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Abstract—The functionality of supermarket refrigeration sys-
tems (SRS) has a significant impact on the quality of food
products and potentially human health. Automatic fault detection
and diagnosis of SRS is desired by manufacturers and customers
as performance is improved, and energy consumption and cost is
lowered. In this work, Convolutional Neural Networks (CNN) are
applied for fault detection and diagnosis of SRS. The network
is found to be able to classify the fault with 99% accuracy.
The sensitivity of the designed model to data quality is also
assessed. The results show that the model can classify faults at
low sample rates if the training set is large enough. Moreover, the
model displays low sensitivity to data quality such as noisy and
perturbed validation data, and the frequency of false positives is
satisfactorily low as well.

Index Terms—refrigeration, evaporation, fault, classifica-
tion,robustness, machine learning, Neural network, convolutioal
, data quality,

I. INTRODUCTION

The general quality of refrigerated food depends on how
accurately its temperature is controlled throughout the cold-
chain, from production to the end-users. Improvement of
reliability of Supermarket Refrigeration Systems (SRS) by
early fault diagnosis is highly relevant when considering the
safety of food, human health, and environmental pollution
of a large industry. According to [1], because SRS must
run night and day, they consume about 50% of the entire
energy budget of most supermarkets. Thus, using a faulty
refrigeration system can lead to critical economic losses. As a
consequence, refrigeration companies try to gain a competitive
edge by producing products with as high degree of automation
as possible, including for performance monitoring or fault
diagnosis.

In this paper, classification of evaporator fan faults is
studied; these faults may typically result in inaccurate cooling
room temperature, which may lead to food spoilage and
energy waste. Therefore, it is of high importance to detect and
diagnose evaporator fan faults before they result in damage to
the goods. However, constant human monitoring is tedious,
expensive and error-prone. Therefore, data-driven Fault De-
tection and Diagnosis (FDD) has become increasingly popular
in the industry, and in particular Artificial Intelligence (AI) is
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receiving a lot of attention due to its abilities to make decision
instantaneously and deal with vast amounts of data [2].

Convolutional Neural Networks (CNN) is a cornerstone in
image processing when it comes to the classification of highly
challenging data sets [3]; CNNs are known to be accurate and
computationally faster than most other machine learning-based
classification methods. In this method, the essential features,
information or correlation among data is extracted. Afterwards,
the data are classified based on the information. Similar ideas
can be used in the classification of signals in signal processing.
From this view, CNNs can be used for fault detection and
classification.

A number of different data-driven approaches have been
proposed. For instance, a combination of a Genetic Algorithm
and a Pseudo-inverse matrix algorithm can be found in [4]
to obtain parameters and weights of the radial basis function
network. This method identifies, successfully, six faults emu-
lated in a laboratory set up. An Extended Kalman Filter (EKF)
method is proposed in [5]. Although the EKF performed
better and faster fault detection than an ordinary Kalman filter,
neither filter was able to distinguish between sensor faults
and parametric faults. On the other hand, successful results
of Artificial Neural Network (ANN) strategies regarding FDD
in chillers have been reported, e.g., [6], and [7]. The Support
Vector Data Description (SVDD) method was employed for
FDD in chillers in [7], where SVDD is compared with
the Principal Component Analysis (PCA) method. The fault
detection performance of the SVDD method was better than
the PCA method. In [8], refrigerant leaks were detected and
diagnosed using a probabilistic ANN algorithm; the ANN
could detect refrigerant losses with 90% accuracy. In [9],
the better performance of a Probabilistic Neural Network is
demonstrated compared to Back Propagation (BP) method as
BP has random initial wights leading to a less reliable system.
Air handling unit faults are detected using a pattern matching
method in [10]. This method is combined with PCA in [11].
It improves the sensitivity of fault detection model and boosts
the performance of air handling units.

In image recognition applications CNN is known because of
its impressive feature extraction and classification capabilities.
These capabilities make it a strong candidate for FDD and
process monitoring, where fault patterns might appear in data



without being immediately apparent to human observers, see
[12].

