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Abstract—During the last century, population growth, 
together with economic development, has considerably 
increased the energy demand and, although renewable energies 
are becoming an alternative, still total energy supply is mainly 
non-renewable, causing well-known negative effects such as 
pollution and global warming. On the other hand, 
technological advances have allowed the development of 
increasingly efficient distributed generation systems and the 
emergence of microgrids, whose studies have been focused on 
architecture, elements, and objectives of the associated energy 
management strategies. In this regard, energy management 
strategies based on a Fuzzy Logic controller have been 
developed for electro-thermal microgrids where parameter 
optimization has been carried out through heuristic procedures 
of trial and error with acceptable results but involving a high 
computational cost. To solve the aforementioned drawbacks, in 
the present work the use of Cuckoo Search optimization 
nature-inspired algorithm that allows the adjustment of Fuzzy 
Logic controller parameters and ensures a higher quality of 
energy management is proposed. Obtained results show 
encouraging outcomes for the use of these meta-heuristic 
optimization algorithms. 

Keywords—energy management, Cuckoo search, Fuzzy 
Logic control, parameter optimization 

I. INTRODUCTION 
The growth of energy demand, derived from population 

growth and economic development, has given way to an 
increase in energy consumption in recent decades. According 
to information published by the International Energy Agency 
(IEA), the World total primary energy supply (TPES) 
(i.e., energy available in nature, before being converted or 
transformed), obtained mainly from sources such as: coal, 
oil, natural gas, nuclear, hydro, biofuels and biomass, others 
(geothermal, solar, heat, wind); has increased from 6,101 
million tonnes of oil equivalent (Mtoe) in 1973 to 13,761 

Mtoe in 2016 [1], which represents an increase in energy 
consumption of 125% in this period. 

The increase in energy consumption over the years has 
had a negative impact on the concentration of greenhouse 
gases (GHG) in the atmosphere [2], so that, many countries 
in the world have focused their efforts on improving energy 
efficiency and increasing the production of clean energy. As 
a result of these initiatives, there has been a substantial 
increase in the use of renewable energies sources (RES) in 
the last decades, where photovoltaic (PV) and wind energy 
(WT) have represented the highest growth worldwide.  

The benefits that RESs have shown in recent years, such 
as reducing the emission of GHG [3], have supported the 
development and performance of distributed generation (DG) 
systems. In this context, new problems have arisen when 
trying to combine renewable sources together with traditional 
sources of energy, some of these can be: unexpected 
fluctuations in the response of RES which can affect the 
voltage and frequency of the network, power electronics 
requirements, and different control and dispatch methods. 

In order to solve the aforementioned drawbacks, the term 
microgrid (MG) is born; which was initially defined as a set 
of micro-sources, charges, and storage systems that operate 
with a single controllable system that can respond to signals 
from a central controller [4]. This concept has been discussed 
by several researchers over the past decade [5]–[9]. MGs are 
currently defined as a low-voltage distribution network 
consisting of loads, distributed generation elements, and 
energy storage systems (ESS) that are connected to the main 
supply network at a single point of common coupling (PCC), 
with an associated energy management system (EMS) that 
allows them to operate reliably, safely, and economically 
[10], [11]. 
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During the initialization, the CS algorithm creates a set of 
solutions which are randomly sampled from the search 
space. The dimension of the solution, d, is defined according 
to the total number of parameters to optimize. In accordance 
with the FLC described in [20], these parameters are related 
to the MF’s mapping and the RB. In this regard, referring to 
Fig. 4 and Fig. 5, both inputs (i.e., PE and SOC) comprise 
five fuzzy sets and thirteen parameters (since every fuzzy set 
is represented by a triangular MF of three variable positions 
except for both located at the maximum and minimum 
universe of discourse limits that have one fixed positions and 
two variables) and output (i.e., PFLC) comprises nine fuzzy 
sets with twenty-seven parameters, whereas the RB includes 
twenty-five parameters. Considering all these values, each 
solution is represented with d = 78 parameters and the length 
of the population is fixed and with a value of n = 25 [30]. 
Initial random solutions are generated separately for every 
MF and RB parameters, as follows: 

( ) ( ), ,G MF G RB GX X X =   (15)

[ ]( ) , , ,MF G A A B B C CX MF MF MF= + δ + δ + δ  (16) 

[ ]( ) 1 1 2 2 25 25, , , ,RB GX RB RB RB= + ρ + ρ + ρ  (17) 

where XG is an initial random solution comprising of 
solutions for MF parameters and RB, XMF(G) is a random 
initial solution for MF parameters at a first-generation G, 
MFA, MFB, MFC are typical triangular uniformly distributed 
MF’s parameters, δA, B, C ⁓ (-5%‧R, 5%‧R) are random 
numbers drawn from a uniform distribution, R is the variable 
range for every input/output variable (a 5% design value that 
has been defined since the EMS is sensible to small MF 
parameter variations), XRB(G) is a random initial solution for 
RB parameters at a first-generation G, RB1, RB2,…, RB25 are 
a set of initial rule base parameters defined according to the 
heuristic knowledge of the microgrid, and ρ ⁓ N (0, 1) is a 
random integer number drawn from a uniform distribution. 

