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Abstract 
Integrating the design and creation of fault identification 
and diagnostic capabilities into Model-Driven 
Development methodologies is one approach to enhancing 
the resilience of Industrial Cyber-Physical Systems. We 
present a Fault Diagnostic Engine designed to recognise 
and diagnose faults in IEC 61499 Function Block 
Applications. Using diagnostic agents that interact directly 
with the target application, we demonstrate fault 
monitoring and analysis techniques and as well as failure 
scenario intervention. By designing and building fault 
diagnostic resources during early phases of Model-Driven 
Development, both iterative testing and long-term fault 
management capabilities can be created. While applying 
and refining appropriate model artifacts, we demonstrate 
that the concurrent development of function blocks 
alongside fault management capabilities is both feasible 
and worthwhile. 
 
Index Terms: Faults, Model-Driven Development, 
Industrial Cyber-Physical Systems, IEC 61499 
Function Blocks. 
 

1. INTRODUCTION 
Industrial Cyber-Physical Systems (ICPS) built upon the 
IEC 61499 Function Block Architecture [1] are 
mechanisms that blend computing elements with sensors 
and actuators. By forming networks of distributed, 
interconnected devices, they interact with the physical 
environments they are deployed in to control machinery. 

Testing ICPS during their design and development phases 
is a well-established engineering discipline [2]. However, 
many of the faults these devices later exhibit do not occur 
during these early phases. The long-term interactions that 
ICPS have with their physical environments can expose 
unexpected faults that are far more problematic and 
intriguing. Design methodologies should address the 
creation of long-term fault management capabilities, 
enabling ICPS to cope with failures both within the 

hardware they rely on and the control algorithms that guide 
their operations. 

ICPS interact with their environments through physical 
hardware. Timely responses to control mechanical 
apparatus such as aircraft ailerons and landing gear are 
crucial to the safe operation of these systems. However, it 
is not enough to consider the computational and 
electromechanical elements of an ICPS separately [3]. 
Rather, it is at the intersection of the cyber and the physical 
that the most challenging fault scenarios emerge. 

This paper presents a Fault Diagnostic Engine (FDE) 
designed to identify and diagnose faults in IEC 61499 
Function Block Applications (FBAs). The FDE monitors 
system-wide behavior using appropriate fault detection 
strategies, watching to see if the control commands issued 
result in the correct operation of the ICPS. When the 
symptoms of a fault are observed, appropriate diagnostic 
tests can be applied to identify, classify and isolate the 
faulty ICPS components. 

Diagnostic agents with domain knowledge of the IEC 
61499 architecture that are operating under the FDE 
interact directly with Function Blocks (FBs). We 
demonstrate how to implement custom Service Interface 
Function Blocks (SIFBs) wired dynamically into the 
application running under the FORTE runtime [4]. These 
SIFBs interact with teams of diagnostic agents operating 
within the GORITE Multi-Agent System [5]. Techniques 
for both long-term observation and fault moni-toring as 
well as failure scenario intervention are presented. By 
designing and developing fault diagnostic resources during 
the Model-Driven Development (MDD) cycles, both 
iterative testing and long-term fault management 
capabilities can be created to support engineers throughout 
the life cycle of the ICPS. 

This paper demonstrates the modeling of the FBA while 
developing diagnostic capabilities in-parallel. It builds on 
our earlier scoping survey of fault diagnostic 
methodologies [6]. We detail the creation of diagnosable-
by-design artifacts using a combination of SysML and IEC 
61499 diagrams that provide diagnostic capabilities to 
accompany the FBA through its entire life-cycle beyond its 
design stages. 
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Section 2 outlines IEC 61499 and the event-driven control 
this architecture provides. Section 3 presents a Heating, 
Ventilation and Air-Conditioning (HVAC) co-simulation 
that was created to support the development of the FBs used 
in the ICPS. The requirements elucidation that preceded the 
modeling phases illustrate how MDD approaches 
encourage diagnosable-by-design principles that identify 
potential fault pathways. We also describe the type of faults 
that might be encountered in IEC 61499 systems such as 
these. Section 4 examines the operation of the diagnostic 
agents in more detail, evaluating the performance of the 
FDE when operating with multiple, simultaneous agent 
instances. In Section 5 we propose future directions for this 
research. 
 

2. BACKGROUND TO IEC 61499 BASED 
ICPS 
ICPS built with IEC 61499 function blocks rely on sensors 
to capture information about the physical tasks they are 
man-aging. Electromechanical actuators such as valves or 
motors are then used to perform physical tasks in their 
environment. The control of sensors, actuators and any 
control and data transformations are carried out through 
software elements called function blocks (FBs). 