This research contribution is a CNN model for fault identifi-
cation and sensitivity analysis of the model to the data quality.
The model can classify a specific fault on the evaporation side
of a refrigeration system, using only indirect measurements
gathered from the condensing side of the system. The structure
of available data can vary in the field due to different require-
ments and configurations of SRS. For instance, the sample
rate when acquiring data can be between 1 to 0.0003 Hz; the
number of samples or length of the data logs varies depending
on embedded hardware type and software requirements. To
some extent, there would be different correlations between
data parameters due to variations in SRS components and
loads. Thus, the sensitivity of the model against the variation
of data structure is tested and improved. The model is found
to be able to classify validation data with 99% accuracy, and
exhibits roughly low sensitivity to low-resolution, noisy, and
perturbed data. Non-faulty perturbed data are classified with
the same accuracy, but with less reliability (99% accuracy in
92 of 100 trials).

The outline of the rest of the paper is as follows: Section II
explains SRS preliminaries, the general methodology of CNN,
and its training process. In section III, data collection and
CNN design is represented. Different sensitivity tests against
data quality are proposed in section IV, and the results are
investigated in section V. Finally, conclusions are presented
in sections VI.

II. PRELIMINARIES

A. Supermarket refrigeration systems

Refrigeration systems transfer heat in a process where
heat is absorbed from a cooling room and released in the
ambient environment. During a cycle, the heating absorption
and heat dissipation happen by changing the refrigerant phase
from liquid to vapour and vapour to liquid, respectively. The
nomenclature of the SRS and refrigeration shown in Fig. 1, are
introduced in Table I. This system includes two parts; a Bitzer
condensing unit and an industrial evaporator for air cooling
mounted in an insulated room. The number of evaporators,
fans and cooling rooms are different from supermarket to su-
permarket. In Fig. 1, CtrlCond is the condensing unit controller
which is connected to the required sensors to control the con-
denser fan speed and compressor speed Vcpr. The compressor
speed is controlled to provide the capacity required to keep
the temperature in the cooling room. Inside the cooling room,
heat is transferred from the goods via the evaporation process
to the refrigerant. The evaporator controller is called CtrlEvap
and can be seen in Fig. 1. This controller uses required inputs
taken from sensors to control the evaporator fan speed and
opening degree of the expansion valve. The opening degree
of the expansion valve determines the amount of refrigerant
that passes through the evaporator and is controlled to achieve
Minimum Stable Superheat (MSS).

The evaporator fan is responsible for circulating air over
the evaporator surface and in the cold room to enhance heat
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Fig. 1. Schematic of a refrigeration system.

TABLE I
SYMBOLS USED IN THE FIG. 1

Symbols description SI unit
Troom cooling room temperature (sensor) [°C]
Tamb ambient temperature (sensor) [°C]
Tsuc1,2 suction temperature (sensor) [°C]

T0 evaporation temperature (sensor) [°C]
Psuc suction pressure (sensor) [Pa]
Tdis discharge temperature (sensor) [°C]
Pdis discharge pressure (sensor) [Pa]
Tc condensing temperature [°C]
Tret returned air temperature (Sensor) [°C]
Tsup supplied air temperature ( Sensor) [°C]
IFC converter current [A]
FC frequency converter [-]

CtrlEvap evaporator controller [-]
CtrlCond condensor controller [-]

transfer into the evaporator and keep an even temperature in
the cold room. When the fan does not work or run slowly,
there would not be enough airflow around the evaporator pipes.
The reduced airflow causes reduced heat transfer. Thus, to
compensate and keep the required cooling capacity for the
room, CtrlEvap increases the temperature difference between
the refrigerant and the air. This causes the suction pressure
Psuc to drop and the vapor density ρv at the compressor inlet
to decrease as:

ρv =
PsucMm

RT0
(1)

where Mm is Molar mass and T0 is evaporation temperature
of the refrigerant and R is the ideal refrigerant gas constant.
Lower ρv leading to more work required by the compressor
and increased mass flow rate ṁ as:

ṁ = ρvV A (2)

where V is the volumetric flow rate of the refrigerant and A is
the area of the compressor inlet. Therefore, ṁ could be one of
the indicators for a faulty evaporator fan. However, it requires
knowledge of the compressors parameters, which is not always
available. Therefore, the proportion to the mass flow rate is



enough, where A is omitted and the compressor speed (Vcpr)
is used instead of V . Note that Vcpr is proportional to V itself.
Thus, a proportional compressor mass flow rate Kmf can be
used, represented as:

Kmf ∝ ρvVcpr. (3)

In the beginning stage, the evaporator fan fault leads to
higher compressor speed and more power consumption. If the
compressor reaches its maximum speed due to excessively
low Psuc the temperature in the cold room will begin to
increase. This implies violation of the food quality. Therefore,
early FDD is required before any change in the cooling room
temperature occurs.

