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Abstract—During the last century, population growth,
together with economic development, has considerably
increased the energy demand and, although renewable energies
are becoming an alternative, still total energy supply is mainly
non-renewable, causing well-known negative effects such as
pollution and global warming. On the other hand,
technological advances have allowed the development of
increasingly efficient distributed generation systems and the
emergence of microgrids, whose studies have been focused on
architecture, elements, and objectives of the associated energy
management strategies. In this regard, energy management
strategies based on a Fuzzy Logic controller have been
developed for electro-thermal microgrids where parameter
optimization has been carried out through heuristic procedures
of trial and error with acceptable results but involving a high
computational cost. To solve the aforementioned drawbacks, in
the present work the use of Cuckoo Search optimization
nature-inspired algorithm that allows the adjustment of Fuzzy
Logic controller parameters and ensures a higher quality of
energy management is proposed. Obtained results show
encouraging outcomes for the use of these meta-heuristic
optimization algorithms.

Keywords—energy management, Cuckoo search, Fuzzy
Logic control, parameter optimization

I. INTRODUCTION

The growth of energy demand, derived from population
growth and economic development, has given way to an
increase in energy consumption in recent decades. According
to information published by the International Energy Agency
(IEA), the World total primary energy supply (TPES)
(i.e., energy available in nature, before being converted or
transformed), obtained mainly from sources such as: coal,
oil, natural gas, nuclear, hydro, biofuels and biomass, others
(geothermal, solar, heat, wind); has increased from 6,101
million tonnes of oil equivalent (Mtoe) in 1973 to 13,761

Mtoe in 2016 [1], which represents an increase in energy
consumption of 125% in this period.

The increase in energy consumption over the years has
had a negative impact on the concentration of greenhouse
gases (GHQG) in the atmosphere [2], so that, many countries
in the world have focused their efforts on improving energy
efficiency and increasing the production of clean energy. As
a result of these initiatives, there has been a substantial
increase in the use of renewable energies sources (RES) in
the last decades, where photovoltaic (PV) and wind energy
(WT) have represented the highest growth worldwide.

The benefits that RESs have shown in recent years, such
as reducing the emission of GHG [3], have supported the
development and performance of distributed generation (DG)
systems. In this context, new problems have arisen when
trying to combine renewable sources together with traditional
sources of energy, some of these can be: unexpected
fluctuations in the response of RES which can affect the
voltage and frequency of the network, power electronics
requirements, and different control and dispatch methods.

In order to solve the aforementioned drawbacks, the term
microgrid (MG) is born; which was initially defined as a set
of micro-sources, charges, and storage systems that operate
with a single controllable system that can respond to signals
from a central controller [4]. This concept has been discussed
by several researchers over the past decade [5]-[9]. MGs are
currently defined as a low-voltage distribution network
consisting of loads, distributed generation elements, and
energy storage systems (ESS) that are connected to the main
supply network at a single point of common coupling (PCC),
with an associated energy management system (EMS) that
allows them to operate reliably, safely, and economically

[10], [11].



According to the microgrid architecture, the EMS is in
charge of controlling the power flux within the different
MG’s elements with the aim of achieving a set of predefined
objectives such as minimizing operating cost, maximizing
the MG revenues or minimizing the fluctuations and ramp-
rates in the power exchanged with the grid [12]-[17].

Considering this last objective, several EMSs have been
designed in the last years [18]-[22], obtaining satisfactory
results in the minimization of the grid power profile. These
studies share a common Fuzzy Logic Control (FLC) block,
which is designed according to the heuristic knowledge
about the proper MG’s operation. However, the FLC design
involves the selection of several parameters such as: type of
membership functions (MF), number of MFs per
input/output, mapping (i.e., location of each MF within the
established range for each input/output), and rule base (RB);
which makes it difficult to select a set of parameters that
minimize the grid power profile.

The adjustment procedure of the FLC parameters of the
EMSs described in [18]-[22] consists of three steps which
are described in [23]. Although the obtained results, through
the aforementioned process, were highly satisfactory, there is
a need to have a robust and powerful adjustment
(optimization) algorithm capable of tuning the FLC
parameters in a fast and efficient manner, so that it improves
the behavior of the EMS, and consequently, the quality of the
grid power profile of a residential MG.

During the last decades, meta-heuristic nature-inspired
algorithms have been given special attention due to their
great capability in solving optimization problems in a wide
range of applications including the operation and control of
electric power systems [24]-[26], where Cuckoo search (CS)
algorithm has shown superiority over other algorithms in
solving optimization problems in terms of better-obtained
results and faster convergence speed [27], robustness and
precision of obtained results [28], and its well-balanced
intensification/diversification search strategies [29]-[32].