IEC 61499 function blocks provide an object-oriented 
software architecture for building ICPS [7], [8]. Mediated 
by a set of IEC standards, FBs address many of the 
shortcomings of earlier embedded controller design 
approaches [1]. The architecture encourages the flexible 
reuse of components as well as reliable data exchange 
between distributed sub-applications by employing secure, 
industrial-strength connectivity [10]. 

Each FB facilitates one or more of the requirements of the 
ICPS control functionality. Fig. 1 shows a FB that forms 
part of the room controller for the HVAC system. 
F_TO_C_CONVis responsible for converting Fahrenheit 
temperatures to Celsius. 

This FB receives new temperature readings to convert by 
responding to an Input Event received on the port REQ, sent 
from another FB it is connected to. This event triggers the 
acquisition of a new Fahrenheit temperature value via 
the Input Data port TEMP_F. Algorithms within the FB 
then perform the temperature conversion. If successful, the 
FB passes the Celsius temperature out via the Output 
Data port TEMP_C before triggering the Output Event CNF. 
If the temperature cannot be converted, the FB signals an 
error by triggering the event ERROR. This event-driven 
control is typical of ICPS built with IEC 61499. 

3. MODEL-DRIVEN DEVELOPMENT 
WITH DIAGNOSTICS 
Most design and development tasks for ICPS are complex 
optimization problems for real-time systems [11]. The 
physical characteristics of sensors and actuators add a level 
of complexity to both the functional and quality 
requirements [12], [13]. ICPS often operate under strict 
timing constraints where FBs have to interact with real-
world events that are both asynchronous and exhibit 
parallelism [14]. The operations they perform in their 
environment demand timely responses and often, high-
precision [11]. Hence, designers must remain cognizant of 
the physical characteristics of the devices they are 
interfacing to. 

Pre-Requirements statements are the starting point from 
which designers begin to iteratively explore design options 
through rounds of engineering analysis, interpretation and 
refinement. Pre-Requirements are usually written in free-
form natural language, are often incomplete, and are 
sometimes ambiguous [12]. They describe what is needed 
without considering how the ICPS might meet those 
needs [15]. However, diagnostic considerations are seldom 
considered during this phase. The early ideas for the room 
controller included the concept sketch shown in Fig. 2. The 
sketch mentions the quality requirements of sub-second 
response times for button presses and display updates. 

Table I illustrates some of the refined requirements. These 
rely on an ontology that describes the proposed room 
controller elements and their attributes. Ambiguous terms 
from the Pre-Requirements are replaced by well-defined 
terms such as Temperature and HVAC_Controller to 
identify elements as well as operations such as decreases 
and notify. 

ISO Standard 25010 defines quality attributes such as 
performance and timeliness [16]. Derived from the ISO 
Software Engineering Product Quality standard ISO/IEC 
9126, ISO 25010 focuses on software-intensive systems 
such as ICPS. Table I shows the relationship between the 
operational requirements and the corresponding quality 
attributes that the design must satisfy for each requirement. 
 
A. Modeling with SysML diagrams and 4diac 
The SysML Block Diagram shown in Fig. 3 identifies 
broad functional units needed to meet the requirements. 

There is a clear distinction between the way the Pre-
Requirements explain to the designers what is needed and  

 

Fig. 1: Function block created for the Room controller. 

 
Fig. 2: Early-stage concept sketch of the room controller. 
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the detailed designs that emerge after the requirement 
specification has been written. 

Each block on the SysML Block Diagram is realized by one 
or more function blocks (FBs). Once appropriate sensors 
and actuators are considered, design constraints emerge as 
the requirements are refined. It is during this phase of the 
modeling that an understanding of the diagnostic needs 
begins to emerge. For example, the Pre-Requirements 
stated that all temperatures should be displayed in Celsius. 
However, the temperature probe that best fits the cost and 
technical needs only provides readings in Fahrenheit. This 
demanded the addition of F_TO_C_CONV, which was also 
tasked with performing error checks on the temperature 
probe readings. This sensor was also noted as a potential 
point-of-failure. 

Fig. 4 shows the next design artifact after the application 
has been modeled in the 4diac Function Block 
Development System [17]. Each FB is a class instance 
created from a primitive IEC 61499 FB type. The IEC 
61499 convention places all public in-bound events and 
data inputs on the left of each FB symbol while all out-
bound events and data outputs appear on the right. 
Connections between sub-sections further delineate the 
separations of concerns, modeling the flow of data between 
elements. This diagram therefore presents information in a 
way more appropriate to the FB architecture than a SysML 
Class Diagram would. It also captures the thinking of the 
designer in a less abstract way that is closer to what the final 
application will look like. 

