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Abstract—An increasing penetration of EVs and their charging
impose challenges to the energy grid stability. As a consequence,
an optimal management of EV charging in parking lots becomes
essential. This work presents an approach of a cooperative control
of charging stations based on a stochastic optimization model
for the energy management of a group of charging stations .
Uncertainties regarding the number of charging EVs at each
time step are modelled using a Markovian process, while the
probability mass function was generated using a Monte Carlo
simulation. Furthermore, the concept prioritizes the exploitation
of local renewable resources and energy storage for EV charging
to the import of electrical energy from the grid. The stochastic
optimization model was integrated into our own developed
Stochastic Optimization Software Framework (SOFW), which
deploys the application as Model Predictive Control (MPC) in the
real-time scenario using dynamic programming. The cooperative
control of charging stations presented in this work was evaluated
succesfully with a variety of EV driving scenarios. The approach
will be validated on the field in a car park of a DSO company
including renewable generation and energy storage system.

Index Terms—electric vehicle charging, dynamic program-
ming, energy management, optimization methods, stochastic
optimization framework

I. INTRODUCTION

In recent years, ambitious environmental goals regarding re-
duction of CO2 emissions, energy efficiency and sustainability
gave rise to the integration of renewable energy sources and
to an increasing number of electric vehicles [1]. However, the
volatile character of renewable generation and the stochastic
charging behaviour of electric vehicles account for significant
challenges for the electrical grid. Here we propose a strategy
to control the charging stations in a cooperative way and to
integrate photovoltaics and energy storage systems in order to
contribute to grid stability and to maximize RES exploitation.
Cooperative in the sense of charging a number of EVs taking
into consideration their initial SoC for charging preferences.

Our approach introduces three novelties: the first one is
the deployment of Virtual Aggregated Capacity (VAC) into
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a stochastic optimization model for maximizing PV utiliza-
tion for EV charging. It enables a flexible integration of an
arbitrary number of additional EVs and chargers according
to the requirements of the use case and, therefore, improves
the scalability of the concept. Moreover, we included the
stochasticity of EV charging by modeling uncertainties of the
numbers of EVs plugged-in at the same time into the charging
stations and including them into the stochastic optimization
model. As a second novelty, our approach takes advantage
of real-time information, of a stochastic optimization model
as well as of PV prediction. It uses our own developed
Stochastic Optimization Framework Software (SOFW) [2],
which links real-time information from the system with the
stochastic optimization model and returns the optimization
results as setpoints for drivers controlling the charging stations.
SOFW deploys a Model Predictive Control (MPC) system
and applies stochastic dynamic programming to solve the
stochastic optimization problem. As the control is performed
in short time intervals including real-time information from the
system, the error due to uncertainties incorporated by EVs and
PV prediction is reduced. The third novelty corresponds to the
disaggregation of the calculated power for the Virtual Energy
Storage System (VESS) into the charging stations serving the
EVs. The disaggregation strategy takes into account the actual
SoC of the EVs connected to the charging stations and the
maximal power that each charging station can offer, in order
to distribute the calculated power between them. This approach
privileges EVs with lower SoC at each calculation time.

Approaches in the literature focus on the management of the
charging of one single EV [3] or on the aggregation of several
EVs as for example in parking lots [4]–[6] . Jenkis (2017)
proposes in [6] the aggregation and control methodology for a
number of EVs, in order to manage them as a VESS. We
used the concept of a VESS in our approach assuming a
virtual aggregated capacity (VAC) and extended it for the
optimal charging through stochastic dynamic programming.
Other works include uncertainties related to EVs and link
them into stochastic models. Some of them make use of
Monte-Carlo simulations and Markov Models to model the
uncertainties [7]–[9]. In our work, we used a Markov Process