B. CNN methodology

In the sequel, the CNN methodology adopted for fault
detection will be presented.

Suppose we are given a set of feature vectors {χk}, k =
1, . . . ,K, each of which belong to a finite set of classes
{κn}, n = 1, . . . , ν. The associated classification problem is
then the challenge of finding a map N : X → {en}, n =
1, . . . , ν, where X is the feature space from which χk are
drawn and {en} is an orthonormal set of vectors with all
entries equal to zero except the j’th entry, which is one; en
corresponds to class n.

The map N will be approximated using a CNN. CNNs
are composed of neurons, which are nonlinear functions
parametrized by so-called synaptic weights. The neurons are
organized in layers – an input layer, several hidden layers and
an output layer – and trained using supervised learning. Com-
monly, CNNs can be decomposed into two separate stages.
The first stage, called the feature extraction stage, includes
the input layer along with one or more convolutional layers.
The second stage includes a number of fully connected layers,
which are responsible for the classification – see Fig. 2. The
most informative features are collected in the last convolution
layer. A flattening layer is the vectorized shape of the last
convolutional layer used as an input to the classification stage.
The number of neurons of the output layer should match the
number of classes ν.
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Fig. 2. General design of CNN.

C. Training the model

The first stage of a CNN is organized like a standard multi-
layer perceptron network, i.e., all nodes in each layer are feed-
forward connected by weights wi ∈ R from inputs xi ∈ R, i =
1, . . . , n via a neuron function f : R → R to yield a neuron
output y:

y = f

(
m∑
i=1

wixi − b

)
. (4)

The input to the first layer is χk. The output y from each layer
is subsequently used as input for all neurons in the subsequent
hidden layer. In neural network terminology, b is called the
activation threshold or bias, while the sum of weighted inputs
and bias is known as an activation potential, and m is the
number of neurons in previous layer. A layer is thus a column
vector of neurons, each of which may be parametrized by
different sets of weights.

In a CNN, the last layer F : Rν → Rν is often chosen as a
so-called Softmax activation function, whose n’th component
is defined as:

Ŷk,n = Fn(yk−1,n) =
exp(yk−1,n)∑ν
n=1 exp(yk−1,n)

(5)

where Ŷk = Ŷk(W
p) is the CNN’s estimate of the class of

the k’th feature vector based on the current set of weights
W p. The Softmax function is a smooth approximation to the
function argmax(·), basically picking out the index n among
the entries of the input yk−1 with the largest value; that is,
Ŷk ≈ en if the largest entry in yk−1 is found at index n.

To begin training a CNN, it is first necessary to obtain the
training data and desired output corresponding to each input.
For each class the training data are divided into specific size
and each small part is called a mini-batch. The mini-batches
stack together at the third dimension. Fig. 3 illustrates the input
pre-processing required for training the CNN and the output
structure. The CNN needs to learn the corresponding desired
output for each input. In addition, for all of the mini-batches
in the same class, corresponding outputs are the same and the
number of Training mini-batches in each class (Tmb) is:

Tmb = nd

⌊
R

⌊
Ns

Smb

⌋⌋
(6)

where nd is number of data logs, R is split ratio between train-
ing and test data, Ns is the number of samples, Smb is the size
of each mini-batch. After designing the shape of each class of

First
mini batch

Last
mini batch

Input
dimentions

Output
dimentions

Fig. 3. Input pre-processing and the output structure of each class.



functional and faulty system, The inputs to the CNN require
both classes of functional and faulty data. Thus, both classes
are concatenated, as shown in Fig. 4. The number of output
neurons in the CNN is the same as the number of classes.
Training is a process in which the network weights are updated