While designing applications in this way, there is a subtle 
but natural inclination to drive the flow of information in 
the diagram from left to right. This is in line with the IEC 
61499 convention. The temperature capture and conversion 
sub-section felt natural to place on the left. Similarly, it was 
logical to position the Z_CONTROLLER that co-ordinates the 
information from all sensors and actuators in the center of 
the model. While the display and on-screen switches will 
later be realized as a single integrated unit, their functions  

were separated in the model with the switches expressed as 
inputs on the left and the display as outputs on the right. 
Creating such uniformity of expression is a key goal of 
SysML [18]. Well-understood diagramming conventions 
not only speed up the design process, they remove 
ambiguity, foster better communication between 
stakeholders, and lead to specifications that can be refined 
iteratively [14]. As we show later in Section 3-B, this 
convention also makes it easier to identify fault pathways. 

Each FB operates its own internal state machine called 
an Execution Control Chart (ECC) [19]. Fig. 5 shows 
some of the event sequences and data exchange between 
FBs in the room controller and the HVAC main controller. 

The Z_CONTROLLER is constructed from a fundamental IEC 
61499 template called a Basic Function Block (BFB). State 
changes in the ECC trigger input and output events that, 
with their accompanying data, exchange control 

TABLE I: Example Functional and Quality Requirements 

 

 

Fig. 3: SysML Block Diagram for the function blocks. 

 

Fig. 4: Room Controller implemented with Function Blocks.  

 

Fig. 5: Partial SysML Sequence Diagram with the individual 
Z_CONTROLLER Execution Control Chart (ECC).  
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information between the individual FBs in the FBA. 
SysML Sequence diagrams document high-level 
interactions while individual ECCs, modeled in 4diac, 
detail state transitions within each FB in greater detail. For 
each state transition shown on the ECC, one or more 
algorithms can be triggered to process data and make 
decisions about outputs. Algorithms may also cause 
subsequent state changes. 
 
B. Modeling faults and creating diagnosis strategies 
Any change in the operation of an ICPS that leads to 
degraded performance or unacceptable behavior is defined 
as a fault [20]. Recognizing the symptoms of a fault 
requires knowing the difference between what is normal 
behavior and misbehavior by one or more components of 
the ICPS [21]. Determining a baseline of what constitutes 
normal behavior is key to modeling successful ICPS fault 
management strategies. The systematic diagnosis 
performed after a problem is detected then seeks to isolate 
and identify exactly which device or sub-system is causing 
the errant behavior. Complicating this, the presence of 
multiple, simultaneous faults in large systems with a 
myriad of sensors, actuators, and control elements demands 
innovative approaches [22], [23]. 

Sensor faults. The Z_TEMPERATURE SIFB shown in Fig. 
4 is connected to a Platinum Resistive Thermometer (PTR). 
PTRs are sensors that change their electrical resistance 
linearly as the temperature changes. Properly calibrated 
PTRs, fitted with the appropriate electronics, are more 
accurate and stable than other types of temperature sensors. 
However, PTRs are fragile and exhibit a number of distinct 
failure modes [24]. The resistive element can crack when 
stressed, causing it to have a resistance that is out-of-
tolerance with its calibrated value. A failure of the 
electronic components in the sensors interface can cause 
the internal current and voltage generator to misreport the 
temperature. Intermittent connections also cause the sensor 
to deliver readings that vary widely each time the FB 
samples the sensor. 

Actuator electrical and mechanical faults. Not all 
devices in an ICPS have the ability to report internal 
failures. Other types of faults in the HVAC heating and 
cooling machinery result in the ICPS failing to control its 
environment properly. These include problems with 
actuators that control the airflow in ducting. In other 
situations, sensors that misreport the position of a control 
vent can result in the icing-up of a duct, blocking airflows. 
These types of faults result in the ICPS believing that the 
correct amount of heating or cooling is being delivered to a 
room when it is not. Without appropriate diagnostic 
monitoring, such faults may not always be detected by the 
ICPS itself. 