to model the uncertainty of how many EVs are plugged-in
at the same time. In order to calculate the probability mass
function, Monte Carlo simulations were conducted. Because
SOFW has an internal repository where EV’s connection to
the charger data is stored, the probability mass function is
updated with a defined frequency inside the platform becoming
application specific. Furthermore, a number of optimization
approaches deal with financial aspects for charging EVs, as
for example the reduction of energy cost [7], [14]. Other
works focus on grid stability avoiding the increase in peak
consumption or reducing voltage instabilities [10]. In this
regard, Choi uses model predictive control to optimize a
strategy for charging EVs in a parking lot aiming at voltage
stability and charging costs minimization [7]. Moreover, local
renewable energy is also included in the research [11]. In
this work, we aim at maximizing the utilization of renewable
energy given by a PV working together with a ESS inside a car
park while charging EVs of a DSO company. In this regard,
we combined renewable generation with ESS taking also into
consideration uncertainties brought by EVs plug-in time into a
stochastic optimization model running inside a MPC software
framework named SOFW. It allows the system to be deployed
at the car park immediacies of the DSO company in the future.
Finally, vehicle to grid (V2G) has been recently analyzed in
a number of publications [5], [12], [14]. At the moment this
work does not consider V2G.

II. USE CASE SPECIFICATION

This chapter presents the use case tested within the frame-
work of EU-funded Storage4Grid project with the objective of
analyzing diverse control strategies for ESS and EV charging.
The car park is owned by a DSO company located in Bolzano,
Italy and consists of five charging stations serving five EVs
owned by the company (Fig. 1).

The EVs are of the model Volkswagen E-up with 18.7
kWh individual battery capacities. The EVs are used randomly
by the workers of the company. The connection time to the
charging stations and the number of EVs connected differ
continuously. The drivers as well as the driven distances can
also change from day to day. Given these characteristics,
creating a behavior model for the EV driving profile is not
trivial. Three of the charging stations support slow charging
with a maximal charging power of 7.4 kW and two of them
support fast charging with a maximal charging power of 22
kW. In the future, the charging stations will be accessed using
a software driver that interfaces the vendor’s specific API.
Consequently, a fine-grain monitoring and control of each
one of them will be allowed. The car park is also composed
of an Xolta building energy storage system BESS of the
company Lithium Balance with a capacity of 70 kWh . Its
maximal discharging power is 33 kW and its maximal charging
power is 33 kW. Additionally, one PV installation with a
maximal power of 50 kW supplies renewable energy for the
whole system. One specific requirement of the use case is the
usage of embedded devices for the control of the charging
stations and the ESS at the car park. This requirement was

established during the development of the project, enabling
edge computing as the pilar of the site’s control. For this
reason, the platform Raspberry Pi 3 with Raspbian (Debian-
based) as operating system was chosen as the alternative for
reading the inputs of smart meters and for containing the
software of the stochastic optimization framework (SOFW)
presented in [2] and discussed in the next sections.

Fig. 1. Use case for cooperative EV charging.

III. COOPERATIVE CONTROL OF CHARGING STATIONS -
THE APPROACH

Four steps will be presented in detail in the following sub-
sections: 1) A Markov process was used for modelling the
uncertainty; 2) The concept of virtual capacity was introduced
to handle the cooperative approach of the control of several EV
charging stations; 3) Equations for a stochastic optimization
were developed and solved using dynamic programming; 4)
The optimal power calculated in step 3 was disaggregated into
the real system under study, i.e. into the single EVs connected
to a specific charging station.

A. Dealing with the uncertainty

Since day-long data on individual driving profiles of EVs
are not available, we modeled the uncertainty with a Markov
model (Equation1) that describes the number of EVs being
plugged-in and the probabilities of switching states by time.

pjk(t) = P (x(t+1) = k|xt = j) (1)

where j and k indicate the quantity of cars plugged-in in two
successive time slots. Because historical data for calculating
the probabilities for each state was not available, we performed
a Monte-Carlo simulation to derive the probabilities to obtain
the Markov model. Note that in the application this Markov
model has been mapped to unique probability mass functions
(PMF) for each time instant. The domain and range of the
PMFs are number of driving cars that and the probability
of being in this state respectively in the corresponding time



instant. The probabilities are calculated from the results of the
Monte-Carlo simulation by dividing the number of observed
transitions from one state to another into the number of total
transitions starting from the plugged-in state. Equation 2 shows
this calculation.

pjk(t) =
njk(t)∑M

m=1 njm(t)
(2)