Faulty
batches

Functional
batches Functinal

outputs

Faulty
outputs

CNN

The shape of input layer The shape of output layer

Fig. 4. Visualisation of input and output shape after concatenation of non-
faulty and faulty mini-batches.

to give increasingly better predictions of the correct classes as
a function of the input feature vectors. Each update of the
weights is called an epoch. The improvement in prediction is
measured by way of a Loss function, which should be selected
to match the activation function of the output layer; the cross-
entropy loss function is commonly chosen in classification
tasks (as opposed to, for example, the sum-of-squared-error
loss function used in function approximation). When only two
classes are considered, one may choose a sigmoid neuron in
the output layer, which always yields an output prediction
between zero and one, which may, in turn, be interpreted as a
probability of the given feature belonging to the corresponding
class. Training with the cross-entropy as the loss function then
corresponds to maximizing the conditional log-likelihood of
the data being correctly classified as explained in [13].

Given a collection of network weights W p and ν inde-
pendent targets (classes), the cross-entropy error for a single
example χk is given by

Ek(Ŷk,W
p) = −Y >k ln(Ŷk)− (1− Yk)> ln(1− Ŷk). (7)

where 1 = [1, 1, . . . , 1]
> and ln(·) is taken element-wise to

yield a ν-dimensional output.
This function estimates the difference between the actual

and predicted probability distribution. Stochastic Gradient
Descent (SGD) optimization is used to tune the weights to
improve the prediction–see [14]. The weights in layer l are
adjusted in epoch p using

w
(p)
il = w

(p−1)
il + α∇Ek(Ŷk,W p) (8)

where α is learning rate or step size and ∇Ek(Ŷk,W p) is
the gradient of the loss function wrt. the weights. We may
compute the derivative of the cross-entropy error with respect
to each weight connecting the hidden layer neurons to the
output layer neurons using the chain rule:

∂Ek
∂wn,i

=
∂Ek

∂Ŷk,n

∂Ŷk,n
∂un

∂un
∂wn,i

where un =
∑
i wn,ixi − bn is the input to the n’th neuron

in the previous layer. In each epoch, the calculated loss
is propagated backward in the network in a layer-by-layer
sequential fashion, where the gradients are computed from (4).
Adaptive Moment estimation (Adam) is a variation of SGD, in
which the learning rate α is tuned adaptively to deal with
sparse gradient and non-stationary objectives. Moreover, the
Adam optimizer is capable of dealing with falling into local
minima; see [15] for details.

Convolution of the filters or weights through the feed-
forward process prevents having a vast number of weight
vector connections in every layer and speed up the network
operation. Besides, non-informative features can be eliminated
in each layer using the so-called pooling method. By using
pooling after the convolutional layer, the outputs of each
layer are pooled together in the specified filter size. The
most common pooling methods are average-pooling, and max-
pooling, which collect the average of the outputs, and a
maximum of the outputs, respectively.

III. EXPERIMENTS

The condensing unit in the laboratory shown in Fig. 1,
consists of a semi-hermetic reciprocating, four-cylinder com-
pressor with a speed range of 25-87 Hz. It has 17KW cooling
capacity at 10 oC evaporating temperature using refrigerant
R-134a. The two condenser fans have a maximum power
consumption of 350 W.

Supermarket condensing units are connected to different
evaporation setups, depending on the requirements of each
supermarket. Moreover, information from the evaporation part
of refrigeration systems is typically not available. In this paper,
data is taken from the condensing unit, and the data from
the evaporation side is neglected. The evaporator at the Bitzer
electronic laboratory has two fans. Fan speeds are controlled
by CtrlEvap shown in Fig. 1. In order to emulate the evaporator
fan fault, a switch is installed between controller output and
relay of one of the fans as seen in Fig. 5. Thus, it is possible
to switch on and off, manually, one of the fans and collect
data in both conditions.
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Fig. 5. Stop force on the evaporator fan to emulated defective fan.

A. Data acquisition

Data is taken where the room setpoint varies in the range of
1 ° C to 12 ° C. Different compressor speeds between 33Hz
and 70Hz are applied. This variation is needed in the training
phase to learn the response of the system in different states.
Moreover, it prevents the over-fitting of the neural network.



