
 

Machine learning approach for full impedance 

spectrum study of Li-ion battery 
 

1st Cuili Chen 

Department of Informatics 
Technical University of Munich 
Garching by Munich, Germany 

cuili.chen@tum.de  

 

4th Oliver Schneider 

Department of Informatics 
Technical University of Munich  
Garching bei Munich, Germany 

oliver_m.schneider@tum.de 

2nd Göktug Yesilbas 

Department of Informatics 

Department of Physics 
Technical University of Munich 

Garching bei Munich, Germany 
g.yesilbas@tum.de 

 

5th Alois Christian Knoll 
Department of Informatics 

Technical University of Munich 
Garching bei Munich, Germany 

knoll@in.tum.de 

3rd Alexander Lenz 

Department of Informatics 
Technical University of Munich 
Garching bei Munich, Germany 

alex.lenz@tum.de 

Abstract — Electrochemical Impedance Spectroscopy (EIS) 

has been widely applied for Li-ion battery research because EIS 

can reflect the physical characteristics. The full impedance 

spectrum sweep generally takes several minutes. Thus, it is 

impossible to implement a full spectrum sweep for real-time 

investigations. In this paper, machine learning approach is 

proposed to address the issue. The proposed approach is based 

on multi-sine signal sweep technique, where the impedances at 

corresponding frequencies are derived with a fast Fourier 

transform. The full impedance spectrum is obtained via machine 

learning approach. The results are compared with three 

alternative techniques namely, the piecewise cubic Hermite 

interpolation polynomial, modified Akima piecewise cubic 

Hermite interpolation, and Spline. The results demonstrate that 

the proposed machine learning approach has the best 
performance.  
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I. INTRODUCTION 

Li-ion batteries (LiBs) are widely adopted in battery 
electrical vehicles (BEVs) due to their high specific energy, 
low self-discharge rate, and low cost [1-3]. Even though BEVs 
are advocated globally due to zero greenhouse gas emission, 

some limitations of LiBs also impede the broad acceptance of 
BEVs. One of them is the shorter lifespan compared with 
fossil fuel vehicles. Intensive research has been carried out to 
optimize the operation of LiB [4, 5] to prolong the lifespan of 
BEVs. One of the most prevalent techniques utilized is 
Electrochemical Impedance Spectroscopy (EIS). This 

technique is implemented by injecting sinusoidal voltage or 
current signals to the battery and measuring the corresponding 
current or voltage signal. The operation of LiBs includes 
various dynamic processes, such as electron/ion migration, 
chemical reactions, diffusion in solids/liquids, and relaxation 
processes [6], whose time constants vary from µs to ms. By 
injecting sinusoidal signals from mHz to kHz/MHz, the 

impedance of LiBs can be derived which reflects the physical 
characteristics [7], ideally permits to separate the 
electrochemical processes relevant at different time scales, 
and may be used for operation optimization. Fig. 1 shows the 

Nyquist plot of a LiB half-cell with the corresponding 
dynamic processes indicated.  

EIS measurements have been utilized to estimate the 

battery resistance [7, 8], the diffusion coefficient [7], and so 
on. All of these are vital indicators for the state of health of 
LiBs [6, 7, 9, 10]. However, due to the large time constant of 
the diffusion and relaxation processes, the full spectrum EIS 
measurement takes more than ten minutes which makes it 
infeasible for online applications. Many approaches have been 

explored to address this issue. For instance, there is a step 
pulse technique [11-13] where step pulse acts as incident 
signal and then a fast Fourier transform (FFT) is applied to 
derive the full impedance spectra. Single sine injection 
techniques and multi-sine signal injection techniques (MSSIT) 
[14, 15] have also been investigated where only characteristics 

in specified frequency regimes are investigated. 

  
Fig. 1 Schematic Nyquist plot of LiB impedance. SEI: Solid Electrolyte 

Interface.  

This paper examines the role of machine learning (ML) in 

the EIS analysis. Based on the MSSIT, a ML approach is 
proposed. This approach is able to provide the full impedance 
spectra while maintaining the short measurement time of 
MSSIT. The approach has been applied to both simulation and 
experimental results. The estimation accuracy is compared 
with three other techniques, the piecewise cubic Hermite 

interpolation polynomial (Pchip), modified Akima piecewise 
cubic Hermite interpolation (Makima), and cubic spline 
interpolation (spline).  
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The paper is organized as follows. Section II demonstrates 
the machine learning (ML) approach and three interpolation 
techniques. Section III illustrates the implementation of the 
MSSIT based ML in simulation. Experimental results are 

shown in section IV. Section V is conclusion. 