Therefore, this article proposes a new methodology for
adjusting the FLC parameters of the EMS of a residential
grid-connected electro-thermal microgrid by means of the
CS algorithm. A global cost function, including all the
criteria used to evaluate the quality of the grid power profile,
defined in [16], [18], [19], is formulated with the aim of
constituting the objective function of the optimization
algorithm. A simulation comparison with the fuzzy-based
EMS presented in [20] will demonstrate the improved
behavior of the EMS after the FLC is subjected to the
proposed parameter adjustment process.

This paper is organized as follows. Section II presents the
electro-thermal microgrid under analysis and describes the
criteria associated with the grid power profile quality.
Section III presents the FLC parameter adjustment using CS
algorithm. Section IV presents the simulation and
comparison results. Finally, Section V presents the main
conclusion of this work.

II.  MICROGIRD ARCHITECTURE AND ENERGY
MANAGEMENT STRATEGY

This study uses the same microgrid architecture and the
EMS that the one presented in [20]. However, for the paper
completeness, a short description of this architecture and the
EMS associated with it is given next.

A. Microgrid architecture

The MG architecture includes a Hybrid RES comprising
of a PV generator of 6 kWp and a WT generator of 6 kW, a
battery ESS of 72 kWh capacity (36 kWh of useful battery
capacity), domestic load demand (P;p4p) of 7 kW, and a
domestic hot water system (DHW) which includes an electric
water heater (EWH) of 2 kW, a solar thermal collector of
2 kW, thermal demand equivalent to 2 kW (Qpgw), and a hot
water tank of 800 liters capacity, as shown in Fig. 1.

In Fig. 1 Pggy represents the total renewable power
generation, Ppy and Ppr are the PV and WT power,
respectively, Pp,r represents the battery power which is
positive for discharging process and is negative otherwise,
Pgrip is the power exchanged with the gird which is positive
when the utility grid injects power to the MG and is negative
otherwise, Py is the power required by the electric water
heater to meet the required thermal demand, Qgsrr is the
thermal storage capacity of the hot water tank, QOjossr
represents the thermal losses in the hot water tank, QOgscr is
the rate of energy collected from the solar thermal collectors,
and Oy ris the rate of energy transferred from the EWH.
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Fig. 1. Electro-thermal microgird architecture [20]. ©2018 IEEE,
Reprinted, with permission form D. Arcos-Aviles et al., “Fuzzy-based
energy management of a residential electro-thermal microgrid based on
power forecasting,” in IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, Washington, DC, USA, Oct. 2018, pp.
1824-1829.

According to the configuration shown in Fig. 1, the
generation power, the MG net power, P;g, and the battery
power are defined as follows:

Bopy(n) = By, (n)+ By (n), (D
Fo(n)=F )+ PWH,E (1) = Fypy (1), )
By (n) = B (n) = Fopyp (1). 3

B. Energy management strategy

The main goal of the EMS presented in [20] is smoothing
the grid power profile through the use of the energy stored in
the ESS for covering part of the energy required by the EWH
for keeping the water temperature in the tank between



established limits. The block diagram of this EMS is
depicted in Fig. 2, defining the grid power as the sum of
three components, as follows:

Fopp(n) = P;TR (n)+ Pype (1) + By (n), “4)

where P;TR (n) is the central moving average (CMA) filter
output which establishes the MG average power profile,
Pgsoc (n) is the battery control loop output which is used to
keep the battery state-of-charge (SOC) center close to the
75% of the rated battery capacity, and Pr ¢ (n) is the FLC
output. A complete description of each block shown in Fig. 2
can be found in [20].

. ==
P () 4 s

PL) l 24H

1953(11)

CMA Filter

i

—— I Block6

1

<Y Pl 1P ()1 1
& (] - ) (”)I XX ‘
1

|

P.(n) Jl Reap(1)

1 Block 3| Fuzzy Logic
- — - Control

Fig. 2. Energy management strategy block diagram [20]. ©2018 IEEE,
Reprinted, with permission form D. Arcos-Aviles et al.,, “Fuzzy-based
energy management of a residential electro-thermal microgrid based on
power forecasting,” in [IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, Washington, DC, USA, Oct. 2018, pp.
1824-1829.

