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Abstract 
We have come to rely on industrial-scale cyber-physical 
systems more and more to manage tasks and machinery in 
safety-critical situations. Efficient, reliable fault 
identification and management has become a critical factor 
in the design of these increasingly sophisticated and 
complex devices. Teams of co-operating software agents 
are one way to coordinate the flow of diagnostic 
information gathered during fault-finding. By wielding 
domain knowledge of the software architecture used to 
construct the system, agents build and refine their beliefs 
about the location and root cause of faults. This paper 
examines how agents constructed within the GORITE 
Multi-Agent Framework create and refine their beliefs. We 
demonstrate three different belief structures implemented 
within our Fault Diagnostic Engine, showing how each 
supports a distinct aspect of the agent’s reasoning. Using 
domain knowledge of the IEC 61499 Function Block 
architecture, agents are able to examine and rigorously 
evaluate both individual components and entire sub-
systems.  
 
Index Terms: Diagnostics, Multi-Agent Systems, 
GORITE, Industrial Cyber-Physical Systems, IEC 
61499 Function Blocks.  
 

1. INTRODUCTION 
Industrial-scale Cyber-Physical Systems (ICPS) rely on 
sensors and actuators that interact with computing elements 
to manage complex tasks. When multiple ICPS 
communicate and work together, they are able to facilitate 
manufacturing and control operations that far exceed the 
capabilities of earlier embedded machinery controllers. 
However, ICPS demonstrate a level of complexity that 
demands sophisticated fault identification and diagnosis to 
prevent catastrophic failures [1], [2]. 

Multi-Agent Systems (MAS) are computers that employ 
software entities known as agents [3]. Agents working 
together within a Fault Diagnostic Engine (FDE) 
demonstrate capabilities that make them ideal for carrying 
out fault monitoring, identification and diagnosis for ICPS. 
Wooldridge [4] describes two characteristics of agents that 
are important for this task. Firstly, agents situated in an 
environment are capable of semi-autonomous behavior. 
This allows them to follow fault evidence trails by 
themselves through a malfunctioning ICPS. By observing 
and evaluating fault symptoms without assistance from 
humans, they attempt to reconcile the way the ICPS is 
operating against known profiles of acceptable 
performance. Secondly, by co-ordinating their actions with 
other agents operating within the same environment, they 
can co-operatively share both the analysis tasks and 
evidence gathering to ultimately present a diagnosis of the 
faults. 

Central to these capabilities is the way that an agent is able 
to form and manage beliefs about what it is observing. 
Beliefs are opinions held by an agent, formed during a 
methodical examination and testing of individual parts of 
the ICPS they are investigating. Beliefs are dynamic [5]. 
Previously-held beliefs may be reinforced or discarded, 
based on new evidence that an agent has captured. This 
progressive refinement adds both integrity and weight to 
beliefs, allowing the relative probability of alternate fault 
hypotheses to be considered in the light of the opinions the 
agent now holds. 

This paper presents the design and application of the belief 
and reasoning structures used by the software agents in our 
FDE. We profile three different belief structures that agents 
employ to interact with a Function Block Application 
(FBA) constructed from IEC 61499 Function Blocks 
(FBs) [6]. We demonstrate how the beliefs the agents hold 
enable them to navigate models they have created that 
capture how the FBA is constructed from individual FBs. 
Agents can discern how the component parts of the 
application are interconnected as well as how to exercise 
components while checking for faults. Coupled with a 
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separate belief model that defines the skills needed to 
interact with the FBs during diagnosis, the agents also use 
a third belief structure to organize their findings. By 
considering the evidence captured in these complementary 
belief structures, agents can propose which faults have 
occurred with higher confidence. This technique illustrates 
how agents can dynamically monitor systems, updating 
their beliefs and reconfiguring the control layer from the 
execution layer. This represents a significant enhancement 
of the interaction scheme employed in [7], [8] where 
execution layer agents only initiated function block 
controlled actions. 

Section 2 introduces the characteristics of IEC 61499 
Function Blocks and how ICPS using them are crafted. A 
Heating, Ventilation and Air-Conditioning (HVAC) system 
constructed from FBs is used to illustrate the types of faults 
that can occur. Section 3 introduces Multi-Agent Systems, 
profiling the way our agents use Belief-Desire-Intention 
(BDI) paradigms to orchestrate their behavior. The three 
belief structures are explained and contrasted, showing how 
agents use them to interact with FBAs during diagnostic 
explorations. Section 4 presents our conclusions and future 
research directions. 
 

