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Abstract—More and more emerging Internet of Things (IoT)
applications involve status updates, where various IoT devices
monitor certain physical processes and report their latest statuses
to the relevant information fusion nodes. A new performance
measure, termed age of information (AoI), has recently been
proposed to quantify the information freshness in time-critical
IoT applications. Due to the large number of devices in future IoT
networks, the decentralized channel access protocols (e.g. random
access) are preferable thanks to their low network overhead.
Built on the AoI concept, some recent efforts have developed
several AoI-oriented ALOHA-like random access protocols for
boosting the network-wide information freshness. However, all
relevant works focused on theoretical designs and analysis. The
development and implementation of a working prototype to
evaluate and further improve these random access protocols in
practice have been largely overlooked. Motivated as such, we
build a software-defined radio (SDR) prototype for testing and
comparing the performance of recently proposed AoI-oriented
random access protocols. To this end, we implement a time slotted
wireless system by devising a simple yet effective over-the-air
time synchronization scheme, in which beacons that serve as
reference timing packets are broadcast by an access point (AP)
from time to time. For a complete working prototype, we also
design the frame structures of various packets exchanged within
the system. Finally, we design a set of experiments, implement
them on our prototype and test the considered algorithms in an
office environment.

I. INTRODUCTION

Internet of Things (IoT) represents one of the most signifi-
cant paradigm shifts in recent decades poised to revolutionize
several aspects of everyday life such as e-health and smart
house. The new paradigm transforms every physical object
into an intelligent entity capable of sensing, communicating
and computing [1]. Ericsson foresaw that by 2021, there will
be around 28 billion IoT devices and a majority of them will
be empowered by wireless communication technologies [2].
Analysts predicted that by 2025, the economic impact of the
IoT could reach US $11 trillion, or 11% of the global economy,
and by 2030 IoT could influence nearly the entire economy [3].

A typical wireless IoT network is made up of three main
ingredients: 1) IoT devices, 2) a communication network, and
3) gateways serving as information fusion nodes. The IoT
devices are often deployed to observe the physical charac-
teristic of a certain process, e.g., corrosion condition inside
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a refinery pipe, pollution levels within a gas factory, and
speed and location of automated guided vehicles. The sensed
data are transmitted through the communication network to
the information fusion gateways where they are processed
to extract useful information for the prediction, diagnostic,
and decision making. For many applications, the usefulness
of the information is heavily dependent on the freshness of
the data measurements of the IoT devices when they arrive at
the gateways [4].

Conventional performance metrics, e.g., throughput and
delay, cannot adequately capture the information freshness.
Specifically, due to the random network delay, maximizing
throughput or minimizing delay does not necessarily guarantee
the freshest information observed at the receivers [5]. In this
context, the AoI concept was coined in [6] as a new metric
to measure the information freshness at the destination side.
AoI is a function of both how often packets are transmitted
and how much delay that packets experience in the system.
The metric of AoI is of great importance in time-sensitive IoT
applications where the timeliness of information is crucial,
and thus has attracted increasing attention recently, see, e.g.,
[7]–[17] and references therein.

With the new metric of AoI, a fundamental design problem
for large-scale wireless IoT networks is “how to schedule the
status update packets of massive IoT devices in a decentralized
manner towards achieving a low network-wide AoI?”. We note
that there has only been limited work that attempted to answer
this fundamental question [18]–[22]. Specifically, [18]–[20]
investigated age-independent stationary randomized policies,
in which each transmitter sends its packet with a certain fixed
probability that can be optimized for minimizing the network-
wide AoI ahead of time. Very recently, [21] and [22] devised
age-dependent random access policies that can leverage the
latest AoI at the transmitter and receiver sides to make age-
based decisions at the transmitter side. The key difference
between the random access policies proposed in [21] and
[22] lies in how the channel access probability (CAP) of IoT
devices is determined. Specifically, the CAP of each device
in [21] is calculated based on conventional ALOHA backoff
mechanisms, while the scheme in [22] uses a pre-determined
CAP for each IoT end device. Moreover, the random access
policy proposed in [21] is optimized only for the case when
the number of devices approaches infinity. In contrast, the
results presented in [22] are suitable for any number of IoT
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devices. Nevertheless, all the aforementioned work focused
on theoretical design and analysis. The development and
implementation of a working prototype to evaluate and further
improve these random access policies have been overlooked.