C. Grid power profile quality criteria

The quality criteria are used to quantify the improvement
of the grid power profile achieved by an EMS where a lower
criteria value implies an improved grid power profile. These
criteria have been defined in [15], [16], [18], [19], where a
set of 6 quality criteria has been considered for building the
optimization cost function. These criteria are: maximum
power delivered by the grid in one year (Pgx), maximum
power fed into the grid (Pgauv), maximum power derivative
(MPD), average power derivative (4PD), power variation
range (PVR), and power profile variability (PPV), defined as
follows:

PG,MAX =max(F,,, ), Q)
PG,MIN =min(F,, ), (6)

MPD =max (| By,

), )

1 & -
APD =—"| B, (), (8)
N n=1
EiR]D (l’l) = [EiR[D (n) - P(;RJD (I’l - 1)]/Ts > (9)
PVR = PG,MAX _PG,MIN , (10)

PLG,MAX - PLG,MIN

P, (11)

where Pgrip is the grid power profile ramp-rate (i.e., the
slope of two consecutive samples of the grid power profile),
N the number of samples in one year, Pgrips is grid power
harmonic at f frequency, f; and f; are the initial and final
frequencies, respectively, and Ppc is the yearly power
average value. Note that f; = 1.65x10° Hz and
f;=5.55x10" Hz to evaluate frequencies above one week or
less variation periods [15], [16], [18], [19].

Based on the aforementioned quality criteria, which are
the objectives functions, the optimization cost function, i.e.,
fitness function, is defined as follows:

fitness =w-F, +(1-w)- F,, (12)
P {PG,MAX Popay . MPD J 13
1~ r r >
PGRj/[f-AX PG[“tﬁ;IN MPDREF
APD PVR PPV
2 =[ + ], (14)
APDyp. PVRpp PPV

where w is a real number weighting the two components of
the cost function and is fixed by the user to prioritize either
Fy or F,. It can be pointed out that to limit the variation
range of F| and F, each quality criteria is normalized with
respect to a reference value which is intended to be
minimized in the optimization process [33].

III. Fuzzy LOGIC PARAMETERS ADJUSTING USING
CUCKOO SEARCH ALGORITHM

The CS algorithm is a nature-inspired metaheuristic
algorithm inspired in the obligate brood parasitism behavior
of some cuckoo bird species which lay their own eggs in
nests of other birds [30]-[32]. If host birds realize that a
cuckoo laid an egg in their nests, they will either remove the
egg from the nest or just abandon it and build a new one. In
this optimization algorithm, each nest represents a potential
solution [30], [31], [34].

In general terms, CS algorithm implementation can be
done through three ideal rules [30], [31], [35], which are:
1) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest. Each egg represents a solution;
2) The best nests with high quality of eggs (i.e., better
solutions) will carry over to the next generations; and, 3) The
number of available host nests (i.e., number of solutions per
generation) is fixed and the egg laid by a cuckoo is
discovered by the host bird with a probability, pa € [0, 1].

The CS algorithm involves two phases: At first, the initial
random population is created and then, CS goes into an
iterative process where two random walks, Lévy flights, and
biased/selective random walk, are used to search for new
solutions within the boundaries of the search space according
to the problem restrictions. The CS algorithm selects the
solution with a better evaluation of the cost function in the
set of solutions generated by the CS iterative process [30],
[31], [36]. A detailed description of the different phases of
the algorithm and its application for the optimization an FLC
is presented in [37], whereas the application of the CS
algorithm to the FLC described in [20] is exposed next and
summarized in Fig. 3.
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Fig. 3. Flowchart of the optimization process.

During the initialization, the CS algorithm creates a set of
solutions which are randomly sampled from the search
space. The dimension of the solution, d, is defined according
to the total number of parameters to optimize. In accordance
with the FLC described in [20], these parameters are related
to the MF’s mapping and the RB. In this regard, referring to
Fig. 4 and Fig. 5, both inputs (i.e., Pr and SOC) comprise
five fuzzy sets and thirteen parameters (since every fuzzy set
is represented by a triangular MF of three variable positions
except for both located at the maximum and minimum
universe of discourse limits that have one fixed positions and
two variables) and output (i.e., Pr;c) comprises nine fuzzy
sets with twenty-seven parameters, whereas the RB includes
twenty-five parameters. Considering all these values, each
solution is represented with d = 78 parameters and the length
of the population is fixed and with a value of n = 25 [30].
Initial random solutions are generated separately for every
MF and RB parameters, as follows:

X =|:XMF(G)7XRB(G)]7 (15)

XMF(G)=[MFA+5A,MFB+53,MFC+5C], (16)
XRB(G)=[RBl+p|aRBz+pz""aRst+pzs]> (17)

where X is an initial random solution comprising of
solutions for MF parameters and RB, Xy is a random
initial solution for MF parameters at a first-generation G,
MF,, MFg, MF( are typical triangular uniformly distributed
MF’s parameters, 84 5 ¢ ~ (-5%R, 5%R) are random
numbers drawn from a uniform distribution, R is the variable
range for every input/output variable (a 5% design value that
has been defined since the EMS is sensible to small MF
parameter variations), Xgp is a random initial solution for
RB parameters at a first-generation G, RB;, RB,,..., RBys are
a set of initial rule base parameters defined according to the
heuristic knowledge of the microgrid, and p ~ N (0, 1) is a
random integer number drawn from a uniform distribution.