Moreover, it is necessary to calculate the electric vehicle
consumption uncertainty, which is used to derive the mean
energy consumption of EV when it is away from the charging
station for a unit time. In this work we assume that the electric
vehicle will solely be charged at the car park of the company.
The away-state starts at the time when the electric vehicle
is unplugged from the charging station and ends at the time
when the electric vehicle is plugged-in back into the charging
station. The SoC values of the electric vehicle’s battery at the
departure time and at the arriving time are measured through
the charging station software and delivered to the SOFW
via MQTT messages. In this form, equation 3 calculates
the average energy consumption of an EVs daily trip Edaily

according to the collected data. As already mentioned before,
the collected data provides the mean departure tdeparture and
arrival time tarrival of a single EV being charged at the
car park. Similarly, state-of-charge levels of departing and
arriving cars are recorded; and mean values SOCdeparture

and SOCarrival are calculated. Consequently, this number is
divided into the average trip period of an EV to calculate the
mean unit-time energy consumption of one EV’s away state
Eunit−time. It is important to note that tdeparture and tarrival

are entered into equation 4 as number of time steps regarding
the optimization horizon.

Edaily = (SOCdeparture − SOCarrival) ∗ Ecapacity (3)

Punit−time =
Edaily/∆T

tarrival − tdeparture
(4)

B. Virtual Aggregated Capacity

Due to the complexity of addressing all individual EV
demands in the car park, we looked for a way to simplify the
overall optimization problem. Each EV sets different energy
consumption patterns that depend on the user driving behavior
and on the driving’s distance. For this reason, we decided to
design the optimal charging policy according to the combined
EV charging demands. We use in this paper an aggregation
concept for EVs battery capacity, where the EV group is
modelled as a virtual aggregated capacity (VAC), extending
in this way the concept presented by Jenkins [6]. In fact, VAC
represents a virtual battery providing a virtual energy capacity
equals to the summation of each single EV battery capacity of
the EVs belonging to the car park as represented in equation
5.

EV AC =

i∑
n=1

En
EV (5)

Consequently, the optimal charging policy will be defined
according to the aggregated virtual capacity’s needs and un-
certainty.

C. Stochastic Dynamic Programming for VAC Charging

For the calculation of the optimal charging policy and
because of the uncertainty brought by the plug-in time of
the different EVs, we used Stochastic Dynamic Programming
(SDP) as a solving method inside SOFW. Besides, due to
the use of the VAC concept, some implications have to be
taken into account for the modelling of the SDP problem.
One of them is the disaggregation of the VAC explained later
in this chapter. The second one corresponds to the abstract
assumption that an EV could also be charged inside the VAC,
even though it is not connected to a charging station. The
last assumption helps us to simplify the modelling of the
stochastic optimization problem without the need to define a
state describing the position of individual EVs over time. In
SDP, the variables that describe the system state are SoC of the
stationary ESS and SoC of the VAC, as described in equation
6. The system can just switch between the combinations of
these states. Moreover, the transition between SoC states of
the stationary ESS are deterministic.

stESS → st+1
ESS stV AC → st+1

V AC (6)

The SoC of the stationary ESS is calculated by equation 7.

st+1
ESS = stESS + xESS ∗

∆T

EESS
(7)

where EESS stands for energy capacity of the stationary ESS
in kWh, xESS for the power inserted into or taken from the
ESS in the next timestep and ∆T for the time interval between
each optimization step. In contrast, the transition between SoC
states of the VAC (sV AC) are stochastic and depend on the
consumed energy (Pcons(t)) during the time interval (∆T ).
xEV represents the power inserted into the Aggregated EV’s
Battery.

st+1
V AC = stV AC + (xEV − Pcons(t)) ∗

∆T

EV AC
(8)

Since SDP needs discretized state variables, stESS and stV AC

can take a finite number of values within the expected SoC
range. This constraint limits the solution space for optimal
action but converts the optimization problem into an integer
problem, which can be solved by a mixed-integer linear solver
such as CBC.