As the first attempt to fill such a gap, in this paper we
build a prototype for testing and comparing the recently pro-
posed AoI-oriented random access protocols. Specifically, we
develop a testbed based on the Ettus USRP software-defined
radio (SDR) equipment. To enable a time slotted system,
we devise an over-the-air time synchronization scheme. We
also design the frame structures of various packets exchanged
within the system. Finally, we design the workflow of experi-
ments, and test and compare the performance of the concerned
protocols in an office environment.

Our experiment results show that the experimental aver-
age AoI curves of both age-independent and age-dependent
schemes match well with their theoretical counterparts derived
in the literature, when the signal powers at the AP’s received
antenna transmitted by different end devices are tuned to be
roughly the same. The signal power at the AP’s received
antenna will be referred to as the received power hereafter.
To unveil the impact of different levels of received powers of
end devices at the AP, we adjust the received powers for all
the IoT devices at the AP into two levels. That is, one group of
IoT devices has higher received power than the other group.
Experiment results show that the average AoI of the group
with a higher received power has a lower average AoI, while
the group with a lower received power has a higher average
AoI. The rationale behind this observation is that the status
update packets from the group with a stronger received power
may still be decoded successfully by the AP even when they
collide with the status update packets from the other group.
Furthermore, as the difference between the received power for
the two groups increases, the gap between their average AoI
tends to be stable.

The rest of the paper is organized as follows. In Sec. II,
we describe some preliminaries on the system model, the
definition of AoI, and the principles of the considered AoI-
oriented random access protocols. Sec. III elaborates on the
development of the SDR-based prototype. In Sec. IV, we
present and discuss the experimental results. Finally, Sec. V
concludes the paper.

II. PRELIMINARIES ON SYSTEM MODEL, AOI, AND
PROTOCOLS

In this section, we present some preliminaries on the sys-
tem model, the definition of AoI, and the principles of the
considered AoI-oriented random access protocols.

A. System Model

Consider an uplink IoT network consisting of an AP
serving as the gateway and N IoT devices denoted by
D1, D2, · · · , DN . All the IoT devices aim to report their
statuses as timely as possible to the AP via a common wireless
channel. Time is divided into slots of equal durations and the
transmission of each status update packet takes exactly one

time slot. All IoT devices implement a slotted ALOHA-like
random access protocol. Specifically, during each time slot,
each IoT device can become either active or inactive according
to a probability. If the device Di is active during one time
slot, it firstly samples the latest state of the underlying process
and generates a status update packet at the beginning of the
time slot, which is known as the “generate-at-will” model in
the literature. The device Di then sends the generated status
update packet to the AP. Otherwise, if the device Di chooses
to be inactive, it stays idle during the time slot. Moreover, we
assume that collisions happen if more than one device becomes
active during the same time slot, and the AP cannot receive
the status update packets correctly in collisions.

B. Definition of the AoI

In this paper, the timeliness and freshness of the sta-
tus update packets from the IoT devices at the AP are
quantified by the recently proposed AoI metric. Denote by
t = 1, 2, 3, · · · the index of time slots and denote by ∆i (t),
i ∈ {1, 2, · · · , N}, the instantaneous AoI of the i-th IoT device
in the time slot t. We then can mathematically express ∆i (t)
as [6]

∆i (t) = t− µ(t), (1)

where µ(t) is the generation time of the most recently received
status update packet in the time slot t.

We use Ii (t) to denote the indicator of the active or inactive
status for device Di in the time slot t. Particularly, Ii (t) = 1
means that the device Di is active during the time slot t.
Otherwise, Ii (t) = 0. Based on the definition of the AoI,
the instantaneous AoI of the device Di drops to one when
the device Di is active and all the other devices are inactive,
i.e., the device Di successfully delivers a status update packet
to the AP. Otherwise, the instantaneous AoI of the device
Di increases by one for each time slot. Mathematically, the
evolution of the instantaneous AoI for the device Di can be
expressed as

∆i (t+ 1) =

{
1, if Ii (t) = 1, Ij (t) = 0,∀j 6= i

∆i (t) + 1, otherwise
. (2)

Based on the AoI evolution, the long-term average AoI for the
i-th IoT device can be defined as

∆̄i = lim
T→∞

1

T

T∑
t=1

∆i (t). (3)

C. Principles of AoI-oriented Random Access Protocols

We now introduce the principles of the ALOHA-like AoI-
oriented random access protocol proposed in [22].