2. ICPS BUILT WITH IEC 61499 
FUNCTION BLOCKS 
ICPS constructed with an IEC 61499 software architecture 
co-ordinate tasks within their physical environment using a 
range of sophisticated sensors and actuators. FBs are 
object-oriented software entities, designed to implement 
the control logic required to interface with individual 
sensors. They also co-ordinate the movements of 
electromechanical actuators such as motors and ducting 
vents to perform work in their environment [9], [10]. 

Typical HVAC installations rely on multiple self-managing 
controllers, deployed in different parts of a building. Fig. 
1 illustrates the HVAC sub-systems which provide heating 
and cooling to a building. Each room controller 
communicates environmental information to a centralized 
controller that is responsible for delivering enough warm or 
cool air to each zone to meet the needs of the occupants. 
Achieving the desired temperature and humidity requires 
delicate control of air flows. The HVAC Central Controller 
typically relies on Proportional Control (PI) 
algorithms [11] driven by telemetry captured from 
temperature sensors in each zone. 

Fig. 2 details the FBs used to construct a single room 
controller. The Z_CONTROLLER FB is constructed from 
a template called a Basic Function Block (BFB). The IEC 
61499 design convention is to document Input 
Events and Data Inputs on the left of the FB symbol. The 
data connections between individual FBs are shown in blue 
while event triggers are shown in red. Dotted lines indicate 
connections to another sub-application that runs the HVAC 
Main controller on a different computer. The input event 
CMD_UP receives an event from Z_SWITCHES to notify 
it that a room occupant has asked for the temperature to be 
increased. Similarly, when the temperature sensor 
monitored by Z_TEMPERATURE reports a temperature 
change, Z_CONTROLLER is notified by an event received 

by TEMP_CHANGED. The value of the new temperature 
is available on the data input TEMP as an IEEE-format 
Real number. Similarly, Output Events and Data  

Outputs are used to pass information out of 
Z_CONTROLLER and Z_TEMPERATURE to other FBs. 

Distributed, event-driven behavior such as this is typical of 
ICPS constructed from FBs. IEC 61499 facilitates the 
development of compact, modular functional units that 
encourage reusability. However, this abstraction level still 
demands a consideration of both the computational needs 
of the task as well as the physical aspects of the sensors, 
actuators and the work that is to be performed in the 
environment. ICPS operate in worlds that are non-
deterministic. Hence their actions have to take into 
consideration the time-constraints that the environment 
imposes upon them. It is there, at the intersection of the 
cyber and the physical boundaries of an ICPS, that the most 
challenging aspects of its design need to be addressed [12]. 
Leitao [3] comments that the novelty of ICPS lies not in the 
establishment of new technologies. Rather, they draw 
together existing approaches from the domains of industrial 
control, real-time systems, service-oriented computing and 
distributed processing. 

ICPS faults are defined as any operation that leads to 
unacceptable behavior or degraded performance [13], [14]. 
Sensors can include complex electronic interfaces that 
exhibit both breakdowns and anomalous behavior [15]. The 
electromechanical actuators that move the vanes in air 
ducts can also jam when they ice-over. Damaged position 
sensors can report their alignment incorrectly in these 

 
Fig. 1: Sub-systems of a typical building HVAC installation. 

 

 
Fig. 2: Room controller built with IEC 61499 function blocks. 
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cases. Software faults, which are often indistinguishable 
from hardware faults, can be introduced into FBs that were 
previously working correctly via updates that have not been 
fully tested. 
 

3. MULTI-AGENT SYSTEMS AND AGENT 
BELIEFS 
Multi-Agent Systems first attracted interest in the 1980s as 
a way of performing control and management tasks within 
complex dynamic environments [16]. Bratman introduced 
the Belief-Desire-Intention (BDI) paradigm [17]. 
Traditionally, a BDI agent maintains beliefs about its 
environment, other agents, and itself as well as desires that 
it wishes to satisfy and intentions to act towards the 
fulfillment of selected desires. In the GORITE (Goal 
ORIented TEams) Multi-Agent Framework [18], desires 
are represented explicitly as goals [16]. When an agent 
commits to the achievement of a goal (based on its current 
beliefs), that goal becomes an intention. Further-more, 
GORITE agents (and teams) can be members of other 
teams which have their own beliefs, desires and intentions. 

