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Abstract—One of the difficulties of mining worldwide is that
it must be carried out in remote places without grid connection.
Therefore it is important to choose the most profitable and
reliable combination of energy sources for electrification. In this
paper, different technologies to meet the demand of a mine
located in Western Australia are studied. Using HOMER Pro,
several viable systems, for the resources considered are obtained.
Using analytic hierarchy process (AHP), the most suitable case is
selected for further study. Using Monte-Carlo simulations several
scenarios are developed for the study of uncertainties, and a risk-
constrained optimization algorithm is implemented to obtain the
optimal scheduling, the expected cost and conditional value at
risk (CVaR). Numerical results demonstrate that the variations
of operation cost and CVaR with the increase in risk aversion
factor are not of high magnitude, due to rather low variable
operation costs of renewable energy sources. It is shown that
the proposed hybrid electrification plan based on WT, PVs and
battery could not only provide a reliable power generation, but
also very low daily operating cost.

Index Terms—AHP, CVaR, HOMER Pro, off-grid mining,
stochastic optimization, operational planning.

NOMENCLATURE

Indices
s Scenario
t Hour
Parameters
Fmin,d Minimal fuel consumption of diesel [l]
Ib Number of installed batteries [number of batteries]
Ipv Installed power of PVs [kW ]
Iwt Installed power of wind turbines [kW ]
OMb,e Operation and maintenance cost of the batteries, de-

pendent on the throughput energy [$/kWh]
OMb,y Yearly operation and maintenance cost of the battery

[$/number of batteries]
OMd Operation and maintenance cost of the diesel genera-

tor [$/h]
OMpv,y Yearly operation and maintenance cost of the PVs,

dependent on the amount of PVs [$/kW ]
OMwt,e Operation and maintenance cost of the wind tur-

bines, dependent on the amount of generated energy
[$/kWh]

OMwt,y Yearly operation and maintenance cost of the wind
turbines, dependent on the amount of WTs [$/kW ]

Pmax,bc Maximum charging power of the battery [kW ]
Pmax,bd Maximum discharging power of the battery [kW ]
Pmax,d Maximum output power of the diesel generator [kW ]
Pmin,d Minimum output power of the diesel generator [kW ]
SoCmax Maximum SoC of the battery [%]
SoCmin Minimum SoC of the battery [%]
SUd Start-up cost of the diesel generator [$/start]
T Considered optimization period expressed in hours [h]
Variables
Bc,t,s Charging power of the battery [kW ]
bc,t,s Charging indicator of the battery
Bd,t,s Discharging power of the battery [kW ]
Dt,s Demand to satisfy [kW ]
DTd Minimum down time of the diesel generator [h]
eff Round trip efficiency of charging and discharging of

the battery [%]
lpv,t,s Loading of the PVs
lwt,t,s Loading of the WTs
Pd,t,s Power output of the diesel generator [kW ]
Ppv,t,s PV power output [kW ]
Pwt,t,s Power output of all installed WTs [kW ]
Smax Maximum possible storage content [%]
SoCinit Initial SoC of the battery [%]
SoCt,s State of charge of the battery [%]
ud,t,s Commitment status of the diesel generator
UTd Minimum up time of the diesel generator [h]
yd,t,s Start-up indicator of the diesel generator
zd,t,s Shutdown indicator of diesel generator

I. INTRODUCTION

Australia has a huge potential for the mining industry.
However, the resources are in areas where there is no point of
connection to the grid, and where building a line to the grid
would be too expensive. Therefore it is necessary to explore
other solutions, which would enable the mine to operate as an
islanded system.

Nowadays, to calculate the optimal combination sources
to energize the mining site, different approaches are used,
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depending on the set of goals made at the beginning of the
project. One way to calculate the optimal combination of
electrical sources to energize a system is to use HOMER Pro.
It is a software extensively used in the microgrid industry. In
[1] HOMER Pro was used to calculate the effectiveness of
adding a PV and/or adding a battery energy storage system
(BESS). In [2], HOMER Pro was used to plan the strategy for
islands in South Korea. An autonomous hybrid power system
was modelled in [3] using HOMER Pro for a town in Kenya.
The idea of this project is to use a number of feasible solutions
from HOMER, which satisfy the demand and then select the
most competitive solution that would fulfill the goals set at
the beginning of the project throughout Analytic Hierarchy
Process (AHP). Similar approach was presented in [4].