1) Age-Independent Random Access: In the AIRA pro-
tocol, devices access the channel with the same probability
no matter whether their instantaneous AoI values are low or
high. The AIRA protocol is easy to implement in a distributed
manner. However, it has the shortcoming of not leveraging
the instantaneous AoI information at the transmitter side [21].
The performance of the AIRA protocol was analyzed and
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Fig. 1. A block diagram of the connections among the USRPs and PCs in
the developed prototype, in which the double-headed arrow ⇐⇒ represents
1G Ethernet cables.

optimized in [18]. More specifically, the average AoI of the
considered N -device network can be expressed as [18]

∆̄AIRA =
1

p (1− p)N−1
, (4)

where p is the fixed CAP of all IoT devices. The optimal
CAP that minimizes the network wide average AoI is given
by p∗AIRA = 1/N .

2) Age-Dependent Random Access: To improve the sys-
tem performance by properly leveraging the instantaneous AoI
information available at the transmitter side, [22] developed
an ADRA protocol. In the ADRA protocol, the CAP of
each device is no longer a constant. Instead, the CAP varies
according to the instantaneous age of the IoT devices. A key
design problem for the ADRA protocol lies in “how to adjust
the CAP as the instantaneous AoI values evolves?”. A simple
yet effective strategy is to impose an age threshold such that
those devices with instantaneous age being not larger than the
threshold will keep silent, and those with instantaneous age
exceeding the threshold will access the channel with a certain
probability. In this paper, we focus on the implementation and
evaluation of the ADRA protocol with a fixed threshold that
was referred to as a threshold-based ADRA protocol in [22],
which has been shown to have a better performance than the
one proposed in [21].

In the ADRA protocol from [22], all IoT devices maintain
a fixed age-dependent CAP vector p = {p1, p2, p3, · · · , },
where pl denotes the active probability when the instantaneous
AoI is equal to l. Specifically, if the instantaneous AoI is
no less than the threshold δ, the IoT device transmits with
a fixed probability p. Otherwise, the IoT device keeps idle
with probability 1. Thanks to the simplified CAP model, an
approximate closed-form expression of the average AoI for
the ADRA protocol can be obtained and be given as [22]

∆̄ ≈ δ

2
+

1

pq
− δ

2(δpq + 1− pq)
. (5)

III. A SOFTWARE-DEFINED RADIO-BASED PROTOTYPE

In this section, we elaborate on the development of a proof-
of-concept prototype by using a stream-oriented real-time SDR
platform called GNURadio to test and verify the performance
of the considered random access protocols. We use the Ettus

Fig. 2. A photograph of our prototype.

USRP N210’s as transceivers: One USRP N210 serves as the
AP and eight USRP N210s serve as the IoT devices. All of
them are connected to two powerful PCs1 through multiple 1
Gigabit Ethernet cables and two Ethernet switches. A block
diagram of the connections among the USRPs and PCs is given
in Fig. 1. It is worth emphasizing that though some USRPs are
connected to the same PC, they use individual local clocks on
their motherboards, and thus the time synchronization among
all devices is needed to guarantee that every device accesses
the channel medium in a slotted manner. The SBX RF front-
boards [23] embedded in USRPs are used to transmit RF
signals, working at 1 GHz with 500 kHz channel bandwidth.
We use a program developed in the GNURadio platform
to define the signal generation and data processing in our
SDR prototype. GNURadio is a mature software framework
that provides a comprehensive library of signal processing
blocks. With this powerful tool, users are able to design
and deploy a real-world radio system on USRPs according
to their own demands [24]. A photograph of the developed
proof-of-concept prototype is shown in Fig. 2. To ensure high
transmission reliability when there is no collision as assumed
in the previous section, we implement the convolutional code
in the physical layer. Orthogonal frequency duplex modulation
(OFDM) is used for higher frequency efficiency.

To realize time-slotted transmissions among the USRPs,
we design a simple yet effective synchronized transmission
scheme. The scheme involves three types of transmissions:
(1) beacon broadcasting, (2) channel access, and (3) feedback.
The beacon broadcasting phase aims to achieve the time
synchronization. In this phase, the USRP that acts as the
AP broadcasts a Beacon, which contains timing information
to serve as a time reference for a slotted communication
scenario. The duration of the inter-beacon period is determined
by the precision of the USRP oscillator, which is set to 100
time slots in our experiments. In our prototype, each time
slot is further split into two transmission slots, which are
used to convey Status Update Packets and Feedback Packets,
respectively. The channel access phase starts at the beginning
of the subsequent transmission slot. The USRP(s) operating as
IoT device(s) sends the Status Update Packet(s) to the AP if it

1In principle, each USRP equipment can be connected to a dedicated PC
for baseband signal processing. We connect multiple USRPs to one PC for
saving the prototype cost.
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Fig. 3. A diagram of the transmission scheme as well as the frame structures of three types of packets in our experiments, where all IoT devices remain
inactive in the second time slot.

chooses to be active according to the age threshold and CAP.
Immediately following the IoT device(s)’ transmission slot,
the AP broadcasts a Feedback Packet indicating the successful
reception of a Status Update Packet. An IoT device only resets
its AoI back to one if its identity is declared in the received
Feedback Packet. Otherwise, its AoI increases by one.