II. THE PROPOSED MACHINE LEARNING APPROACH 

A. MSSIT 

This paper is based on the MSSIT where multiple 

sinusoidal current signals with specified frequencies (f1, f2, 
f3, ··, fn) are injected simultaneously to the battery. The 
corresponding variation in battery voltage is measured. By 
FFT, the battery impedance can be derived with (1). 

 
(1) 

The LiB impedance measurement can be represented with 
{(x(i,j), y(i,j)): i=1, 2, …, m. j= 1, 2, …, n.}, where x is the real 

part of the impedance, y is the imaginary part, i is the number 
of sample, j is the number of injected sinusoidal signals in each 
sample. The Nyquist plot of one measurement is illustrated in 
Fig. 2. It can be noted that a better full spectrum representation 
can be achieved with more points recorded. However, this also 
means longer measurement time. Therefore, in multi-sine 

signal injection, the interpretation of the region between two 
adjacent points plays a vital role. In this paper, a ML approach 
is proposed for the interpretation. The theory is illustrated in 
the following section.  

 

Fig. 2 Schematic Nyquist plot of one LiB impedance measurement. The dotted 

line represents the full spectrum while the blue circles represent actual data 

points extracted from MSSIT. 

B. Full spectra impedance derivation with ML 

Suppose the impedance measurements are collected in a 
matrix Am×n, where m is number of samples and n is the 
number of variables. In this case, the variable is frequency. 
The variables between two adjacent points shown in Fig. 2 are 

added in the sample as missing values. These m samples 
include training samples with all variables measured as well 
as validation samples that have missing variables. The ML 
algorithm is applied to predict the missing value by low-rank 
matrix factorization as shown in (2).  

                                (2) 

Where Lm×k and Rk×n are two lower rank matrices, k≤
min(m, n).  

The algorithm assigns random values to the matrix Lm×k 

and Rk×n and finds the best representation of A by minimizing 
(3).  

 
(3) 

Where li, rj are the ith row of matrix L and jth column of 
matrix R respectively. ai,j is the element in ith row and jth 
column of matrix A. λ is the regularization factor.  is the 
number of variables for the sample i measured.  is the 

number of samples that measured this variable j.  

C. Polynomial interpolation techniques 

The polynomial interpolation techniques have also been 
applied to find the best representation between data points. 
Take the kth point (xk, yk) and (k+1)th point (xk+1, yk+1) in Fig. 2 
as an example, for any xk < x < xk+1, a simple estimation for y 

is the piecewise linear interpolation as described in (4). 

 
(4) 

In this paper, we investigate Pchip, Makima, and Spline to 
account for nonlinear characteristics of LiB impedance. All 
three methods are based on Hermite interpolation as shown in 
(5). 

 

 
(5) 

Where dk and dk+1 are the first derivative of f(x) at k and 
k+1. h = hk = xk+1- xk, s = x- xk, δk = (yk+1- yk)/hk.  

The three approaches assign different definitions for the 
first derivatives. In Pchip, the first derivatives are determined 
so that there is no overshoot in the interpolation between xk < 
x < xk+1. dk is assigned to be (6).  

 
(6) 

Where w1= 2hk+hk-1, w2= hk+2hk-1. 

In Spline, the derivatives are determined by (7).  
 

 
(7) 

The linear equation is then solved to acquire dk. The main 
difference between Spline and Pchip lies in the second 
derivative f ꞌꞌ(x), where f ꞌꞌ(x) is continuous in Spline but not in 
Pchip. 

In Makima, the first derivatives are derived with (8). 

 
(8) 

Where w1 and w2 are defined below.  

 ,  . 

In this paper, the interpolation results are compared with 
that derived from the ML approach. 

III. SIMULATION IMPLEMENTATION AND ANALYSIS 

The full spectra impedance derivation is tested by 
simulation results as well as experimental data. The schematic 
of the simulation circuit is shown in Fig. 3. The Multi-sine 

signals are generated by the signal generator to regulate the 
output of the current source. The frequency of the sinusoidal 
current varies from 1Hz to 10kHz with an amplitude of 10mA. 
The current is applied to the battery as excitation signal. Both 
the applied current I and the battery voltage U are recorded for 
FFT analysis. The FFT results are then used to derive the 

battery impedance with the equation (1).  
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Fig. 3 Schematic of simulation circuit. 