Once the initial random population is created, the CS
algorithm evaluates every candidate solution, so that the best
ones obtained pass through the next generations. It is worth
pointing out that, during a minimization/maximization
process, the ‘selection of best’ step results crucial, so that,
the best solution according to problem’s objectives of
optimization can be obtained at the end of the algorithm.

After the initialization and with the information that
possible good solutions were obtained in a previous
generation, CS starts an intensification (local search) process
so that better solutions can be obtained. CS intensification
for MF parameters is carried out using a Lévy Flights
random walk with a step-size drawn from a Lévy distribution
that is characterized by its infinite mean and variance,
enabling CS to explore the search space more efficiently than
other algorithms that use a standard Gaussian process [30],
[31].

At a generation G > 0, Lévy Flights random walk is
formulated as follows:

XMF(G-H) = XMF(G) +ao- Lévy (B), (18)

a=aq, '(XMF(G) _XMF(bext) ) 5 (19)

where Xyrgy is a candidate new solution, Xypg) is a
candidate solution selected from the cuckoo population,
Lévy (B) is a random step-size drawn from Lévy distribution
calculated via the so-called Mantegna’s algorithm for a
symmetric Lévy stable distribution, o > 0 is a set of
step-sizes that are related to the scale of the problem [30],
[31], and ap ~ U (0.01, 0.1) is a varying scaling factor drawn
from a uniform distribution [36].

The CS intensification for RB parameters are calculated
as follows:

XRB(G+1) = XRB(G) +s- (XRB(G) _XRB(betx) )’ (20)
where XgpG+1 is a candidate new solution for RB parameters
obtained after intensification process, Xzpc) is a candidate
solution at a generation G selected from the cuckoo
population, s is vector of integer numbers drawn from a
normal standard distribution N (0, 1) to displace the RB
values, and Xgpes) 1S the best solution for RB parameters
obtained so far in the iterative process and together with
membership function’s parameters, better optimizes the cost
function.



After a local search, global search is applied to find new
solutions far enough from the current best solutions by using
far-field randomization [31]. First, a trial solution is built
using a mutation of the current solution and a differential
step size from two stochastically selected solutions. Second,
a new solution is generated by a crossover operator from the
current and the trial solutions [36]. This procedure is
formulated as follows:

Xo+r X, o —X ;p, <0.25
Y _{ G (p(G) q(G)) p Q@

G+l

X, :p, >025

where p and ¢ are random indexes so that X, and X, are
randomly selected solutions, » ~ U (0, 1) is a random number
drawn from a uniform distribution, and p, = 0.25 is the
solution discovery rate [36], [38].

Both local and global searches are applied to every
solution of the population and a solution is replaced by
another one or kept for the next generations, according to the
following:

) < fitness(X,)

; fitness (X,
X f ( G+l , (22)

— XG+1
X, otherwise

where fitness is the cost function, and X, and X,y are
candidate solutions comprising of Xy and Xypg+y) and,
Xgpe) and Xgg+r), respectively. Furthermore, the update
process of the X, in every generation G is defined by:

X,,, < fimess(X,, )< fitness(X;). (23)

best bets

IV. SIMULATION AND COMPARISON RESULTS

The real data from one year (2013-2014) provided by the
MG installed at Public University of Navarre (UPNa)
(Pamplona, Spain: 42°49°06”N 1°38°39”0) are considered
for simulation purposes. These data have been obtained
through power analyzers recording the output power of both
RES and load consumption with a sampling period of 15 min
(T5s =900 s). The FLC parameters adjustment is carried out
through numerical simulations by means of Matlab® in an
Intel(R) Core (TM) i7-4510U CPU (2.00GHz) 12 GB RAM
computer, where most of the computation time is spent for
solving the 300 iterations for minimizing the cost function.