When one of the fans is switched off the defective fan
fault is emulated on the laboratory set up. Both non-faulty
and faulty data are collected with 1 Hz sample rate. Each set
of data includes information of Psuc, Superheat temperature
Tsh, Vcpr and Kmf. These parameters change when the fan is
switched off while room temperature remains constant and
controlled. When the fault occurs, Vcpr increases to compensate
Psuc and density drop at the inlet of the compressor. This
means that the overall efficiency of the system is reduced
due to the fault, but, because the system is able to keep the
room temperature, this fault would normally not be detected
by traditional fault detection. Moreover, Kmf is oscillating
more because there is less ventilation around the evaporator,
and it causes unstable heat transfer around the evaporator.
This oscillatory heat transfer induces oscillations in Tsuc and
Psuc, which in turn results in Kmf oscillating with a higher
amplitude. While this fault continues in the system, the cooling
room temperature at different locations varies. Finally, due
to the lower Psuc, and reduced heat transfer, the evaporator
surface is colder, and this leads to a faster build-up of ice
on the evaporator. Therefore, detecting of accumulated ice is
needed more regularly, and this also presents an additional
energy cost.

Therefore, a CNN algorithm is used to detect the fault
before it affects the room temperature and prevents excessive
energy usage due to inefficient running without the fault
detection.

B. CNN specification

In this work, six data logs corresponding to various loads
and set-points are used. The size of each data log is 4×13000
samples because there are four measurements in each data set,
as mentioned in Subsection III-A. When designing CNNs,
it is important to select proper hyper-parameters. Hyper-
parameters are external and controllable parameters set by the
user, including mini-batch size, number of layers, activation
functions, filter size, cost function, and optimization method,
and so on. In this paper, the mini-batch size is selected as
4 × 30 samples, which is obtained by manual optimization.
The initial learning rate is a key parameter in the training
configuration; here α in (8) is chosen as 0.0003. At the output
layer a Sigmoid function

Ŷ1 =
1

1 + exp(yk−1)
(9)

is used because it is a binary classification. The range of the
Sigmoid function is [0, 1], and the classification is performed
by a simple threshold; if Ŷ1 < 0.5, the class is 0, and 1
otherwise.

In this work, binary-cross-entropy

E(Ŷ1,W
p) = −Y1 ln(Ŷ1)− (1− Y1) ln(1− Ŷ1) (10)

is used as a cost function, which is the same as the cross
entropy in (7) for only two output vectors. In (10), Y1 = 1 is
the value assigned to class one and Ŷ1 ∈ [0, 1] is the estimated
probability of the input sample belonging to that class. Since

probabilities sum to 1, the second class is assigned the value
Y2 = 1− Y1 and the corresponding estimate is Ŷ2 = 1− Ŷ1.

In this work, the design of the CNN is improved as table II
to obtain better classification results. In this table, Sf stands
for the size of the filters, Nf is the number of filters in
each layer, Act is activation function where ReLU stands for
Rectifier Linear Unit, and MP is Maxpooling size. Padding
type is mentioned as P and valid means that an array of zeroes
is applied to the edges of the data when passing through the
next layer. The fully connected layer is used with 50% dropout.

TABLE II
DESIGN OF THE CNN ALGORITHM, USED IN THIS WORK.

Layer Sf Nf Act P MP
convolution (2,20) 16 ReLU valid (1,3)
convolution (2,3) 32 ReLU valid -
convolution (1,3) 64 ReLU valid -

Flatten - - - - -
FC 40 - ReLU - -

Dropout(0.5) - - - - -
FC 2 - Sigmoid - -

Dropout is an efficient solution to prevent over-fitting. In this
method, the number of neurons is regularized in each layer,
and the rest of the neurons are dropped temporarily together
with all the inputs and outgoing connections [16].

IV. SENSITIVITY TO DATA QUALITY

As SRS operations and configurations vary significantly
due to the individual supermarket’s demands and geographical
conditions, it is very important that the FDD model has low
sensitivity to variations in the data available. Here, a number
of experiments is introduced to examine the sensitivity to data
quality and reliability of the model. For all experiments, the
structure of the model and the hyper-parameters of the CNN
model are the same as specified in the table II.