A. Simulation 

In simulation, the battery is modeled with the equivalent 
circuit shown in Fig. 4 [15]. C1 is 2mF. C2 is 160µF. R1 is 2Ω. 
R2 is 2Ω. For full spectrum measurement, ten points per 
decade are used in the regime between 1Hz and 10kHz. For 
the multi-sine injection approach, only selected frequencies 

are injected.  

 
Fig. 4 Equivalent circuit model for LiB. 

 
Fig. 5 Nyquist plot of battery impedance in case of R2 increment (R2 

increases from 2Ω to 2.05Ω with even steps). 

Fig. 5 demonstrates the change of the full spectra battery 
impedance in the simulation when the resistor R2 is varied. 
There is noticeable increment in the second semicircle of the 
impedance with the rising of R2. This imitates the impedance 
change over time. This means the preferred characteristics at 
frequency f1 will shift slightly to a different frequency over 

time which will lead to inaccurate estimation when MSSIT 
alone is applied. In this paper, machine learning is proposed to 
address this issue. The following section illustrates the 
analysis procedure. 

B. Simulation analysis 

The battery impedance is divided into three regimes to 

account for the electron migration, chemical reaction effects. 
Two validation sets of multi-sine signal tests are carried out. 
In the first set, the boundary points are selected, while in the 
second set, the characteristic critical points, which can reflect 
the shape of the impedance, are selected. Table I gives a 
summary of the frequency points selected. 

Table I Frequencies assigned for two test sets. Unit: Hz. 

Set No. f1 f2 f3 f4 f5 

1 4k 1.25k 100 1  

2 10k 500 100 25 1 

 
                                 (a)                                                           (b) 

Fig. 6 Comparison of full impedance spectrum constructed with different  

approaches. (a) MSSIT with boundary points from each regime. (b) MSSIT 

with characteristic critical points from each regime. 

The analysis of the two test sets are shown in Fig. 6a and 
Fig. 6b, respectively. In the figure, results with ‘EIS’ legend 
indicates the impedance measurement obtained by a full 
spectrum sweep. It can be noted that, even though there are 
only limited number of data points in MSSIT, with the 

proposed ML approach, a good reflection of the full spectrum 
regime can be achieved. For the other three techniques, only 
when the shape relevant critical points are selected these 
techniques can provide acceptable results. The impact of the 
selected points is extraordinary for the Spline approach. Pchip, 
Makima, and Spline approaches also have a limited 

performance when it comes to the regime outside the start and 
the end points. 

 
         (a)                                                           (b) 

Fig. 7 Estimation error comparison. (a) MSSIT with boundary points from 

each regime. (b) MSSIT with characteristic critical points from each regime.  

The squared error between the EIS measurements and the 
estimations from Pchip, Makima, Spline, and the proposed 
ML approach are compared in Fig. 7a and Fig. 7b. Traditional 
approaches, such as Pchip, Makima, and Spline, are 

excessively influenced by the selected frequencies in the 
MSSIT approach, while the ML approach shows good 
performance at both conditions. Similar characteristics have 
been observed for experimental results and are discussed in the 
following section. 

IV. EXPERIMENTAL TEST AND FULL SPECTRUM DERIVATION 

This section specifies the practical test conditions and 
demonstrates the comparison of full spectrum derivation 
between the four approaches, ML, Pchip, Makima, Spline.  

A. Test design  

In the experiment, a Sony US18650FT (K C1113ZK08J, 
rated capacity: 1.1Ah) is tested with a Gamry Interface 5000P. 

Firstly, the battery is pre-discharged and characterized at 1C. 
Then, the battery is cycled at 4C charging and discharging rate 
for 210 cycles. For the first ten cycles, EIS measurements are 
conducted after each cycle. These data are used as training 
samples. Afterwards, EIS measurements are carried out every 
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ten cycles. These are the validation data. All the EIS 
measurements are carried out at 100% state of charge (SoC) 
and in the regime between 10mHz and 20kHz. In total, there 
are 10 samples as training data and 20 samples as validation 

data. 

 
Fig. 8 Capacity degradation over cycling with 4C charging and discharging 

rate.  

Fig. 8 shows the capacity loss during the power cycling 
process. In average, the capacity reduces from 97.5% of rated 
capacity to about 95.5% by the end of the power cycling. A 
maximum capacity of 1080mAh is reached. This capacity is 

smaller than rated capacity, it can be due to fast charging rate 
and the calendar aging (the battery was stored about one year 
at room temperature before the power cycling test.).  

 
Fig. 9 Impedance spectra of the battery cell at 100% SoC in the first cycle. 