After defining the best electrification plan, it is necessary to
draw the optimal operation of the system, which would result
in the lowest cost of operation. A risk-constraint optimization
is used to minimize the cost under uncertainties in renewable
resources and load profile of the examined system. These
will be accounted for using conditional value-at-risk (CVaR)
method [5].

II. PLANNING PHASE

A. HOMER Pro

The first step is to indicate the possible configurations of
the power plant. Based on the technical detail of electricity
producing units, load data, solar irradiance, wind speed and
temperature measurements, the HOMER Pro model was cre-
ated. The units considered in the model are:

• Photovoltaic modules
• Wind turbines
• Batteries
• Diesel generator
The size of the aforementioned units is optimized by

HOMER Pro in order to satisfy the demand at every instance
while minimizing the net present cost (NPC). Ten plans have
been selected combining the different generation resources
considered.

The capacities of technologies installed in each of the
selected plans are presented in Table I. The economical and
technical details are presented in Table II. These results are
used accordingly for the decision making process.

B. AHP

To compare the different cases obtained by HOMER Pro
and to make decision regarding the best cases, a multi-criteria
decision-making (MCDM) algorithm is used. The tool used
for MCDM is analytic hierarchy process (AHP). This process
consist of subjective comparison of all the plans of the system
by arranging them in a matrix to determine relative priorities
[6].

In Table III, the criteria followed in this project for the
decision making are shown. Four main attributes are selected
namely, economical, robustness, environmental and technical.
Under each of the main attributes, different criteria are se-
lected.

TABLE I: Installed capacities of each of the considered
technologies in the selected plans

Plan
nr

PV
[MW]

WT
[MW]

Diesel
Generator
[MW]

Battery
[MWh]

1 0.0 0.0 60.0 0.0
2 97.0 101.5 55.0 64.4
3 90.0 94.5 55.0 67.8
4 106.0 122.5 55.0 0.0
5 0 122.5 55.0 100.8
6 120.0 0 55.0 40.5
7 60.0 63.0 50.0 38.6
8 60.0 63.0 55.0 0.0
9 30.0 31.5 50.0 11.9
10 0.0 94.5 55.0 90

TABLE II: Economical and technical details of the selected
plans

Plan
nr

NPC
[M$]

COE
[$]

Operating
cost
[M$/yr]

Initial
cap-
ital
[M$]

Ren
Frac
[%]

Excess
Elec
[%]

1 1881.8 0.315 131.86 24.30 0.00 0.00
2 444.0 0.074 14.93 233.66 91.95 38.72
3 447.3 0.075 15.96 222.55 91.25 34.67
4 468.6 0.078 16.44 236.94 90.51 48.21
5 605.4 0.101 26.65 229.93 83.83 35.27
6 1273.2 0.213 83.28 100.13 37.08 11.28
7 572.3 0.096 29.92 150.77 79.55 14.21
8 643.4 0.108 36.07 135.27 78.78 15.13
9 1157.3 0.194 76.32 82.15 46.49 1.77
10 647.8 0.108 32.64 188.03 79.1 21.62

This criteria is later used for the comparison of each plan
and to finally choose the most relevant based on higher priority
for the economical and the robustness respectively, followed
by the technical and environmental aspects.

The most suitable plan for this case is plan number 2
(PV + Wind turbine + Diesel + Battery). This plan has the
lowest NPC of 444M$, an initial investment of 233.66M$,
and an operating (O$M) cost of 14.9M$/yr. This plan has
a renewable fraction of 91.95% and an excess electricity of
38.72%.

