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Abstract—In a microgrid, real-time state estimation has always
been a challenge due to several factors such as the complexity
of computations, constraints of the communication network
and low inertia. In this paper, a real-time event-based optimal
linear state estimator is introduced, which uses the send-on-
delta data collection approach over wireless sensors networks and
exhibits low computation and communication resources cost. By
employing the send-on-delta event-based measurement strategy,
the burden over the wireless sensor network is reduced due to the
transmission of events only when there is a significant variation
in the signals. The state estimator structure is developed based
on the linear Kalman filter with the additional steps for the
centralized fusion of events data and optimal reconstruction of
signals by projection onto convex sets. Also for the practical
feasibility analysis, this paper developed an Internet of things
prototype platform based on LoRaWAN protocol that satisfies
the requirements of the proposed state estimator in a microgrid.

Index Terms—Event-based estimation, IoT, LoRaWAN, micro-
grid, POCS, Send-on-Delta Kalman filter, Thingsboard, WSN.

I. INTRODUCTION

Microgrids are small power systems that are able to operate

independent of the main grid. The independent operation

enables the optimal integration of renewable energy sources

into the power system and also provides a higher degree of

freedom in energy management comparing to the traditional

power grid. Despite the advantages, microgrids poses low

inertia, i.e. the system is more prone to instabilities driven

by disturbances, and therefore, robust controllers should be

employed to guarantee the continuous operation [1], [2].

State estimation is an important part of a robust controller,

as a high number of the robust control techniques are based on

state feedback [3], [4]. Also for the systems which are based

on the output signal feedback, state estimation is inevitable

for internal stability analysis and situational awareness (SA)

[5], [6]. The low inertia characteristic of the microgrids

necessitates that the state estimator to work in real-time with

a reasonable communication and computation cost [7].

In the literature of state estimators, two different approaches

have been taken, distributed and centralized state estimation

[8]. Both approaches have advantages that suits them for the

specific application. Distributed state estimation approach is

mainly used when the system is large and the computation cost

of a centralized estimator would make the solution infeasible.

Although distributed approaches remove the single point of

failure problem, it requires a high number of computing agents

for state estimation tasks, which is not appropriate for small

to medium sized microgrids [9]–[11].

In contrast, the basic assumption in the centralized state

estimation approach, is to have a single estimator, which

collects the data from the sensors installed throughout the

microgrid. Therefore, the sensors doesn’t need to be smart and

computationally powerful, as they only have to measure and

send the data to the collector [12], [13]. Furthermore, the rate

at which the sensors transmit the measurements greatly affects

the performance of the state estimator, the network traffic,

and the energy consumption of battery based nodes [14].

Traditional state estimator theories were originally developed

based on the fact that the signals were sampled periodically

with a predetermined sampling period. With the advent of

Internet of things (IoT) communication technologies, this basic

assumption is not practical anymore, because the IoT technol-

ogy trend is moving toward lower speed communication for

longer distances and reduced power for wireless transmission

[7], [15]. Therefore, modernized state estimators should be

designed as such that are able to fuse the event-based data

from different sensors across the microgrid.

To address this need, the authors in this paper propose a

centralized event-based optimal linear state estimator, suitable

for medium sized microgrids, with Send-on-Delta (SoD) mea-

surements. The estimator uses projection onto convex sets

(POCS) technique [16] to optimally reconstruct the sparse

received data from the nodes and then reduces the estimation

error of event-based Kalman filter.

In Section II, microgrid data modeling for both AC and DC

ones is provided. Afterward the proposed estimator is intro-

duced in Section III based on the modeled data. The developed

event-based Kalman estimator is formulated in Section IV and

the POCS data recovery technique is discussed in Section V.

In Section VI, the implemented setup for evaluation of the

estimation strategy is shown. Finally, Section VII presents the

results of the analysis. The paper is concluded in Section VIII.
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II. MICROGRID STATE ESTIMATION DATA MODELING

In this section the problem of microgrid state estimation

is justified. An autonomous single bus microgrid consists

of renewable energy sources (RESs), energy storage systems

(ESSs), power electronic converters and loads. Two types of

power systems can be used for the microgrid implementation,

DC (Direct Current) and AC (Alternating Current) systems.