Moreover, our stochastic optimization model requires the
energy consumption of the EVs while they are not plugged-
in into the charging stations. For this calculation we modeled
firstly the behavioral uncertainty as probability mass functions
that represent the probability of number of cars driving at each
time interval (Equation 9).

p(t) =

∣∣∣∣∣∣∣∣
p0(t)
p1(t)
pn(t)
pN (t)

∣∣∣∣∣∣∣∣ (9)



where pn(t) stands for n number of cars driving in the time
interval t: Secondly, we modeled the energy consumption
uncertainty, that corresponds to the energy consumption of the
unplugged EVs, assuming an average consumption (see Eq.
10). The expected number of driving cars are multiplied with
the mean unit-time power consumption of one EV’s unplugged
state in order to estimate the total consumption of the time
interval t:

P exp
t = Punit−time ∗

N∑
n=0

npn(t) (10)

Because SDP solves independently the combination of stESS

and stV AC states, the decision outputs for each optimization
problem is a vector of PV output power (xPV ), power from
the ESS (xESS), imported power from the grid (xGrid) and
power to the VAC (xV AC). Besides, the optimization problem
has to consider some constraints given by: xPV which is
limited by the weather conditions and which is constrained to
the maximum PV forecast output power at each time interval
(11); xEV which is limited by the charger station maximal
power P t

evCh,max and can receive a non-zero value solely
when the EV is plugged-in (12); and the electric power balance
represented by (13).

xPV ≤ P t
pv,max (11)

xEV ≤ P t
evCh,max (12)

xV AC = xPV + xESS + xGrid (13)

In principle, SDP solves an optimization function which
incorporates the incurred immediate cost of a taken action
and the future cost of a taken action. We assigned an incurred
immediate cost of zero V T at any state in final stage, which
initiates the backward optimization calculation (Eq. 14).

V T = 0∀s ∈ S (14)

where s stands for a specific state combination of stESS and
stV AC , and S for all possible combinations.

The objective function used in this work tries to maximize
the energy consumption of the PV (Eq. 15). In this equation,
the last term is the expected future cost of a taken decision,
which depends on the actual state to be reached by taking the
decision x.

min (xPVforecast
− xPV ) +Wd ∗ L(st+1

V AC < 0 | x)+

+

W∑
w=1

ξwt ∗ vt+1 ∗ (st+1)

(15)

In equation 15, EV charging is motivated through the second
term in the objective function. However, the objective function
also allows to reach some physically infeasible results of VAC
such as the following inequality :

st+1
V AC < 0 (16)

In reality, this is compensated by charging car at another
station. Hypothetical negative SoC is compensated by adding

extra cost to the objective function according to the likelihood
of reaching negative end state st+1

V AC with the decision x. In
this case, Wd is the penalty factor. Optimal cost of starting
from this initial state equals to the value of the objective
function when the optimal decision is taken.

V t(stESS , s
t
V AC) = (xPVforecast

− xPV )+

+WdL(st+1
V AC < 0 | x∗) +

W∑
w=1

ξwt v(t+1)s(t+1)

(17)

D. Disaggregation of VAC Charging into Plugged-in EVs

As already mentioned, the SDP problem is solved taken
into consideration a virtual battery. It means that the values of
the power calculated to be delivered by the charging stations
via SDP have to be disaggregated into each single charging
station to which the EVs are plugged-in. In this case, the
control action has to include the number of EVs plugged-
in into the charging stations and their respective SoC level.
Consequently, we calculate the depth-of-discharge (DoDn),
which defines the depleted portion of the battery capacity of
EV n (Eq.18). Moreover, the total DoDTot of the plugged-in
EVs is calculated (Eq.19).

DoDn = 1− SoCn (18)

DoDTot =
∑
n

DoDn (19)

Thus, we prioritize the charging of the EV with the lowest
SoC. Therefore, the power to be delivered to the virtual battery
is disaggregated following equation 20.

Pch,n = xt=0
V AC

DoDn

DoDTot
(20)

The disaggregation approach is limited by the maximal
power that the charging stations can deliver. If the calculated
power to be delivered to the EVs by the charging stations
is bigger than the allowed maximal power of the charging
stations, the surplus calculated power is discarded.

IV. SOFW FRAMEWORK

The architecture of SOFW was already presented in a
previous work [2]. The main objective of the framework is to
help users to deploy stochastic optimization models into real-
time applications such as the use case presented in this paper.
In this way, users can enter custom stochastic optimization
models, register inputs and outputs that are automatically
mapped to the parameters and variables of the optimization
model, and send commands for starting, stopping or getting
the status of the framework. For this goal, SOFW presents
a RESTful Application Programming Interface (API), which
works through HTTP communication.