Once the initial random population is created, the CS 
algorithm evaluates every candidate solution, so that the best 
ones obtained pass through the next generations. It is worth 
pointing out that, during a minimization/maximization 
process, the ‘selection of best’ step results crucial, so that, 
the best solution according to problem’s objectives of 
optimization can be obtained at the end of the algorithm. 

After the initialization and with the information that 
possible good solutions were obtained in a previous 
generation, CS starts an intensification (local search) process 
so that better solutions can be obtained. CS intensification 
for MF parameters is carried out using a Lévy Flights 
random walk with a step-size drawn from a Lévy distribution 
that is characterized by its infinite mean and variance, 
enabling CS to explore the search space more efficiently than 
other algorithms that use a standard Gaussian process [30], 
[31]. 

At a generation G > 0, Lévy Flights random walk is 
formulated as follows: 

( 1) ( ) ( ),MF G MF GX X Lévy+ = + α ⋅ β  (18) 

( )0 ( ) ( ) ,MF G MF bestX Xα = α ⋅ − (19)

where XMF(G+1) is a candidate new solution, XMF(G) is a 
candidate solution selected from the cuckoo population, 
Lévy (β) is a random step-size drawn from Lévy distribution 
calculated via the so-called Mantegna’s algorithm for a 
symmetric Lévy stable distribution, α > 0 is a set of 
step-sizes that are related to the scale of the problem [30], 
[31], and α0 ⁓ U (0.01, 0.1) is a  varying scaling factor drawn  
from a uniform distribution [36].  

The CS intensification for RB parameters are calculated 
as follows: 

( )( 1) ( ) ( ) ( ) ,RB G RB G RB G RB betsX X s X X+ = + ⋅ −  (20) 

where XRB(G+1) is a candidate new solution for RB parameters 
obtained after intensification process, XRB(G) is a candidate 
solution at a generation G selected from the cuckoo 
population, s is vector of integer numbers drawn from a 
normal standard distribution N (0, 1) to displace the RB 
values, and XRB(best) is the best solution for RB parameters 
obtained so far in the iterative process and together with 
membership function’s parameters, better optimizes the cost 
function. 



After a local search, global search is applied to find new 
solutions far enough from the current best solutions by using 
far-field randomization [31]. First, a trial solution is built 
using a mutation of the current solution and a differential 
step size from two stochastically selected solutions. Second, 
a new solution is generated by a crossover operator from the 
current and the trial solutions [36]. This procedure is 
formulated as follows: 

( )( ) ( )
1

; 0.25
,

; 0.25
G p G q G a

G
G a

X r X X p
X

X p
+

 + ⋅ − ≤= 
>

 (21) 

where p and q are random indexes so that Xp(G) and Xq(G) are 
randomly selected solutions, r ~ U (0, 1) is a random number 
drawn from a uniform distribution, and pa = 0.25  is the 
solution discovery rate [36], [38]. 

Both local and global searches are applied to every 
solution of the population and a solution is replaced by 
another one or kept for the next generations, according to the 
following: 
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where fitness is the cost function, and X(G) and X(G+1) are 
candidate solutions comprising of XMF(G) and XMF(G+1) and, 
XRB(G) and XRB(G+1), respectively. Furthermore, the update 
process of the Xbest in every generation G is defined by: 

( ) ( ).best bets GX fitness X fitness X← <  (23) 

IV. SIMULATION AND COMPARISON RESULTS

The real data from one year (2013-2014) provided by the 
MG installed at Public University of Navarre (UPNa) 
(Pamplona, Spain: 42°49’06”N 1°38’39”O) are considered 
for simulation purposes. These data have been obtained 
through power analyzers recording the output power of both 
RES and load consumption with a sampling period of 15 min 
(TS = 900 s). The FLC parameters adjustment is carried out 
through numerical simulations by means of Matlab® in an 
Intel(R) Core (TM) i7-4510U CPU (2.00GHz) 12 GB RAM 
computer, where most of the computation time is spent for 
solving the 300 iterations for minimizing the cost function.  

The processing time obviously depends on the processor 
speed and can be rather long since input data correspond to at 
least 3 vectors (wind and PV generation as well as load) of  
(365 days·24h) / (day·4 samples/h) = 35040 samples/vector 
and 300 iterations. However, it can be noted that almost all 
possible energy scenarios will be covered along a year. 
Moreover, the use of the CS algorithm leads to a simulation 
time reduction of around 33% compared with the previous 
heuristic trial and error procedure presented in [20]. 