Each of these systems are dynamic processes that can be

modeled as a system of differential equations, either linear

or non-linear. As any other types of dynamic systems, each

process has inputs, outputs and the internal state variables.

The set of measurements available for state estimation in this

paper is assumed as:

AC microgrid

vi ∈ V, RMS voltage of buses

pi ∈ P, Active power injected into each bus

qi ∈ Q, Reactive power injected into each bus (1)

DC microgrid

vi ∈ V, RMS voltage of buses

ii ∈ I, Injected current into each bus (2)

For AC microgrids, other variables can be chosen such as

phase of voltage, but as phasor measurement units are expen-

sive and need high speed synchronization, indirect methods

with active and reactive power are recommended and used.

III. PROPOSED ESTIMATION ARCHITECTURE

Fig. 1 shows the structure of the proposed event-based

state estimator. It consists of three parts, event-based adaptive

Kalman state estimator, event-based signal conditioner and the

mean square error (MSE) comparator. The microgrid estima-

tion input variables, defined in Section II, are sampled with

send-on-delta (SoD) measurement approach. The proposed

event-based Kalman filter works based on the knowledge

that the signals between each events are bounded by the δ

threshold of SoD sampler. The proposed signal conditioner,

reconstructs the original signal based on the events using the

projection onto convex sets algorithm (POCS), which is mainly

used in literature as a promising approach for low quality

image reconstruction. Finally the MSE comparator, decides

on updating the state estimator based on the error between

reconstructed signal and the predicted output of Kalman filter.

IV. EVENT-BASED KALMAN FILTER DESIGN

By mapping the microgrid variables into the following dy-

namic system which is the state space realization the microgrid

dynamics, the state estimation problem is formulated as:

ẋ = Ax (t) + w (t)

y(t) = Cx(t) + v(t) (3)

where x ∈ Rn is the estimated state and y ∈ Rp is the output

measurement. The process noise w (t) and measurement noise
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Fig. 1. Structure of the proposed event-based optimal state estimator.

v(t) are the uncorrelated, zero-mean white Gaussian random

processes, satisfying the following assumptions:

E {w(t) w(s)′} = Q δ(t− s) (4)

E {v(t) v(s)′} = R δ(t− s) (5)

E
{

wi (t) vj (s)
′}

= 0, 1 ≤ i ≤ n, 1 ≤ j ≤ p (6)

where wi and vj are the i-th and j-th elements of the w and v,

respectively. Also, R is the measurement noise covariance, and

Q is the process noise covariance. It is presumed that the i-th

sensor only transmits the data when the difference between

the current sensor value and the previously transmitted value

is greater than δi.

The states are also estimated periodically with the period

of T . For simplicity, it is assumed that there is no delay in

the sensor data transmission. Using the SoD method [17], the

estimator continuously samples the available data with a period

of T from the sensors. For example, if the last received i-th

sensor value is yi at the time tlast,i, and there is no i-th sensor

data received for t > tlast,i, then the estimator can estimate

yi(t) as:

yi (tlast,i)− δi ≤ yi (t) ≤ yi (tlast,i) + δi (7)

The last received i-th sensor data is used to compute the

output ycomputed,i even if there is no sensor data transmission:

ycomputed,i (t) = yi (tlast,i) = Cix (t) + vi (t) +∆i (t, tlast,i)
(8)

where ∆i (t, tlast,i)=yi (tlast,i)−yi (t) and:

|∆i (t, tlast,i)| ≤ δi (9)

In (8), the measured value deviation increases from vi (t)
to vi (t) + ∆i (t, tlast,i). If ∆i (t, tlast,i) is assumed to

have the uniform distribution with (9), then the variance of

∆i (t, tlast,i) is
(2×δ)2

i

12 , which is added to the measurement

noise covariance matrix, R(i, i), in the Kalman filter.
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Algorithm for the SoD-based Kalman filter: An algorithm

is proposed here to appropriately improve the measurement

update part of the standard Kalman filter algorithm, which is

adapted to the SoD event-generation condition by increasing

the measurement noise covariance Rk:

1) Initialization set

x̂−(0), P−
0

ylast = Cx̂− (0) (10)