The consistency of the result can be verified by calculating
the consistency ratio. The performed calculations proved that
all the values satisfy the condition to be below 10% and
therefore the calculations are considered to be reliable. [7]

TABLE III: Selection Criteria

Attribute Subattribute
Economical NPC[$]

Initial Capital[$]
Operating cost[$/yr]
System/Excess Electricity [%]

Robustness Diesel
PV
Wind Turbine
Battery

Environmental CO2 Emissions
SO2 Emissions
NOx
PM

Technical Ren Frac [%]



Technical details of case selected
in the planning phase

Meteorological data, technical
details of components, location
and demand of the mine

Create optimization model, which
accurately represents the selected system

Fit appropriate probability distribution
functions to the meteorological data

Scenario generation based on MC
simulations

Scenario reduction using K.means
algorithm

Solve the optimization model by
employing a risk-constraint stochastic
programming approach

Fig. 1: Flowchart of operation optimization

III. OPTIMIZATION OF OPERATION

Optimal daily scheduling aims to operate the system in a
way so that the operation and maintenance cost is minimized
over a 24 hour period. A risk-constraint optimization is used to
minimize the cost under uncertainties in renewable resources
and load profile of the system. These will be accounted for
using conditional value-at-risk(CVaR) method. The process of
the optimization of operations can be observed in Fig. 1.

A. Evaluation of Uncertainties

Data measured in 2019 is used for the planing and operating
phase, since the renewable energy resources are volatile,
certain uncertainties have been added to the optimization
formulation to account for these.

Three stochastic variables have been used for the evaluation
of uncertainties, PV power, wind and load profile of the
mine. 10000 different cases for each stochastic variables have
been generated using Monte-Carlo simulations. To improve
computational complexity of the examined problem the whole
number of generated scenarios are then reduced into 25 using
K-means algorithm [8].

The data from the industrial partner is divided into 24 hours.
For each hour, the empirical cumulative distribution function
(CDF) is calculated for each uncertain parameter.

After obtainig the CDFs the root mean square error (RMSE)
is calculated for each of them and the lowest error distribution
is chosen as the best fit as observed in 1.

RMSE =

√√√√ 1

Nh

Nh∑
h=1

·(CDFh
emp − CDFh

sel)
2 (1)

Where:
• Nh - number of hours
• CDFh

emp - empirical CDF
• CDFh

sel - selected CDF

In Figs. 2(a), 2(b) and 3 the 25 cases and the mean of the
three stochastic parameters are displayed.

It should be noted that the downward spikes in the load
profile of Fig. 3 epresent possible daily maintenance of mining
equipment.

B. Risk management

Popular risk managing functions are value-at-risk (VaR) and
conditional value-at-risk (CVaR). VaR is a measure which
is widely used in industry regulations. However, it does not
provide information on the extend of losses in the tail of the
loss distribution [9]. CVaR, on the other hand, accounts for the
losses exceeding VaR. Hence, it provides adequate picture of
risk reflected in extreme tails. A great advantage is that CVaR
can be optimized and constrained with linear programming
methods, whereas VaR is relatively difficult to optimize [10].

For a discrete distribution and at given confidence level α
the equation for minimizing CVaR is formulated as follows
[5] [11] [12]:

CV aR = min(ζt +
1

1− α

Ns∑
s=1

πsηt,s) (2)

Subjected to: ηt,s − costt,s + ζt ≥ 0 (3)

ηs,t ≥ 0 (4)

Where:
• α - confidence level
• ζt - threshold to recognize (1 − α) · 100 percent worst

scenarios of each stochastic environment at hour t. It
equals to VaR, which means that (1 − α) · 100 costs in
hour t are higher or equal to ζt

• costt,s - operational cost of scenario s in hour t
• ηt,s - an auxiliary non-negative variable, equal to the

difference between costt,s and ζt when the costt,s is
higher than ζt.

• πs - probability of scenario s

C. Optimal operation management

The variables must be selected to accurately describe op-
eration of each of the elements of the examined system.
The variables are defined for every hour of the optimization
period (t), as well as for each of the considered scenarios (s)
generated. The variables are summarized and described in the
Nomenclature.

The constraints can be divided into two main categories: the
bounds of variables and the ones that describe the operation of
the system. The bounds are defined based on the system spec-
ification. The constraints defining the operation of the power
plant are defined in 5 - 15. The two main constraints are: the
equality of supply and demand in the mine - constraint 5, and
stored energy balance - constraint 6. Constraint 7 is introduced
to define the state of operation of the diesel generator. The start
and stop of the generator is defined by constraint 8 and the
simultaneous turning on and off is prohibited by 9. Constraints
10 - 12. define the state of charging and discharging of the
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battery and ensure that charging and discharging does not
happen at the same time. The minimum up and down times
of the diesel generator are defined with constraints 13 and 14
respectively. Finally, constraint 15 defines the initial SoC of
the battery.