Software faults. Software algorithms that implement the 
cyber parts of a ICPS can also fail, often as a result of 
updates applied after an earlier successful commissioning 
of a system. Software misbehavior is sometimes 
indistinguishable from sensor or actuator failures. During 
fault identification, the FDE applies an iterative divide-and-
conquer approach that first isolates the sensor or other 
electromechanical hardware from the FBs in the section of 
the ICPS that is being examined. By exercising each 

component separately with pre-defined diagnostic plans, 
the agents determine which parts are still acting normally 
and which components are exhibiting fault signatures. 
 
C. Creating fault scenarios from models 
Each FB is a class, but it is not practical to create typical 
Test-Driven Design (TDD) Unit Tests for them. The 4diac 
IDE provides a way of manually exercising the inputs and 
outputs of a single FB. However, automatically iterating a 
range of test values in 4diac is not yet supported. Therefore, 
exercising multiple FBs in the IDE to diagnose faults with 
data sets is not possible. Hametner et al. [25] propose one 
approach to TDD after first identifying what the 
fundamental unit of an FBA is that a unit test could be 
applied to. FBs meet the criteria of being software 
components [26], [27] since they encapsulate both their 
ECCs and their internal data. Similarly, 
Christensen [28] proposes a Model-View-Controller with 
Diagnostics (MVCD) design pattern that incorporates an 
early-stage diagnostics design approach. Hence testing 
approaches usually approach FBs as black-box components 
with observable behaviors rather than attempting to directly 
unit test them as functions in classes [29]. 

The proposed MDD with Diagnostics approach addresses 
these difficulties by identifying potential faults and fault 
pathways in FBs concurrently while they are being 
designed. Diagnostic tests are coded to provide appropriate 
test coverage by capturing related data values from one or 
more FBs while they are being exercised. These can be 
executed individually by the FDE agents on-demand. As 
the design of each FB progresses incrementally, potential 
fault scenarios are identified iteratively, making the 
diagnostic test suite progressively more comprehensive. 
FBs are designed to be re-usable, so subsets of fault tests 
and test values are accumulated to form a library of 
resources for subsequent development. 

Creating fault identification tests early improves both the 
intrinsic design and the reliability of each FB. As parts of 
the FBA are completed, groups of related FBs can be 
exercised to help refine the design for the next stages. Fig. 
6 maps the fault pathways through the temperature sensor 
sub-system of the FBA. 

The Z_TEMPERATURE SAMPLE event is triggered when the 
FB has acquired a value from the temperature sensor. The 
first accessible Diagnostic Point (DP) on this FB is the 
output TEMP, which passes the reading into 
F_TO_C_CONV TEMP_F. This FB also checks the range of 
reasonable temperatures. In-range readings pass out via 
TEMP_C to TEMP on Z_CONTROLLER. Irregular readings 
that deviate significantly from the last reading are 
considered outliers. If this behavior persists, the ERROR 
output will fire, indicating to Z_CONTROLLER that 
unexpected readings have been detected. The blue squares 

 
Fig. 6: Temperature sensor sub-system fault pathways. 
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identify DPs along this fault pathway that can be 
monitored. 
 

4. AGENT DIAGNOSTICS 
Once all the potential fault pathways have been identified, 
the FDE is able to deploy a harness to capture data from 
designated diagnostic points. Fig. 7 shows an AGENT_GATE 
function block that the FDE rewire() command has inserted 
automatically into the FBA to capture activity at this 
Diagnostic Point (DP). The FDE provides multiple FIFO 
input and output packet queues to ensure that the diagnostic 
scripts can work asynchronously without losing track of the 
telemetry exchanged with the FBA. 

While the rewired FBA is operating normally, the 
AGENT_GATE instances pass events and data transparently 
through themselves. They also send telemetry back to the 
FDE agents, identifying themselves in the transmission 
packet so that the FDE can correlate readings from multiple 
diagnostic points simultaneously. This Monitor mode is 
read-only. 

The simbIoTe simulator also provides an HMI that allows 
button presses to be generated while emulating the 
temperature displays for the FBA during development [30]. 
Within sim-bIoTe, the Environment component generates 
a range of temperatures that vary stochastically, driven by 
a simple algorithm. This simulation approach allows rapid 
prototyping of the FBA while supporting co-simulation as 
hardware components are completed, replacing parts of 
simulated hardware. 