2) Measurement update

Rk = R (11)

if i-th measurement data are received

ŷlast,i = yi (kT ) (12)

else

Rk (i, i) = Rk (i, i) +
(2× δ)

2
i

12
(13)

end if

Kk = P−
k C ′(CP−

k C ′ +Rk)
−1

x̂ (kT ) = x̂− (kT ) +Kk(ŷlast − Cx̂−(kT ))

Pk= (I −KkC)P
−
k (14)

3) Project ahead

x̂− ((k + 1)T ) = exp (AT )x̂ (kT )

P−
k+1 = exp (AT )Pk exp (A

′T ) +Qd (15)

where Qd is the process noise covariance for the discretized

dynamic system; ylast is defined as (16):

ylast = [ylast,1, ylast,2, . . . , ylast,p]
′ (16)

The presented event-triggered Kalman filter can also be em-

ployed to implement the distributed controllers and estimators

in networked control systems. For further details on the de-

velopment procedure and convergamce analysis, one can refer

to [1]. It should be noted that in the proposed event-triggered

observer, convergence is obtained by using the Kalman optimal

observer. However, choosing lower values of δi would result

in the considerable reduction of the convergence time [17].

V. SIGNAL RECONSTRUCTION FORMULATION AND

ESTIMATOR UPDATE RULE

By using the SoD sampler, the input signal represents the

time instants when the real signal has changed more than the

specified δ value but also includes the fact that the signal

stays in the region around the last sampled bounded by δ.

This additional information on the signal is considered as

the implicit data in the sampled signal, which forms the

optimization problem for signal reconstruction. Therefore,

the samples provide the information of discrete-time equality

constraints specified by the input signal, the additional implicit

information makes of continuous time inequality constraints.

In this paper, the technique of Projection Onto Convex Sets

(POCS) for bandwidth limited signal reconstruction from SoD

samples, is proposed to optimally reconstruct the microgrid

measurement signals with a low computation cost in real-time.

The POCS method was previously used for signal recovery

from nonuniform samples [18], and for image reconstruction

from level crossings [19], [20]. Send-on-Delta sampling is

generalization of level-cross sampling, that considers the initial

condition of the signal. This paper has extended the results

of level-crossing sampling from [16] to support send-on-delta

sampling, which the readers are referred to for more details

on convex optimization and projection algorithms.

A. Implicit Information of Send-on-Delta Sampled Signal

Send-on-Delta sampling is a type of event-based sampling,

where each event shows a crossing of the signal x(t) from a

one dimensional region bounded by δ around the last sample.

The event time instants tn ∈ Z, n ∈ Z are defined as:

tn = min{t > tn−1, x(t)− x(tn−1) > δ} (17)

The output of SoD sampler is the sequence of pairs

(tn, x(tn)). The set of possible samples by assuming zero

initial conditions is Xe = {x(t0), x(t1), x(t2), . . . , x(tn)}. In

order to formulate the convex optimization problem, a convex

region for the possible range reconstructed signals is defined

according to (17):

θ−(t) ≤ x(t) < θ+(t) (18)

where θ−(t) and θ−(t) are the piecewise constant lower

and upper bound respectively created from the following

constraints:

θ−(t) = {r ∈ R, r = x(k)− δ, k ∈ tn}

θ+(t) = {r ∈ R, r = x(k) + δ, k ∈ tn} (19)

With this definition, the sign of the signal slope at the event

instants (tn)is defined as:

S(tn) =

{

x(tn)− x(tn−1), x(tn) 6= x(tn−1)

S(tn−1), x(tn) = x(tn−1)
(20)

By using the previous definitions, the samples values along

with the implicit information mathematically takes the form of

sets membership. Therefore the solution for the reconstructed

signal x(t) will fall into the following convex sets (C(R)
denotes continuous function):

1) From the explicit information:

ξ = {u(t) ∈ C(R) : u(tn) = x(tn) for all n ∈ Z}
(21)

2) From the implicit information:

I = {u(t) ∈ C(R) : θ− ≤ u(t) < θ+(t) for all t ∈ R}
(22)
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3) From the knowledge that the signal is band-limited with

maximum frequency Ω

B = {u(t) ∈ L
2(R) : ∀|w| (23)

The set B is convex as the band-limited signals form a linear

space. For the sets I and ξ, [16] provides the proof of convex-

ity. The reconstructed signal should be a member of the set

ξ ∩ I ∩ B as the constraint of the optimization. This constraint

is usually wide that finding the optimal answer takes more

computation. Fortunately, because θ−(t) ≤ x(t) < θ+(t),
one can easily derive that I ⊂ ξ. Therefore, the constraint

is limited to the boundary defined by I ∩ B, which needs less

computations for the task of real-time signal estimation.