Beliefs provide a model of the domain the agent operates 
in [19]. For fault diagnosis, this model encompasses both 
the design of the ICPS that the agents are examining as well 
as sufficient knowledge of the physical environment the 
ICPS is interacting with. The agents gather all their 
knowledge of the physical environment via the ICPS itself. 
For example, the temperatures which the agents use to 
determine if the HVAC is working properly are 
thosecaptured by the FB that reads the room sensor. In our 
FDE design, reference temperatures are not captured by the 
agents themselves from other separate sensors co-located in 
the environment. 

Definition 1 (Beliefs). Every agent contains a set of 
beliefs B = {b1,…,} such that each belief  b ∈	 B is a 
tuple ⟨Δ,v⟩ where 

• Δ is a skill that the agent can use. 
• v is the veracity of the belief held by the agent 

about the skill. This may be true, false or 
undetermined. 

In the FDE, agents can have three types of beliefs 
- interaction beliefs, system-under-diagnostics (SUD) 
beliefs and dynamic diagnostics beliefs. 
 

A. Beliefs about abilities to interact with other agents 
Agents are imbued with beliefs about the skills and tools 
they can wield to perform goals. 

Definition 2 (Interaction belief). A belief  b = ⟨Δ,v⟩ is an 
interaction belief when Δ describes a 
pair (A,S).  A represents an agent and the S is the 
signature of a method that can be used by that agent to 
interact with the FBA and other agents. 

While pursuing its current goal, an agent instance knows 
how to communicate with other named agents in its team 
using skills such as Jane.say(text). Agents share diagnostic 
data on asynchronous FDE back channels where all 
communication is buffered in personal queues. The agent 

skill Jane.hear() retrieves the last message sent from that 
agent. This belief structure also models IEC 61499-specific 
domain knowledge needed to interact with the FBA being 
diagnosed. 

Fig. 3 shows Diagnostic Points (DPs) that a FDE agent can 
use to interact with an application FB to capture telemetry 
and trigger test values. When an agent performs a rewire() 
interaction, a specialized DP diagnostic FB instance is 
inserted into an event and data path to enable it to read 
values and pass events transparently through the FBA. The 
gateClose() command isolates this information path so that 
a trigger() command can inject test values which are then 
captured further down the path from other DPs using the 
read() command. While other belief sets are dynamic, the 
capabilities captured in this first core set are static, intrinsic 
skills since they are core domain-specific abilities of the 
agent. Hence, the veracity of interaction beliefs is set 
to true. As a future direction of this work, a more dynamic 
setting can enable these beliefs to change over time. 

B. Beliefs about the FBA 
Before the diagnostic goals are assigned, a second belief 
structure is made available to the agent that provides 
knowledge about the FBA and its structure. 

Definition 3 (System belief). A belief  b = ⟨Δ,v⟩, ve is 
called a system belief when is described by the 
triple ⟨fb1,trg,fb2⟩. fb1 and fb2 are function block instances 
in the system under diagnostics, and trg represents the 
conditions (events and variable values) under which a 
transition can be triggered by the agent from fb1 to fb2. 

IEC 61499 Application Definition files are optimized to 
work with development IDEs such as 4diac [20]. However, 
their structure is hard for an agent to navigate since the 
parameters for each FB are stored in different parts of the 
XML-format file. Fig. 4 shows the agents belief structure 
about the FBA restructured as a Directed Graph. FBs are 
modeled as nodes and connections as directed edges. The 
name of an edge corresponds to the Output Event or Data 
Output on the FB the node describes. The internal data 
structure that holds this information is much easier for the 
agents to navigate when rewiring the FBA to insert DPs. 

Fig. 5 shows the hierarchical organization of the 
information stored in each node about the individual FB. 
Agents are able to access the FB data during their diagnosis 
by referencing the single instance inside the FDE 
application belief data structure. 