The processing time obviously depends on the processor
speed and can be rather long since input data correspond to at
least 3 vectors (wind and PV generation as well as load) of
(365 days-24h) / (day-4 samples/h) = 35040 samples/vector
and 300 iterations. However, it can be noted that almost all
possible energy scenarios will be covered along a year.
Moreover, the use of the CS algorithm leads to a simulation
time reduction of around 33% compared with the previous
heuristic trial and error procedure presented in [20].

Furthermore, a weighting factor of w = 2 has been
implemented in the cost function defined in (12) to prioritize
the minimization of Pguux, Poan, and MPD over APD,
PPV, and PV'R since are dependent of the first three ones and
because the main objectives of the EMS is to minimize the
power ramp-rates, power peaks, and fluctuations in the
power exchanged with the grid. The comparison of the
fuzzy-based EMS (hereinafter referred to as H-FLC EMS)
presented in [20] after passing through the described Cuckoo
adjustment process, hereinafter referred to as CS-FLC EMS,
is presented next. For comparison purposes, the reference

values used in (13) and (14) correspond to the quality criteria
values obtained by [20].

Fig. 4 and Fig. 5 show the MFs of inputs and output for
both EMSs. As it can be seen, there are strong differences
between them, especially when comparing the output MFs
and its mapping. The variation range of the output variable
has been reduced after the CS optimization process
(i.e., from -0.8 kW < Pryc < 1.35 kW t0 -0.5051 kW < Ppyc <
0.7863 kW), which implies that the output of the fuzzy
controller will have less variability and consequently the
optimized strategy will achieve a smoother grid power
profile.
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Similarly, when comparing the fuzzy RB of both EMSs,
shown in TABLE 1. and TABLE II it can be noted that 13



rules change (highlighted in cyan color) in the optimized rule
base of the CS-FLC EMS.

TABLE 1. HEURISTIC APPROACH RULE BASE H-FLC EMS [20]

P.(n

NB NS ZE PS PB
NB PB PM PS PM PB
NS PM PS PSS PS PM
S0C (n) ZE NS ZE ZE PSS NSS
PS NM NS NSS NS NM
PB NB NSS NM NM NB

TABLE II. OPTIMIZED RULE BASE THROUGH CUCKOO SEARCH

ALGORITHM

PFLC PE (n)

NB NS ZE PS PB
NB ZE ZE PS PM PB
NS NSS ZE PSS PS PB
§0C (n) ZE NS NSS ZE PSS PS
PS NM NS NSS ZE PSS
PB NB NM NS NS ZE

Regarding the performance of the CS-FLC EMSs
strategy, it can be seen in Fig. 6 that the optimized strategy
minimizes the power peaks and fluctuations in the power
exchanged with the grid achieving a maximum power
delivered by the grid of Pgaax = 2.51 kW (2.56 kW for the
H-FLC EMS) and a maximum power injected to the grid of
Peauy=-1.66 kW (-1.89 kW for the H-FLC EMS).

In addition, the proper behavior of the battery SOC
evolution during the year under study achieved for both
strategies can be evidenced in Fig. 7, where it can be seen
that the battery SOC evolution reached by the CS-FLC EMS
improves the one achieved by the H-FLC EMS. In short, the
battery SOC of the optimized strategy is kept in a range
between the 70% and 80% of the rated battery capacity
during the 48.35% of the year under study, which leads to the
ESS to be further prepared to compensate the fluctuations
that may exist in the MG.

Finally, analyzing the resulting values of the defined
quality criteria summarized in TABLE III. it can be verified
that the optimized CS-FLC EMS achieves an important
reduction in the quality criteria magnitude where there is a
widespread reduction of 44.2% in the MPD criterion. As
shown in Fig. 8, the grid power profile ramp-rates have been
reduced in the year under study.

V. CONCLUSIONS

In this study, an FLC for an EMS of a grid-tied domestic
electro-thermal microgrid obtained by means of CS
algorithm is proposed and verified through simulations. To
evaluate the performance of the proposed FLC, energy
management quality criteria of the EMS during a one-year
simulation is measured. In this regard, membership functions
and rule-base parameters obtained using CS algorithm result
in a higher energy management quality (Table III) in
comparison with parameters obtained by means of heuristic
trial and error procedures used in previous studies,
minimizing MG power profile fluctuations and keeping
battery SOC range within a secure range of operation.
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TABLE III. QUALITY CRITERIA COMPARISON
Grid Power Profile Quality Criteria

EMS P, P, MPD APD

Strate G,MAX G,MIN
& (kW) (kW) (W/h) (W/h) PPV | PVR
EMS [20] 2.56 -1.89 846 75 1.26 0.34
CS

optimized 2.51 -1.66 472 75 1.25 0.32
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