Because the use case presented in this project is a real-
time use case, SOFW uses MQTT Communication Protocol
for obtaining data from smart meters located at the ESS, at
the output of the PV and at the grid connection point. A
dedicated software package reads in real-time the smart meters



measurements and publishes them into the respective MQTT
topics using a standardized SenML data format. The published
values correspond to the ESS SoC, the PV output power and
the grid input and output power. Similarly, information from
the charging stations of the car park is read into SOFW. This
information include the plug-in/unplug time, EV id and initial
SoC of the respective EV.

While defining the SDP states resolution, SOFW allows the
user to define a minimum and maximum value for the state
variables and the time step size. In this way, stESS and stV AC

states were registered. Because of the flexibility for defining
the granularity of the states, SOFW allows testing different
SDP state granularities. However, finer resolution increases
the number of single optimization steps [13].

For defining uncertainties, we registered mean and standard
deviation of the plug-in and of the unplug time of the EVs.
The plug-in time used in this work is 7 : 19h ± 0 : 46h and
the unplug time is 18 : 45h ± 1 : 18h . SOFW performs
internally Monte-Carlo simulations and builds automatically
the probability mass function used for Stochastic Dynamic
Programming (SDP).

V. TEST SCENARIO AND RESULTS

We tested the control approach by simulating different EV
drive scenarios for 24 hours. For easy presentation of results,
we chose one hour as the size of one time step and 24 steps as
optimization horizon. In the test scenarios we partitioned each
time step into several sub-problems, each of which represents
a unique state combination for ESS and VAC. The ESS’
and the VAC’s SoC state domains are discretized by 10%
(in the range 20-100%) and by 2.5% (in the range 0-100%),
respectively. Thus, the resulting SDP problem consists of 8856
sub-problems. Within this work we computed the optimization
problems by running the open source optimization solver CBC
[15] with Intel(R) Xeon(R) CPU E5-2420 v2 @ 2.20GHz
processor. The average computation time for SDP in this setup
has been recorded as 904 seconds. Note that the potential
performance enhancement through parallel processing is not
in the scope of this paper as it will be in focus later on.

At the beginning of each hour a new instance of SDP is
constructed inside SOFW with the updated real-time param-
eters and forecasts. After solving the complete problem, the
optimal decision that corresponds to the real SoC values of
ESS and VAC is implemented according to the disaggregation
principle introduced in Chapter III.D. Note that SOFW is able
to calculate the real SoC of VAC precisely only when all EVs
are connected. Otherwise the VAC’s SoC is calculated under
the assumption that a car would drive 10km at each hour,
hence it depletes the energy stored in VAC by 1.17 kWh.

Simulated test scenarios are presented in the columns of
Table I. In the basic scenario each EV leaves the charging
station at 8:00am and returns at 7:00pm (scenario S0). The
remaining scenarios are variants of the basic scenario where a
different number of EVs leave earlier than expected but always
return at 7:00pm. Charging processes start at 00:00am with
20% SoC in vehicle batteries and 40% in ESS.

TABLE I
TEST SCENARIOS - DEPARTURE TIMES

Car ID S0 S1 S2 S3 S4 S5
carA 08:00 06:00 06:00 06:00 06:00 06:00
carB 08:00 08:00 06:00 06:00 06:00 06:00
carC 08:00 08:00 08:00 06:00 06:00 06:00
carD 08:00 08:00 08:00 08:00 06:00 06:00
carE 08:00 08:00 08:00 08:00 08:00 06:00

As most of the charging process takes place in the periods
where PV generation is low, the EV charging power is supplied
by import from the electricity grid. Conversely, the PV power
is fed to the grid during the peak generation hours. Fig. 2
shows the imported/exported power (positive/negative sign) by
the charging park in Scenario S0.

Fig. 2. Net power exchange with the grid.