B. Projection onto Convex Sets Signal Reconstruction

In order to solve the problem of POCS, two methods

are proposed in literature, one-step projection and iterative

projection. For the more detailed discussion of the mentioned

methods, [16] provides a good starting point. In this paper,

as we are building a real-time event-based state estimator

for microgrids, the later method of iterative projection onto

convex sets is employed, which poses less computation with

the price of losing a negligible precision. The basic idea behind

iterative POCS is that by having two or more convex sets, on

each iteration the initial solution is projected to one of them.

Therefore, by iteratively repeating the projection to the sets,

the initial guess gets closer to the optimal answer.

The projection of the a signal g onto a continuous convex

set C will be another signal x̂(t) which is closest to signal g:

x̂ = PCg = argmin
y∈C

||g − y|| (24)

where the projection PCg is closer to any vector y ∈ C

than g:

||PCg − x|| < ||g − y|| (25)

For the event-based signal reconstruction problem, the initial

guess x̂0 should be first projected onto convex set B with the

following projection operator:

PBg(t) = x̂(t) ∗
Ω

π
sinc(Ωt)

=

∫ ∞

−∞

x̂(τ)
Ω

π
sinc(Ω(t− τ))dτ (26)

having defined sinc(y) = sin(y)
y

.

The projection operator onto convex set I for clipping the

signal to bound defined by θ is:

PIg(t) =











θ+(t), x̂(t) > θ+(t)

x̂(t), θ−(t) ≤ x̂(t) < θ+(t)

θ−(t), x̂(t) < θ−(t)

(27)

Finally, by applying the operator for both projections, the

desired accuracy of signal reconstruction will be achieved:

x̂m+1 = PBgPIgx̂m, m ∈ Z (28)

Fig. 2. Interface of measurement nodes with the real-time simulator.

The stopping condition for the number of iterations is ap-

plication dependent, related to the accuracy needed for signal

reconstruction. In this paper, experimentally we have chosen

a value of 10 iterations, which provided a high accuracy.

C. Estimator Update Rule of Mean-Square Error Comparator

The measurement signals from the sensors include levels

of noise. Here in this paper, the noise type is considered as

derivative of the Brownian motion (white or Gaussian noise).

The event-triggered sampling of a signal with Gaussian noise

generally leads to a non-Gaussian stochastic process, and

therefore degrades the estimation accuracy and convergence

of linear state estimators, such as the proposed event-triggered

Kalman filter. Here we propose an estimator update rule

that based the comparison of the reconstructed signal and

the output of the Kalman filter, applies corrections to the

measurements. The correction is an offset, that is added in

the first stage of state estimator as described in the following:

yi (tlast,i) =











yi(kT ), ||yipredict − yiconstruct
< δ||

yiconstruct
(kT ), ||yipredict − yiconstruct

≥ δ||

(29)

where yipredict and yiconstruct
are the output of the signal re-

constructor and the event-triggered Kalman filter, respectively.

VI. DEVELOPED SETUP FOR ESTIMATOR VALIDATION

In order to validate the proposed event-based state estimator,

an IoT setup consists of several nodes supporting long range

wide area network (LoRaWAN) communication protocol is

designed using Seeeduino R© LoRaWAN nodes and a real-time

microgrid simulator from dSPACE R© (Microlabbox DS1202).

The nodes are connected to the real-time simulator via the

BNC connectors that can be both Analog Outputs and Analog

Inputs. The schematic of the setup is shown in Fig. 2. The

real-time simulator allows the testing of different microgrid

operation scenarios with only changing the simulation config-

uration in Matlab/Simulink software.
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Fig. 3. Network architecture for microgrids based on the IoT protocols.