In Monitor mode, the FDE agents track data passing 
through the DPs, watching values along the potential fault 
pathways identified earlier. Once an outlier is detected, or 
if a signal being followed does not emerge from a pathway 
within an expected interval, the FDE can intervene. The 
agents can then intervene and execute diagnostic plans by 
instructing the AGENT_GATE instances to ring-fence parts 
of the FBS so it can be diagnosed. The temperature sensor 
sub-system between DPs shown in Fig. 6 is isolated by 
issuing a gateClose command to the AGENT_GATE 
instances at DP 1 and DP 5. This blocks data coming in 
from the temperature sensor and going out of the 
Z_CONTROLLER. A pre-defined set of diagnostic test values 
is then sent through the fault path by injecting values into 
DP 1 and reconciling the outputs captured at the other DPs. 
Fahrenheit diagnostic values injected into DP 1 should 
generate matching Celsius values at DP 2. During a 
diagnostic run a temperature of absolute zero resulted in 
F_TO_C_CONV triggering its ERROR output correctly at all 

times. As expected, the Z_CONTROLLER ZONE_TEMP value 
did not appear during this error condition. 

This divide-and-conquer approach allows the FDE agent to 
update its beliefs about what may be wrong. For example, 
if all the diagnostic values injected into the fault pathways 
result in correct values emerging through the other 
diagnostic points, the agent concludes that the temperature 
sensor is faulty. Conversely, if the FDE compare() function 
cannot correlate temperatures being processed by 
F_TO_C_CONV, then it concludes that this FB has a faulty 
algorithm. IEC 61499 applications are often partitioned 
into distributed sub-applications so they can be run on 
separate computing devices. The complete HVAC is built 
up from multiple room controllers connected to a HVAC 
Main Controller FBA running on its own hardware. The 
FDE supports teams of co-operating agents who are 
deployed to watch and diagnose sub-applications. Using 
back-channel communications built into the FDE, agents 
exchange beliefs about what is happening in their sub-
applications to build up a shared understanding of how the 
system is behaving. 

Distributed GORITE agents were used to investigate the 
blocked duct scenario outlined in Section III-B. While the 
FDE can operate locally, we chose to deploy it on a separate 
system during all tests. This allowed us to investigate more 
aggressive fault scenarios that involved complete failures 
of specific sub-applications. In Monitor mode, the agents 
applied a Bayesian analysis of the temperatures being read 
by the zone. Once a temperature change is requested by a 
user, the HVAC machinery should start a heating or cooling 
cycle. Based on the ASHRAE Standard 55 [31], we 
estimated a suitable rate of change for occupant thermal 
comfort of no more than 0.3°C/min. When simbIoTe 
simulated a rate that was significantly different, the agents 
correctly launched a diagnostic intervention, working 
through subsystems to identify the fault location. We also 
simulated the situation where there was no change in 
response to an occupants request which generated a similar 
response by the FDE. 
 
A. Results from monitoring and diagnostic 
interventions 
The FDE was evaluated with ten AGENT_GATE instances on 
different DPs, returning data in Monitor mode. The FBA 
samples its switches and sensors at 100ms intervals to meet 
the quality requirements. No discernible degradation in 
performance was evident. When an agent decided to 
intervene and switch to Diagnostic mode, it issues as gate() 
command to the relevent AGENT_GATE instances within 
that sub-system. Exercising the diagnostic test in this mode 
while other parts of the FBA were still operating showed 
no discernible performance issues. This can be attributed to 
the AGENT_GATE being coded directly in C++ and cycling 
on an interval timer that is configured dynamically by 
the rewire() command to sample more frequently than the 
fastest FB identified in the FBA. 

A number of software faults were simulated by introducing 
a random error in the Fahrenheit to Celsius conversion for 
specific temperature ranges. While in Monitor mode, the 
FDE agent detected the differing outputs at DP 1 and 2 
while recognizing that the ERROR event at DP 3 had not 

 

Fig. 7: Agent function block wired into a diagnostic point. 
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occurred. After intervening in Diagnostic mode, it 
proposed that there was a fault in F_TO_C_CONV. 
 

5. CONCLUSIONS AND FUTURE WORK 
Applying a diagnosable-by-design, model-driven 
development approach proposed in this paper is one way of 
building resilience into an ICPS. Future directions for this 
work include a level of compliance with the syntax of 
testing languages used in products such as Selenium [32]. 
Safety-critical aspects also need to be considered further: 
isolating critical sub-systems after first securing what is 
being controlled is a vital aspect of fault management. 
Building such safeguards into diagnostic library resources 
remains a fascinating area to examine further. 

Techniques such as these have deliver practical, early-stage 
productivity gains to engineers if they are to see wider 
adoption. This approach is one way of addressing the 
limitations that IEC 61499 places on early stage testing 
while providing a foundation for long-term diagnosability 
and resilience of ICPS. 
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