A summary of the comparison between the scenarios is
presented in Table II. The SoC of EV batteries throughout the
day correlated with their departure times. In scenario S0 cars
A,B, and C left the car park with 90.7% SoC, whereas cars
D and E were fully charged by the fast chargers. Thus, SoC
of VAC was 94.4% at departure in the morning and 25.6% at
arrival in the evening. On the other hand in scenario S5, fast
charged cars returned with 18.7% SoC in vehicle batteries,
while the others had only 9.4% SoC. Although the SoC values
of EVs A-C seem critical, the collected data of the company
shows that arrival later than 7pm is a very unlikely scenario.
Simulation results show that vehicles are able to complete
their daily trips without needing mid-day charging even in the
most extreme scenario. Results also show that the implemented
control assured full utilization of 222.9 kWh PV generation
potential in each scenario.

In order to evaluate the impact of poor estimation of driving
profiles on the results, we developed a scenario that our
behaviour model could never estimate. In this scenario all
the cars leave the charging park for short trips multiple times
during the day. Table III shows the position of each car in the
so-called ’Multiple trip scenario’.

Although EVs were charged mostly in early hours similarly
to the one trip scenarios, EVs that performed multiple trips



TABLE II
TEST SCENARIOS - RESULTS

Indicator S0 S1 S2 S3 S4 S5
Import kWh 142.1 142.1 184.1 165.4 206.5 168.2
Export kWh 208.5 206.2 248.7 224.9 273.9 224.8

PV Gen kWh 222.9 222.9 222.9 222.9 222.9 222.9
VAC SoC 08:00am 94.4 94.4 91.3 86.7 84.4 81.9
VAC SoC 07:00pm 25.6 25.6 22.4 18.1 15.6 13.1

TABLE III
MULTIPLE TRIP SCENARIO

Period A B C D E
00:00-05:00 CS1 CS2 CS3 CS4 CS5
05:00-07:00 CS1 CS2 CS3 —- CS5
07:00-08:00 CS1 —- —- —- CS5
08:00-09:00 —- CS2 —- —- —-
09:00-11:00 —- CS2 CS3 CS4 —-
11:00-12:00 CS1 CS2 —- —- —-
12:00-13:00 —- —- —- —- CS5
13:00-14:00 —- —- —- CS4 —-
14:00-15:00 —- —- —- —- —-
15:00-16:00 —- —- CS3 —- CS5
16:00-17:00 —- —- CS3 —- —-
17:00-19:00 —- —- —- —- —-
19:00-00:00 CS1 CS2 CS3 CS4 CS5

found the opportunity to recharge their batteries during the
day thanks to the additional time at the charging stations.
Simulation results show that SoC in VAC is 62.7% at 7pm,
which is significantly higher than that of the basic scenario,
25.6%. Results also show that full utilization of PV potential
goal is achieved in this case too. Charging demand due to the
multiple recharging events is 12 kWh higher than the Scenario
0. This increase is mostly compensated by the discharge
from ESS without causing significant increase (only 4kWh)
in imported power from the grid. In conclusion, unlikely
scenarios are also manageable by this control approach without
decreasing the performance of the energy management.

VI. CONCLUSIONS

In this work we used the software framework SOFW that
deploys an stochastic optimization model as MPC in real-time
applications. For solving the stochastic optimization model,
SOFW used SDP linking the CBC solver. The results using
different driving scenarios of the five EVs of the car park
demonstrated the suitability of the stochastic optimization
model for calculating the optimal charging power to be fed
into the EVs. In all scenarios the EV’s battery had enough
energy to accomplish their driving routines. The results are
good as they show that the implemented control assured full
utilization of the power generated by the local renewable
source and contributed indirectly to grid stability. This was
achieved despite the assumption of the driven distance within
an hour (10km) being probably too high and hence leading to
too high charging needs.

The VAC concept proved to be suitable in terms of sim-
plifying the modelling of the stochastic system and allowing

flexibility for adding more charging stations and EVs in the
real scenario without changing the stochastic optimization
model.

The objective of maximizing the PV generation consump-
tion was also achieved. Nevertheless, we observed power
peaks in the grid when all EVs arrived at the same time. This
particular undesired effect will be studied in the future work
trying to penalize the power import from the grid.

The results showed a high mean calculation time of 904s
using the computer described in Chapter V. Therefore, per-
formance enhancement through parallelisation will be further
implemented. We believe that it is possible to achieve a 15
min control at the test site.
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