For a better understanding, a diagram of the transmission
scheme as well as the frame structures of three types of packets
are depicted in Fig. 3. The functions and structures of these
frames are elaborated in the following:
• Beacon is sent by the AP and carries the time synchro-

nization information. It includes the following parts
– Bitrate gives the modulation bitrate information.
– Destination ID is the broadcasting ID.
– Source ID gives the AP’s node ID.
– Beacon number is the current beacon’s number.
– Payload carries the interval information.

• Status Update Packet is sent by IoT devices. It is
used for reporting the devices’ statuses or the related
information to the AP.

– Bitrate gives the modulation bitrate information.
– Destination ID is the AP’s node ID.
– Source ID gives the transmitting device’s node ID.
– Slot number is the counting number of the current

time slot.
– Status Payload provides the device’s status informa-

tion.
• Feedback Packet is broadcasted by the AP. It is used

for notifying IoT devices about the reception of Status
Update Packet in the previous transmission slot, which
allows each IoT device to calculate its instantaneous AoI.

– Bitrate gives the modulation bitrate information.
– Destination ID is the broadcasting ID.
– Source ID gives the AP’s node ID.
– Slot number is the counting number of the current

time slot.
– Feedback ID is the Node ID who successfully trans-

mitted a Status Update Packet in previous transmis-
sion slot.

Fig. 4. Comparison of the experimental and analytical results of the ADRA
and AIRA protocols when the number of IoT devices are equal to 6, 7, 8.

– Feedback Payload provides other control information
for the IoT devices.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we will present the experimental average
AoI of the ADRA and AIRA protocols obtained by using our
prototype. We then discuss the impact of imbalanced received
powers (i.e., the received powers of IoT devices are set to
different levels) on the AoI performance.

A. Performance in A Small-Scale Network Setup

We first evaluate and compare the performance of AIRA and
ADRA protocols in an IoT network with a small number of
devices. To that end, we conduct three experiments by varying
the number of USRPs serving as the IoT devices from 6 to 8.
For each experiment setup, we first adjust the transmit powers
of the USRPs representing the IoT devices in the GNURadio
program to ensure that their received powers at the AP are
nearly the same. We then gradually change the values of the
age threshold. For each age threshold, we find the optimal CAP
value by utilizing the analytical results of the ADRA protocol
derived in Sec. III of [22]. Since the CAP in the AIRA protocol



Fig. 5. The experimental and analytical average AoI versus the number of
IoT devices for the ADRA and AIRA protocols when the number of IoT
devices ranges from 8 to 40.

is not relevant to the instantaneous AoI, its age threshold and
CAP values are fixed as 1 and 1/N , respectively. We next
use these parameters to conduct packet transmissions while
the host PCs connected to each IoT device record the AoI
evolution. The experiment takes a duration of 800 time slots,
and at the end of the experiment, we average the AoI for all
the IoT devices according to the records in the host PCs. We
also calculate the analytical average AoI of the ADRA and
AIRA protocols using the mathematical expressions given in
(4) and (5).

The experimental and the corresponding analytical results
are shown in Fig. 4. We can see that for both protocols, the
analytical and experimental results in terms of the average
AoI are close to each other in each experimental case with
the difference between them being no more than 0.3. The
slight mismatches between them are caused by the packet
misdetection when no collision happens. Note that we conduct
the experiment in an office environment and our experiments
show that the packet misdetection rate is around 2%, which
could be caused by the USRP hardware imperfection.