A. Low resolution data
In SRS data acquisition, the sample rate varies between 1

to 0.0003 Hz depends on the embedded hardware memory.
In this work, data is re-sampled from 1 Hz to 0.16, 0.016,
and 0.0016 Hz. Even though it was of interest to observe the
result with much lower sample rates such as 0.0003 Hz, it is
not possible to do this here, due to limitations on data log
length. One non-faulty and one faulty data log with regards to
four different sample rates are introduced in Fig. 6. From top
to bottom, the sample rate is decreased by means of down-
sampling; these re-sampled data sets will be used for training
CNN models. As can be seen, lowering the sample rates from
1 to 0.016 Hz does not change the main features of the data
due to the slow dynamics of the refrigeration system. However,
at 0.0016 Hz the important features can no longer be detected
in the sampled data.

As the data is down-sampled, the number of samples
decreases. Therefore, another experiment is done to train
the model with the same data length to compare the down-
sampling result with the same size of data. The results of
these experiments are presented in subsection V-A.
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Fig. 6. Visualisation of data re-sampling for Non-faulty data to the left and faulty data to the right.

B. Noisy data

In industrial applications, data can be noisy and incomplete
due to different reasons, for instance, sensor noise, electro-
magnetic propagation, sample dropouts and so forth. In this
work, noise is added to data, not only to observe noisy data
response but also to generate random new validation data
where correlation among parameters is preserved. Random
variables with normal distribution N (0, 2) is selected for this
purpose. To do this, the noise Sn is added to the saturation
temperature Tsat and consequently to Tsh as:

Tsh + Sn = (Tsuc − Tsat) + Sn (11)

where Tsuc is suction temperature or actual temperature of
refrigerant after evaporation. Therefore, by any change in Tsh,
Psuc and eventually Kmf would change as the correlations are
introduced in (1) – (3).
In Fig. 7, Random noise with N (0, 2) is added to Tsh, and
eventually, Psuc and Kmf. In order to test the reliability of the
algorithm, noisy validation data is generated 100 times and
passed through the network as new validation data sets. The
result of this test can be found in subsection V-B.

C. Operating point change

The SRS may operate in different operating points de-
pending on the needed capacity, the layout of the system
and the ambient conditions. To the CNN, this will look like
offsets or perturbations in measurements that are correlated
according to the physics of the system. Thus, a random offset
value is applied to Tsh on validation data set using random

numbers between [-3,3.5]. In accordance with (1) – (3), Psuc
and Kmf change correspondingly; as Psuc should be in its
valid refrigeration cycle envelope, the random offset value
can not be outside specific ranges when using the available
data. This random perturbation is applied 100 times to observe
the reliability of the model when the correlation between
parameters is different from what is used in the training data.
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Fig. 7. Example of original and noisy data where noise is added to Tsh.

V. RESULTS

A number of different experiments to evaluate the sensitivity
of the CNN model were proposed in the previous section. The
results of each experiment are presented in the following.

A. Data re-sampling result
Re-sampling of the training data is done as specified in

subsection IV-A. Fig. 6 illustrates that even when the sampling
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Fig. 8. Example of original and perturbed data.

rate is reduced and the number of samples is lowered, the main
features in the data are preserved due to the slow dynamic
of SRS. Fig. 9 shows the accuracy of classification and loss
function with different sample rates. It is seen that lowering
the sample rate also lowers the accuracy of the training process
and causes the training to require more iterations. However, it
should be noted that the decreased accuracy is not so much
due to the lower sample rate itself, but rather due to the lower
number of samples available to the CNN. In Fig. 6, down-
sampling is continued until 0.0016 Hz in order to obtain a
lower bound on the sampling rate; however, with the few data
points remaining, it becomes impossible to train the CNN at
this sample rate.

Fig. 9 indicates that if the sample rate is kept constant,
the accuracy is decreased when the data is shortened (see the
experiment in blue, orange, red and brown). It is remarked
that the experiments in orange and green (respectively red and
purple) have the same data length, but the green (respectively
purple) with a lower sample rate has faster convergence. Note
that for each of the data lengths, the figure shows the lowest
sampling rates for which training was successful.
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Fig. 9. Resampling evaluation when the number of samples are constant.