Dt,s = lwt,t,s ·Pwt,t,s+ lpv,t,s ·Ppv,t,s+Pd,t,s+Bd,t,s−Bc,t,s

(5)

SoCt,s +Bc,t,s ·
√
eff

Smax
− Bd,t,s√

eff · Smax

= SoCt+1,s (6)

ud,t,s ≥
Pd,t,s

Pmax,d
(7)

ud,t+1,s − ud,t,s = yd,t+1,s − zd,t+1,s (8)

yd,t+1,s + zd,t+1,s ≤ 1 (9)

bc,t,s ≥
Bc,t,s

Pmax,bc
(10)

bd,t,s ≥
Bd,t,s

Pmax,bd
(11)

bd,t,s + bc,t,s ≤ 1 (12)

UTd · yd,t,s ≤
t+UTd−1∑

h=t

ud,h,s (13)

t+DTd−2,s∑
h=t

zd,h,s ≤ 1− ud,t+DTd−1,s (14)

SoC0,s = SoCinit,s (15)

The listed constraints can be altered to represent a different
configuration of the system. The minimum up and down
time of the diesel generator was introduced in order to avoid
frequent switching on and off of the unit.

The final step of defining the optimization problem is the
formulation of the objective which is defined as the minimiza-
tion of the cost of operation and maintenance (O&M) of the
plant in an uncertain environment. The cost of each scenario is
defined as in 16. The first three terms of the equation represent
the cost of fuel, the starting cost and O&M cost of diesel
generator. The rest of the equation takes into account the O&M
of WTs, PVs and battery - both constant yearly values and
variable O&M costs associated with the amound of electricity
produced.

costs =

T∑
t

(ud,t,s · Fmin,d + Pd,t,s · 0.244) ·DP

+

T∑
t

(yd,t,s · SUd) +

T∑
t

(ud,t,s ·OMd · Pmax,d)

+ (OMwt,y · Iwt +OMpv,y · Ipv +OMb,y · Ib) ·
T

8760

+

T∑
t

(Iwt,t · Pwt,t,s ·OMwt,e +
Bc,t,s +Bd,t,s

2
·OMb,e)

(16)

Having defined the cost per scenario, the objective function
to represent the total expected operating cost can be formulated
as in 17, in which the second part incorporates the risk
measurement CVaR to the objective function through the risk
aversion factor β.

Min

Ns∑
s=1

πs · costs + β · CV aR (17)

IV. RESULTS

This section represents the results of optimization performed
for Plan 2, which was selected based on AHP in section II-B.



The optimization problem, formulated in the previous section,
was adjusted to accurately represent the selected plan. The
optimization was done for 25 different cases of PV power,
wind speed and load, generated with use of MCS and with
confidence level (α) of 95%. Moreover, 10 different levels
of risk aversion factor (β) were considered to observe how
the level of risk, incorporated in the optimization, affects the
expected profit and CVaR.

A. Risk assessment

The operator of the mine is interested to get a deep insight
into the expected cost of operation as well as the one in the
worst possible scenario. The latter, considering the possibilities
of uncertainties, may have a great influence on the final
result. The risk is incorporated to the optimization by the risk
aversion factor β. The value of β varies in from 0.1 to 10. The
former represents near-zero risk aversion and with increase of
beta the risk aversion increases.

The dependency between the expected cost of operation
and the CVaR for different levels of risk aversion factor is
presented in Fig. 5. With the increase of β, CVaR is reduced
and the cost increases. Change of β from 0.1 to 0.4 has
significant influence on both variables. However, the change of
β from 2 to 10 increases the expected cost without decreasing
the CVaR value significantly. The difference between the
minimal cost (for β = 0.1) and the maximal cost (for β =
10) is around 0.26%. The difference between extreme values
of CVaR is around 0.40%. The CVaR for β= 0.1 is 102.3%
of the expected operating cost. When β = 10 is considered,
CVaR is 101.7% of the expected cost.