B. Performance in A Large-Scale Network Setup

To overcome the limitation on the number of available
USRPs in our laboratory, we implement a new mechanism
in the GNURadio program to drive one USRP for acting as
multiple virtual IoT devices. The idea is to use one USRP
to represent multiple IoT devices and emulate a part of
transmission before ejecting Status Update Packets into the
channel. At the beginning of each time slot, each virtual IoT
device checks whether its AoI value exceeds the predefined
age threshold. If not, the virtual IoT device keeps silent.
Otherwise, it becomes active and tries to access the channel
according to the CAP. For an USRP driven as multiple virtual
IoT devices, if there is only one virtual IoT device chooses to
be active, it will transmit a Status Update Packet to the AP. If
not, it remains silent as an internal collision occurs. After the
USRP receives a Feedback Packet from the AP, it will reset

Fig. 6. Comparison of the experimental results between IoT devices with
different received signal strength at the AP.

the AoI of the virtual IoT device whose identity is declared in
the Feedback Packet back to one while increasing the AoI of
the other devices by one. If there is no broadcasted Feedback
Packet in the channel, the USRP will increase the AoI of all
its underlying virtual IoT devices by one.

With the above improved GNURadio program, our pro-
totype becomes capable to mimic larger IoT networks with
more than 8 IoT devices. We then design an experiment to
compare the performances of the AIRA and ADRA protocols
in network setups with 8 to 40 virtual IoT devices. In each new
experiment, the number of the virtual IoT devices increases
by 8. We then conduct packets transmissions over more than
800 time slots and obtain the average AoI of the AIRA and
ADRA protocols, respectively. At the end of the experiment,
we again attain the analytical average AoI for both the AIRA
and ADRA protocols by using the mathematical expressions
given in (4) and (5).

The experimental and analytical results are plotted in Fig.
5. We can see that the experimental average AoI of the AIRA
and ADRA protocol is still close to the analytical value in a
larger IoT network with more than 10 nodes. Comparing Fig.
5 with Fig. 4, we can find that the average AoI of the ADRA
protocol is always smaller than that of the AIRA protocol for
the simulated cases. Besides, the gap between the average AoI
of these two protocols increases with more virtual IoT devices
deployed in the network. The reason for this observation is
that the ADRA protocol provides more opportunities to IoT
devices with higher AoI values to access the channel, and thus
the IoT devices co-exist in a more harmonious way, leading
to lower network-wide average AoI performance.

C. Impact of Imbalanced Received Powers

In order to quantify the impact of different levels of received
powers of IoT devices at the AP, we design three experiments
with 4, 6 and 8 USRPs serving as IoT devices, respectively. In
each experiment setup, we initially adjust the received powers
of all IoT devices to be around 35dB at the AP. We then
divide IoT devices into two groups and intentionally set their



received powers into different levels. Specifically, we fix the
received power of the lower group and then gradually increase
the value of the received power for the higher group.

Fig. 6 shows the experimental and analytical average AoI
results. Fig. 6 shows that when the received powers of IoT
devices are equal, the two groups have approximately the same
experimental average AoI. which are close to the analytical
counterpart. AS the gap between the received powers of the
two groups enlarges, Status Update Packets from the group
with a stronger received power have a higher probability to
be detected by the AP even under the collision with packets
from the other group. As a result, the average AoI of the group
with higher received power gradually decreases. After the gap
between the received powers is larger than 8dB, the average
AoI of the group with a higher received power tends to remain
stable. This is because that the AP can easily decode the Status
Update Packets correctly from the group with a higher received
power even under the interference with the other lower group.
Keep increasing the gap thus will not benefit the group with
a higher received power further. For the group with a lower
received power, because the AP can hardly decode its Status
Update Packets correctly under the interference from the group
with a higher received power, its average AoI is almost the
same for different gaps.

V. CONCLUSIONS

In this paper, we developed a time slotted wireless pro-
totype by using the Ettus USRP software-defined radio plat-
form for experimental evaluation and comparison of recently
proposed age-of-information-oriented ALOHA-like random
access protocols. Our experimental results showed that the
age-dependent random access policy outperforms its age-
independent counterpart, which aligns well with the analytical
results available in the literature. The analytical expression
of average age of information available in the literature were
derived based on the assumption that no packets can be
decoded when there is a collision. Our experiments demon-
strated that the curves of the analytical expressions can match
well with the corresponding excremental curves when the
received powers of all IoT devices at the access point are
tuned to be roughly the same. Nevertheless, when there exist
imbalanced received powers, mismatches between analytical
and experimental results appear, which is caused by the fact
that the packet with higher received power can be decoded
correctly even when it collides with a packet with lower
received power. This phenomenon is referred to as “capture
effect”. This observation in our experiments motivates us to
investigate the impact of capture effect on the average AoI of
ALOHA-like random access protocols.
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