Furthermore, a weighting factor of w = 2 has been 
implemented in the cost function defined in (12) to prioritize 
the minimization of PG,MAX, PG,MIN, and MPD over APD, 
PPV, and PVR since are dependent of the first three ones and 
because the main objectives of the EMS is to minimize the 
power ramp-rates, power peaks, and fluctuations in the 
power exchanged with the grid. The comparison of the 
fuzzy-based EMS (hereinafter referred to as H-FLC EMS) 
presented in [20] after passing through the described Cuckoo 
adjustment process, hereinafter referred to as CS-FLC EMS, 
is presented next. For comparison purposes, the reference 

values used in (13) and (14) correspond to the quality criteria 
values obtained by [20]. 

Fig. 4 and Fig. 5 show the MFs of inputs and output for 
both EMSs. As it can be seen, there are strong differences 
between them, especially when comparing the output MFs 
and its mapping. The variation range of the output variable 
has been reduced after the CS optimization process 
(i.e., from -0.8 kW ≤ PFLC ≤ 1.35 kW to -0.5051 kW ≤ PFLC ≤ 
0.7863 kW), which implies that the output of the fuzzy 
controller will have less variability and consequently the 
optimized strategy will achieve a smoother grid power 
profile. 

  (a)     (b) 

(c) 

Fig. 4. Membership functions of the H-FLC EMS. (a) input *
EP , (b) input 

SOC, and (c) output PFLC. 

  (a)    (b) 

(c) 

Fig. 5. Membership functions of the CS-FLC EMS. (a) input *
EP , 

(b) input SOC, and (c) output PFLC. 

Similarly, when comparing the fuzzy RB of both EMSs, 
shown in TABLE I. and TABLE II. it can be noted that 13 



rules change (highlighted in cyan color) in the optimized rule 
base of the CS-FLC EMS. 

TABLE I. HEURISTIC APPROACH RULE BASE H-FLC EMS [20]  

PFLC 
* ( )EP n  

NB NS ZE PS PB

SOC (n) 

NB PB PM PS PM PB
NS PM PS PSS PS PM
ZE NS ZE ZE PSS NSS
PS NM NS NSS NS NM
PB NB NSS NM NM NB

TABLE II. OPTIMIZED RULE BASE THROUGH CUCKOO SEARCH 
ALGORITHM  

PFLC 
* ( )EP n  

NB NS ZE PS PB

SOC (n) 

NB ZE ZE PS PM PB
NS NSS ZE PSS PS PB
ZE NS NSS ZE PSS PS
PS NM NS NSS ZE PSS
PB NB NM NS NS ZE

Regarding the performance of the CS-FLC EMSs 
strategy, it can be seen in Fig. 6 that the optimized strategy 
minimizes the power peaks and fluctuations in the power 
exchanged with the grid achieving a maximum power 
delivered by the grid of PG,MAX = 2.51 kW (2.56 kW for the 
H-FLC EMS) and a maximum power injected to the grid of 
PG,MIN = -1.66 kW (-1.89 kW for the H-FLC EMS). 

In addition, the proper behavior of the battery SOC 
evolution during the year under study achieved for both 
strategies can be evidenced in Fig. 7, where it can be seen 
that the battery SOC evolution reached by the CS-FLC EMS 
improves the one achieved by the H-FLC EMS. In short, the 
battery SOC of the optimized strategy is kept in a range 
between the 70% and 80% of the rated battery capacity 
during the 48.35% of the year under study, which leads to the 
ESS to be further prepared to compensate the fluctuations 
that may exist in the MG. 

Finally, analyzing the resulting values of the defined 
quality criteria summarized in TABLE III. it can be verified 
that the optimized CS-FLC EMS achieves an important 
reduction in the quality criteria magnitude where there is a 
widespread reduction of 44.2% in the MPD criterion. As 
shown in Fig. 8, the grid power profile ramp-rates have been 
reduced in the year under study. 

V. CONCLUSIONS 
In this study, an FLC for an EMS of a grid-tied domestic 

electro-thermal microgrid obtained by means of CS 
algorithm is proposed and verified through simulations. To 
evaluate the performance of the proposed FLC, energy 
management quality criteria of the EMS during a one-year 
simulation is measured. In this regard, membership functions 
and rule-base parameters obtained using CS algorithm result 
in a higher energy management quality (Table III) in 
comparison with parameters obtained by means of heuristic 
trial and error procedures used in previous studies, 
minimizing MG power profile fluctuations and keeping 
battery SOC range within a secure range of operation. 

Fig. 6. Grid power profile comparison. 

Fig. 7. Histogram of battery SOC ranges comparison. 

TABLE III. QUALITY CRITERIA COMPARISON 

EMS 
Strategy 

Grid Power Profile Quality Criteria 
PG,MAX 
(kW) 

PG,MIN 
(kW) 

MPD 
(W/h) 

APD 
(W/h) PPV PVR 

EMS [20]  2.56 -1.89 846 75 1.26 0.34 

CS 
optimized 

EMS 
2.51 -1.66 472 75 1.25 0.32 

Fig. 8. Grid power ramp-rate comparison. 
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