Each node of this belief structure provides the agent with 
detailed knowledge to allow it to reliably interact with each 
FB [4]. Agents are responsible for determining by 

 
Fig. 3: Capturing and triggering Diagnostic Points. 
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themselves how to interact with a particular FB, verifying 
Input and Output data types so they can provide type-safe 
test values. The Directed Graph structure also allows agents 
to navigate fault paths autonomously, making decisions 
about the next possible fault location while they investigate. 
This belief structure is dynamic, providing the agents with 
a way to remember the result of diagnosing a FB as they 
traverse the FBA and update their beliefs about what is 
wrong. 

C. Beliefs about what is happening 
As an agent performs a diagnosis, it forms new beliefs and 
modifies its existing beliefs. 

Definition 4 (Dynamic diagnostics belief). A 
belief b=⟨Δ,v⟩ is a dynamic diagnostics belief if Δ is 
represented as a pair (fbi, fq) where fbi is a function block 
instance of the system under diagnosis and fq is a valid fault 
code for fbi, obtained from a set of fault codes F. 

In this belief structure, a belief about what is happening is 
a fuzzy logic opinion about a particular FB, sensor, actuator 
or algorithm in the FBA. The set B = {b0, b1, ..bn} captures 
the agent’s beliefs about the FBA where bi represents either 
a single BFB or a network of BFBs connected as a discrete 
Composite Function Block (CFB). A BFB or CFB 
represents the smallest unit of functionality an agent can 
test and hence beliefs are atomic at this level. 

During the design phase, a package of information was 
created that identifies the DPs available for each FB. These 
diagnostic packages contain sets of test values associated 
with data pathways through the FB that can be used during 
diagnosis to determine if the FB is performing correctly. 
The agent interprets these diagnostic packages while 
iterating each FB. A diagnostic harness is then created by 
inserting all the numbered DP instances into the FBA using 
rewire() commands. A belief is also established for each FB 
that has DPs that can be monitored. 

Before the FDE instructs the agent to begin operating, the 
agent is provided with a set of goals that include monitoring 
for fault signatures and executing diagnostic plans. The 
agent is also provided with a definition of what constitutes 
normal behavior for this FBA. One example of normal 
behavior for the room controller shown in Fig. 2 is the 
appearance of temperature readings at 500ms intervals 
from Z_TEMPERATURE TEMP. These propagate through the 
controller to appear at Z_CONTROLLER ZONE_TEMP. Even 
when a temperature change has been requested, signaled by 
either a CMD_UP or CMD_DOWN event, the HVAC 
Industry ASHRAE Standard 55 specifies the optimal 
occupant thermal comfort rate of change should be a ∆t ± 
0.3°C/min [21]. 

The agent pursues its GORITE Monitor goal, launching the 
FBA to run with its diagnostic harness enabled. All DP 
instances begin passing events and data through 
transparently to other FBs as well as back to the FDE agent. 
Initial evaluations with the room controller cycling at 
100ms intervals showed no measurable degradation in 
performance with the diagnostic harness in-place. The 
agent continues pursuing its Monitor goal until one or more 
of its primary beliefs about normal operation are 
invalidated. Fig. 6 shows the rewired Room Controller with 
DPs inside the temperature sub-system. The agent 
establishes an initial belief for the Monitor goal such that: 

b0 = ⟨	fbZ_TEMPERATURE, vundetermined, f0⟩ 

If the result of the agent using the primary monitoring plan 
to look for normal behavior determines that the FBA is 
operating within tolerance then vundetermined → vtrue as the 
agent reinforces this primary belief. Other primary beliefs 
monitor the response from the room controller and the 
HVAC Main Controller to a CMD_UP or CMD_DOWN 
being issued by Z_SWITCHES. For an agent, the pursuit of 
its Monitor goal is the repeated re-evaluation of each of its 
beliefs by running the prescribed tests at defined intervals. 

 
Fig. 4: The Function Block Application as a Directed Graph. 

 
Fig. 5: Function Block information stored in a node. 

