the LED light bars
provide 460 lux illumination in 1 m distance. The desired
altitude was set to 1 m, the constant vd,y of 0.0 m/s, and
varying vd,x from 0.3 m/s up to 0.6 m/s were provided for
the platform.

Figure 6 shows the heading rate command generated by
the CNN module, that due to the narrow width of the tunnel
and the corresponding camera field of view, small heading
angle rotations results to replacement of the centroid in another
direction, thus the heading rate commands are generated in
different signs frequently.

In Figure 7 some examples from the on-board image stream
during the autonomous navigation are depicted, while the
centroids obtained from the centroid extraction method and
the CNN are compared. Moreover, it should be highlighted
that the CNN only estimates the û centroid position and the
input image of the CNN is resized, however for comparison
in the following figure it is assumed that the v̂ position of
the centroid and resolution of the image are the same in both
cases.

V. CONCLUSIONS

This article presented a CNN method to enable the au-
tonomous aerial navigation in unknown dark underground
mines. The image haze removal method was used to extract the
centroid of a highest depth information for training the CNN



0 50 100 150

time [sec]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18 20

-0.2

-0.1

0

0.1

0.2

Fig. 6: The heading rate commands generated from the utilized
CNN.

Fig. 7: Comparison of û from CNN and centroid extraction
method from MAV on-board camera. The CNN estimation is
indicated by a blue circle, while the centroid extraction method
is indicated by a red circle.

from underground mine collected data-sets. The regression
CNN provided a heading rate commands for the MAV, while
the platform was considered as a floating object. In the
presented approach, the potential fields, based on a 2D lidar
scanning, were used to avoid collision to walls. The framework
has been evaluated in field trials inside a dark underground
mine tunnel located in Sweden and has successfully managed
to navigate autonomously without colliding to the wall sur-
faces.
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