Fig. 9 shows the EIS measurement in the first cycle. In this 

test, the skin effect occurs between 3kHz and 20kHz. The 
internal resistance is 15.2 mΩ at about 1kHz. Then, the semi-
circle is caused by processes like electrochemical double layer 
charging and charge transfer. Finally, the Warburg impedance, 
which is caused by diffusion, appears in the mHz regime. 
Since the skin effect appears at high frequency regime, and it 

contributes less to the total time cost of the EIS measurement 
compared with other characteristics in the impedance spectra, 
the analysis in the following section is focused between 
20mHz and 2kHz.  

B. Derivation of full spectrum 

In order to derive the full impedance spectra, several points 

are selected from the EIS measurement as the results from 
MSSIT. The selected frequency points are shown in Table II. 
The first data set includes all the boundary points 
corresponding to the electron migration, chemical reaction, 
and diffusion phenomena, while the second data set covers the 
major characteristic critical points. The selected points are 

then utilized for full spectra derivation. 

Table II Frequencies selected for two test sets. Unit: Hz. 

Set No. f1 f2 f3 f4 f5 

1 1.979k 200.9 4.971 0.020  

2 1.979k 200.9 4.971 2.020 0.020 
 

Fig. 10 shows the derivation results for cycle 20, which is 
the first sample in the validation data set. It compares the 
derivation results by four different techniques, Pchip, 
Makima, Spline, ML, with the EIS measurements and selected 

Multi-sine measurements. Fig. 10a and Fig. 10b are the results 
with the first and the second data set, respectively. In both 
cases, Pchip, Makima and ML techniques have stable 
estimation, while the spline approach is strongly influenced by 
the selected data points, and its estimation accuracy increased 
when the characteristic critical points were selected. In all 

these approaches, ML techniques reveal the best performance.  

Fig. 11 illustrates the RMS error of the four techniques 
applied to twenty validation data sets. It shows that the 
proposed ML technique has the best accuracy and the 
estimation error is stable over the twenty samples. The RMS 
error of the Spline approach fluctuates a lot especially with the 

characteristic critical data set. In the author’s opinion, this is 
because the Spline technique depends on the data points, a 
shift caused by the degradation will introduce a large variance 
in the estimation results. Spline is more suitable for MSSIT 
with dense sampling points. 

 
        (a) 

 
            (b) 

Fig. 10 Comparison of full impedance spectrum derivation from 

experimental results. (a) MSSIT with boundary points from each regime. (b) 

MSSIT with characteristic critical points from each regime. 
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        (a) 

 
        (b) 

Fig. 11 RMS error of all validation data sets. (a) MSSIT with boundary points 

from each regime. (b) MSSIT with characteristic critical points from each 

regime. 

C. Estimation over power cycling 

The derivation results over power cycling have also been 
investigated. Fig. 12 displays the impedance in the 1st, 50th, 

120th, 190th power cycle corresponding to the first training 
sample and the fourth, eleventh, and eighteenth validation 
sample. In general, the impedance derived from multi-sine 
measurement points can reflect the characteristics of the full 
impedance spectra. This is mainly due to the fact that the 
machine learning approach has included the operation history 

in the analysis and thus is able to incarnate the characteristics 
with the aging effect. The reconstructed impedance with ML 
is able to distinguish between the impedance in 1st, 50th, 120th, 
and 190th power cycle.  

 
Fig. 12 Impedance derivation with ML over power cycling. Training: first  

sample in the training dataset. EIS CyXX: EIS measurement in cycle XX. 

MSSIT CyXX: MSSIT measurement in cycle XX. Recon CyXX: 

reconstructed impedance with ML in cycle XX.  

V. CONCLUSION 

EIS is a good technique to study the battery performance. 
However, the implementation of the technique is time 
consuming. In this paper, a machine learning approach is 
proposed to shorten the measurement time. The approach is 
based on multi-sine signal injection approach, but it 

compensates the drawback so that full impedance spectra are 
captured in the frequency domain even though only selected 
points are measured. The results are compared with three other 
approaches, the piecewise cubic Hermite interpolation 
polynomial, a modified Akima piecewise cubic Hermite 
interpolation, and Spline. The results show that machine 

learning approach outperforms the other approaches and is not 
dependent on the sampling points used in the multi-sine signal 
sweep technique.  

The proposed machine learning approach has also been 
applied to power cycling tests on Sony cell. The proposed 
approach is able to distinguish different power cycles. More 
research will be carried out to improve the accuracy of the 

proposed technique. 
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