 
Fig. 6: Rewired Room Controller with Diagnostic Points. 
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Invalidating any one of these beliefs in B causes the agent 
to signal its GORITE Team that it is abandoning its primary 
Monitoring goal in favor of pursuing its Diagnostic goal. 
The agent adopts a divide-and-conquer strategy for 
diagnosing faults in the temperature sensor sub-system of 
the room controller. The agent first issues gateClose() 
commands to some of the DP instances within the 
temperature sub-system. This disconnects 
Z_TEMPERATURE which is responsible for delivering the 
temperature sensor readings. Z_SWITCHES is isolated by 
gating DP4 and DP5 and updates to the HVAC Main 
Controller are blocked by gating DP6 and DP7. The agent 
then uses the set of tests for F_TO_C_CONV to exercise its 
events, inputs and outputs. A range of nominal Fahrenheit 
temperatures are injected via DP1 and captured as Celcius 
values at DP2. Out-of-range values such as absolute zero 
(−459.67oF ) should trigger the ERROR event, captured by 
DP3. If all test values are converted and captured correctly, 
the agent updates the v of the bF_T O_C_CONV to true. The 
agent continues down the data path checking each 
subsequent FB and updating its beliefs until all the FBs 
have been tested. This process caters for the possibility of 
multiple fault candidates. 

In subsequent Analyse and Report goals, the agent proposes 
a diagnosis after iterating each belief to examine its 
veracity. We simulated a number of fault scenarios to 
determine how the agent would respond in each case. A 
software update failure was simulated by modifying the 
Fahrenheit to Celsius algorithm in F_TO_C_CONV to output 
random readings when a test value was between 70°F and 
80°F. The randomizer used to simulate the fault was tuned 
so that it did not always generate errors in every test run. 
This caused the agent to miss this intermittent behavior 
during some diagnostic sessions. However, the FDE 
correlates multiple diagnostic sessions to capture a more 
comprehensive diagnosis and this discrepancy was reported 
to be an intermittent rather than a hard fault. 

Since sensors cannot usually be tested directly, the agent 
established an initial belief for the temperature sensor 
Z_TEMPERATURE as vundetermined. This returned a hypothesis 
that the sensor may be faulty if all other FBs pass their 
diagnostic tests. In all situations, any belief that cannot be 
verified is reported as a possible fault with an implied lower 
probability. 

We examined a number of criteria while evaluating the 
performance of our prototype FDE. GORITE is designed to 
host multiple agents, efficiently co-ordinating goal sharing 
and interaction while allowing the agents sufficient 
headroom to perform their tasks. A GORITE sequential 
BDI Goal execution mode was implemented for the FDE, 
allowing the agent to step from Monitor goals into 
Diagnose, Analyse, and Report goals. The performance of 
the GORITE framework with the FBA executing on 100ms 
cycles required the insertion of loops and multi-second 
delays during goal execution to give the agent sufficient 
time to capture all telemetry. With multiple agents sharing 
tasks, this suggests that the framework still has sufficient 
headroom left to allow the FDE to scale well. The DP probe 
FBs are custom designed in C++ to be highly-efficient, 
managing their own communications channels with their 

agent using internal TCP/IP clients implemented in each 
instance. 
 

4. CONCLUSIONS AND FUTURE WORK 
This paper demonstrates how relatively simple diagnostic 
test scenarios, created during the design and creation of 
each FB, provide a way to employ agents to perform 
sophisticated fault monitoring and diagnosis. Since many 
fault scenarios are elusive and only appear under certain 
conditions, deploying agents for long-term monitoring 
during commissioning or burn-in trials is a promising 
approach. By ensuring that the DP FBs remain lightweight 
probes rather than agents in their own right helps to 
mitigate the effects of introducing additional FBs into the 
application. This allows more realist evaluations of 
performance issues such as timing. 

Future directions for this work include plug-ins for creating 
FB diagnostic packages directly inside IEC 61499 
development systems such as 4diac. These would assist 
engineers while they are building FBs. The ability to deploy 
an agent to verify FBs iteratively addresses some of the 
shortcomings of Unit Testing and Test-Driven Design in 
current design tools. Analyzing the Execution Control 
Chart (ECC) that drives state transitions in a FB is one 
possible way of identifying DPs automatically when 
creating diagnostic packages. 

Collaboration between teams of distributed agents also 
offers a way of addressing the challenges of modeling in 
these environments. The dynamic models the agents create 
by themselves from IEC 61499 design artifacts highlights 
the value of the semi-autonomous design-time support 
agents could provide. 
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