Fig. 10 presents zoomed-in data with 1 and 0.16 Hz sample
rates. It appears that using short mini-batches with relatively
high sample rates causes the oscillations observed in the faulty
data to disappear (the data is near-constant over these periods),
and that oscillations are important features of the faulty data.

Thus, the reason that the green (purple) result is better than
the orange (red) one in Fig. 9 is that the low-resolution faulty
mini-batches are easier to classify than high-resolution mini-
batches.
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Fig. 10. Two zoomed data logs with different sample rates.

B. Noisy data result
In Subsection IV-B, the method of generating validation data

with specified noise is explained. The result of 100 stochastic
tests over the CNN model is introduced in Fig. 11. This figure
shows how accurately 100 faulty data-sets and 100 non-faulty
data-sets are classified. The value at the top of each column
shows the distribution of corresponding accuracy values when
running 100 stochastic tests. Non-faulty data is classified with
higher than 99% accuracy with 100% reliability. Faulty data
is classified with better than 97% accuracy in 95 out of the
100 runs.
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Fig. 11. Distribution of classification accuracy achieved when running the
CNN algorithm 100 times using noisy validation data.

C. Result of operating point change
As explained in Subsection IV-C, due to different SRS

configurations and loads in the cold room, the data can be
varied while the correlation among parameters is preserved.
The result of 100 runs is represented in Fig. 12. Note that
perturbation of the parameters is limited as explained in Sub-
section IV-C. The model has good classification capabilities;
for the faulty data, 99% accuracy is achieved in all of the 100
runs. On the other hand, non-faulty data are detected correctly
with 99% accuracy in 92 out of the 100 runs, while in 8% of
the runs non-faulty data was classified with less than 91%
accuracy.
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Fig. 12. Distribution of classification accuracy when running the CNN
algorithm 100 times using perturbed validation data.

D. False positive analysis

A model is said to give a false positive classification when
it incorrectly indicates that a system is faulty while it is, in
fact, healthy. False positives must occur as rarely as possible,
because it results in unnecessary costs for supermarket owners
for changing components or doing inspection. As shown in
Fig. 11, 1% false positives were classified in 60 out of the
100 runs using noisy data, while there were no false positives
in the remaining 40 runs. Moreover, stochastic perturbation of
the data yielded 1% false positives for 92 out of 100 runs, see
Fig. 12. This experiment shows more than 9% false positives
in 8 out of the 100 runs.

VI. CONCLUSION

In industrial applications, diagnosis of a defective evapo-
rator fan is not always timely, because the inspection is only
done when the cooling room temperature exceeds its allowable
range. In this paper, a CNN model is applied to detect an
evaporator fan fault while the room temperature is actively
controlled. Only data from the condensing unit was used
because data of the evaporation side is not always available.
An evaporator fan fault was emulated on a laboratory SRS,
and the data was used to train and analyze the sensitivity of
the CNN model to the data quality.

Fast sampling is expensive and monitoring is tedious, there-
fore one cannot normally expect data of the high quality
shown in Fig 6 to be available during normal operation.
It was therefore necessary to examine lower sampling rates
and shorter data log lengths in order to assess practical
classification scenarios.

It was found that using short mini-batches with relatively
high sample rates causes the oscillations observed in the faulty
data to disappear (the data is near-constant over these periods),
and that oscillations are important features of the faulty data.

Moreover, the sensitivity of the model against noisy valida-
tion data was studied as well. The noisy and faulty data were
classified with better than 98% accuracy for 90 runs out of
100. Maximum 1% false positive classification was achieved
when using noisy data.

Validation data acquired at different operating points were
classified as well. In these cases, faulty data were classified

with 99% accuracy for all 100 runs. For 92 runs out of
100, only 1% false positive classification was observed, which
is a satisfactory result from a practical point of view. It is
believed that the higher false positive classification (8% of
the runs) can be improved if other random perturbed data is
used during the training process. This method can be further
developed to classify a number of different faults in SRS
systems, allowing automatic early detection of costly faults,
which human operators are unlikely to spot during day-to-
day operation. Detecting potential faults prevent unnecessary
fatigue, leading to lower economic losses to the operator/owner
of the system.
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