Since microgrids will be installed in private urban or rural

areas, the monitoring software should be accessible easily

by the operators, and also a well-designed human machine

interface (HMI) is essential, in order to achieve the adequate

situational awareness. In this work, the Thingsboard R© open-

source software is used as the operator dashboard that shows

the estimated state of the microgrid to the operator. Things-

board is a web-based dashboard designer written in Java which

provides different widgets to visualize the values received from

the measurement nodes.

The LoRaWAN protocol necessitates a gateway to be em-

ployed for the data collection and distribution. In this setup,

a Raspberry Pi with the supporting communication module

for the gateway operation is used. This gateway converts the

received data from LoRaWAN nodes and transforms them

into MQTT (Message Queuing Telemetry Transport) payloads

which are transmitted to the MQTT broker. Thingsboard IoT

software provides the MQTT broker which in this work is

employed for data processing and archiving. The data collec-

tion architecture for the proposed microgrid state estimator

platform based on the IoT protocols is shown in Fig. 3.

By using the mentioned protocols and devices, the cost of

monitoring of microgrid is considerably reduced. The devel-

oped hardware setup is comparably more affordable than the

existing monitoring devices, which makes it an ideal choice

for the big data collection and processing in smart grid.

The software stack developed for this device, fully supports

the Arduino R© integrated development environment (IDE).

Many libraries are developed for the Arduino that can be

used seamlessly in this device. In addition, the battery life is

extended due to the event-based communication. Hence, lower

rating batteries can be used that leads to more cost reduction.

VII. RESULTS AND DISCUSSION

In order to evaluate the proposed state estimation approach,

in this section, an example microgrid model [1] (canonical

form), is simulated based on the developed data collection

platform, defined as:

ẋ =









0 1 0 0
0 0 1 0
0 0 0 1
−1 −6 −35.5 −15









x+ w

y =

[

−2 4 0 3
0 10 0 1

]

x+ v (30)

The state of the microgrid is denoted by the vector x(t) =
[x1(t)

T , x2(t)
T , x3(t)

T , x4(t)
T ], and the initial conditions are

set as x0 = [10, 3,−4, 5]. The parameters of the proposed

state estimator for the simulation are provided in Table I. The

results are compared with the traditional Kalman filter and the

superior performance of the proposed estimator is validated.

The simulated system has two outputs and the number of

events generated for each output based on SoD sampling

is 34 and 84 events for a duration of 40 seconds. This

shows that with the small number of samples comparing to

the time-triggered traditional Kalman filter, the estimator has

achieved a better performance, as can be seen in the figures.

Fig. 4 to Fig. 7 show the estimated state and the estimation

error for both the proposed event-based estimator and the

traditional Kalman filter. One can see that the estimation error

is considerably lower.

From the experimental point of view, there are limitations

in the LoRaWAN communication network that may degrade

the estimation accuracy. LoRaWAN protocol introduces a con-

siderable delay of seconds to the transmission of the messages

when the number of messages in a specific time, goes higher

than the capability of the network. The number of message

is related to the threshold δ of the SoD sampler, therefore a

well designed tuning algorithm should be developed in order

to relate the estimation error, SoD threshold and number of

events. A delay compensated strategy would also solve this

issue, which is part the future research in this paper.

TABLE I
SIMULATION PARAMETERS OF THE STATE ESTIMATOR.

δ (SoD threshold) 6

Q (Process Noise Covariance) 0.1

R (Measurement Noise Covariance) 0.36

T (Estimator Cycle Time) 100 microseconds

VIII. CONCLUSION

This paper presented an optimal event-triggered state esti-

mator for microgrids with the corresponding data collection

architecture. A setup has been developed, which provides

high performance data collection/estimation capabilities from

smart meters. It has been shown that by using the developed

estimation strategy, an adequate level of situational awareness

can be achieved with lower installation and communication

costs. Also the criteria for SoD sampling is justified, using

event-based POCS signal reconstruction technique. In future,
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energy storages state of charge (SoC) will be also considered

in the estimation problem, using the proposed technique.
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