The expected cost was calculated based on the optimization
problem presented in the previous section. The arising question
is if the optimization reduces the cost when compared to
a simple algorithm for operation of the battery and diesel
generator. The simple operation assumes that the battery is
always charged by RES if the production from RES is higher
than the demand and the SoC of the battery is lower than
100%. If the production from RES is lower than the demand
the battery is discharged to supply the needed power. In case
it is not possible to cover the demand by discharging the
battery, the diesel generator is used. This simple algorithm
is close to the optimized operation, however, it does not take
into account the level of O&M cost of the components. The
costs calculated for one of the scenarios, with optimization and
simple algorithm, are represented in Table IV. The optimized
cost, calculated for β = 0.1, is 1.5% lower than the cost
with simple algorithm. Even when the high level of risk is
considered in the optimization, the cost is still 1.3% lower
than the algorithm.

Finally, the cost of operation of Plan 2 can be compared
to the O&M cost if only diesel generator is used to satisfy
the demand of the mine. This cost is listed in Table IV and
is around 33 times higher, for this typical day, than the cost
in Plan 2. That proves that the selected plan could not only
provide a reliable power generation, but also very low daily
operating cost.

TABLE IV: Cost of operation in one of the scenarios

Approach Cost of operation
Optimization with β = 0.1 9923 $
Optimization with β = 10 9948 $

Simple algorithm 10073 $
Diesel generator only 339905 $

TABLE V: Average state of charge of the battery for different
values of β

β Average SoC
0.1 32.4%
1 37.5%
10 40.2%

B. Hourly operation

This section represents the hourly dispatch of the units to
satisfy the demand of the mine in some typical day in a year.
The simulations were performed jointly for all 25 scenarios to
account for CVaR in the optimization. An example of hourly
dispatch for one of the scenarios is presented in this section.
The aim is to compare the optimized operation with low
and high levels of risk aversion factor, together with simple
operation based on the algorithm discussed in the previous
section. The hourly dispatch for the day is plotted for β equal
to 0.1 and 10. The SoC of the battery is plotted also for the
simple operation with algorithm.

Fig. 4(a) represents the optimized hourly operation of the
power generating units - PVs, WTs and diesel generator. The
difference between β = 0.1 and β = 10 is mainly in the
operation of PV modules, which are allowed to generate more
power in the pick during the middle of the day for β = 10. The
additional power is used to charge the battery. This behaviour
is presented in Fig. 4(b). The battery is reaching higher SoC
when the risk aversion factor increases. The same observation
can be made for the average SoC, presented in Table V.
With the increase of β value the average SoC of the battery
increases. This is because the uncertainties are incorporated
to higher extend into the optimization. Keeping the battery
charged throughout the operation assures a better resilience
to unexpected changes. The behaviour proves that the CVaR
method, presented in this project, works correctly. The SoC
calculated with the simple approach differs significantly from
the one obtained in the optimization. The battery is kept fully
charged throughout the day, even though it is not needed for
operation of the mine. Operating the battery with this naive
approach increases the O&M cost of the mine.

V. CONCLUSIONS

The focus of the study was to find a profitable and reliable
combination of energy sources to supply electricity to a mining
site in Australia. The selection of the plan was done based
on AHP and the configuration with lowest NPC and high
renewable fraction was selected.

The assessment of robustness of the system to uncertainties
in PV power, wind speed and load profile was done using risk-
constrained stochastic framework. The aim was to minimize
the expected cost of operation. CVaR was used to model the
trade-off between minimizing the cost of operation and risk
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of getting high cost of operation in undesired scenarios. The
level of risk incorporated to the optimization problem was
controlled by risk aversion factor β. It could be seen that
with increase of β the expected cost of operation increased,
while the CVaR decreased. The change in the two measures
was 0.26% and -0.4% respectively. The operating cost did
not increase be increased significantly even considering the
worst scenario because the CVaR values were only 2.3% and
1.7% higher than expected cost, for β = 0.1 and β = 10
respectively, meaning that the system was robust to the uncer-
tainties. The calculated O&M costs for the selected plan are
also significantly lower than costs, which would be obtained
if the mine was electrified only with diesel generators. An
important observation from the hourly dispatch analysis was
that the average SoC of the battery increased with the increase
of β. This could be a desired behaviour, because it assures
better resilience of the system to unexpected changes.
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