

1

Full citation: Dowdeswell, B., Sinha, R., Jarvis, D., Jarvis, J., & MacDonell, S.G. (2020)
Employing agent beliefs during fault diagnosis for IEC 61499 industrial cyber-physical systems, in
Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society
(IECON2020). IEEE Computer Society Press, pp.2189-2194. doi:
10.1109/IECON43393.2020.9254877

Employing Agent Beliefs during Fault Diagnosis for IEC 61499 Industrial
Cyber-Physical Systems

Barry Dowdeswell1, Roopak Sinha1, Dennis Jarvis2, Jacqueline Jarvis2, Stephen G.
MacDonell1

1School of Engineering, Computing and Mathematical Sciences,
 Auckland University of Technology, Auckland, New Zealand.

barry.dowdeswell@aut.ac.nz, roopak.sinha@aut.ac.nz, stephen.macdonell@aut.ac.nz.
2School of Engineering and Technology, Central Queensland University Brisbane, Australia.

d.jarvis@cqu.edu.au, j.jarvis@cqu.edu.au.

Abstract
We have come to rely on industrial-scale cyber-physical
systems more and more to manage tasks and machinery in
safety-critical situations. Efficient, reliable fault
identification and management has become a critical factor
in the design of these increasingly sophisticated and
complex devices. Teams of co-operating software agents
are one way to coordinate the flow of diagnostic
information gathered during fault-finding. By wielding
domain knowledge of the software architecture used to
construct the system, agents build and refine their beliefs
about the location and root cause of faults. This paper
examines how agents constructed within the GORITE
Multi-Agent Framework create and refine their beliefs. We
demonstrate three different belief structures implemented
within our Fault Diagnostic Engine, showing how each
supports a distinct aspect of the agent’s reasoning. Using
domain knowledge of the IEC 61499 Function Block
architecture, agents are able to examine and rigorously
evaluate both individual components and entire sub-
systems.

Index Terms: Diagnostics, Multi-Agent Systems,
GORITE, Industrial Cyber-Physical Systems, IEC
61499 Function Blocks.

1. INTRODUCTION
Industrial-scale Cyber-Physical Systems (ICPS) rely on
sensors and actuators that interact with computing elements
to manage complex tasks. When multiple ICPS
communicate and work together, they are able to facilitate
manufacturing and control operations that far exceed the
capabilities of earlier embedded machinery controllers.
However, ICPS demonstrate a level of complexity that
demands sophisticated fault identification and diagnosis to
prevent catastrophic failures [1], [2].

Multi-Agent Systems (MAS) are computers that employ
software entities known as agents [3]. Agents working
together within a Fault Diagnostic Engine (FDE)
demonstrate capabilities that make them ideal for carrying
out fault monitoring, identification and diagnosis for ICPS.
Wooldridge [4] describes two characteristics of agents that
are important for this task. Firstly, agents situated in an
environment are capable of semi-autonomous behavior.
This allows them to follow fault evidence trails by
themselves through a malfunctioning ICPS. By observing
and evaluating fault symptoms without assistance from
humans, they attempt to reconcile the way the ICPS is
operating against known profiles of acceptable
performance. Secondly, by co-ordinating their actions with
other agents operating within the same environment, they
can co-operatively share both the analysis tasks and
evidence gathering to ultimately present a diagnosis of the
faults.

Central to these capabilities is the way that an agent is able
to form and manage beliefs about what it is observing.
Beliefs are opinions held by an agent, formed during a
methodical examination and testing of individual parts of
the ICPS they are investigating. Beliefs are dynamic [5].
Previously-held beliefs may be reinforced or discarded,
based on new evidence that an agent has captured. This
progressive refinement adds both integrity and weight to
beliefs, allowing the relative probability of alternate fault
hypotheses to be considered in the light of the opinions the
agent now holds.

This paper presents the design and application of the belief
and reasoning structures used by the software agents in our
FDE. We profile three different belief structures that agents
employ to interact with a Function Block Application
(FBA) constructed from IEC 61499 Function Blocks
(FBs) [6]. We demonstrate how the beliefs the agents hold
enable them to navigate models they have created that
capture how the FBA is constructed from individual FBs.
Agents can discern how the component parts of the
application are interconnected as well as how to exercise
components while checking for faults. Coupled with a

2

separate belief model that defines the skills needed to
interact with the FBs during diagnosis, the agents also use
a third belief structure to organize their findings. By
considering the evidence captured in these complementary
belief structures, agents can propose which faults have
occurred with higher confidence. This technique illustrates
how agents can dynamically monitor systems, updating
their beliefs and reconfiguring the control layer from the
execution layer. This represents a significant enhancement
of the interaction scheme employed in [7], [8] where
execution layer agents only initiated function block
controlled actions.

Section 2 introduces the characteristics of IEC 61499
Function Blocks and how ICPS using them are crafted. A
Heating, Ventilation and Air-Conditioning (HVAC) system
constructed from FBs is used to illustrate the types of faults
that can occur. Section 3 introduces Multi-Agent Systems,
profiling the way our agents use Belief-Desire-Intention
(BDI) paradigms to orchestrate their behavior. The three
belief structures are explained and contrasted, showing how
agents use them to interact with FBAs during diagnostic
explorations. Section 4 presents our conclusions and future
research directions.

2. ICPS BUILT WITH IEC 61499
FUNCTION BLOCKS
ICPS constructed with an IEC 61499 software architecture
co-ordinate tasks within their physical environment using a
range of sophisticated sensors and actuators. FBs are
object-oriented software entities, designed to implement
the control logic required to interface with individual
sensors. They also co-ordinate the movements of
electromechanical actuators such as motors and ducting
vents to perform work in their environment [9], [10].

Typical HVAC installations rely on multiple self-managing
controllers, deployed in different parts of a building. Fig.
1 illustrates the HVAC sub-systems which provide heating
and cooling to a building. Each room controller
communicates environmental information to a centralized
controller that is responsible for delivering enough warm or
cool air to each zone to meet the needs of the occupants.
Achieving the desired temperature and humidity requires
delicate control of air flows. The HVAC Central Controller
typically relies on Proportional Control (PI)
algorithms [11] driven by telemetry captured from
temperature sensors in each zone.

Fig. 2 details the FBs used to construct a single room
controller. The Z_CONTROLLER FB is constructed from
a template called a Basic Function Block (BFB). The IEC
61499 design convention is to document Input
Events and Data Inputs on the left of the FB symbol. The
data connections between individual FBs are shown in blue
while event triggers are shown in red. Dotted lines indicate
connections to another sub-application that runs the HVAC
Main controller on a different computer. The input event
CMD_UP receives an event from Z_SWITCHES to notify
it that a room occupant has asked for the temperature to be
increased. Similarly, when the temperature sensor
monitored by Z_TEMPERATURE reports a temperature
change, Z_CONTROLLER is notified by an event received

by TEMP_CHANGED. The value of the new temperature
is available on the data input TEMP as an IEEE-format
Real number. Similarly, Output Events and Data

Outputs are used to pass information out of
Z_CONTROLLER and Z_TEMPERATURE to other FBs.

Distributed, event-driven behavior such as this is typical of
ICPS constructed from FBs. IEC 61499 facilitates the
development of compact, modular functional units that
encourage reusability. However, this abstraction level still
demands a consideration of both the computational needs
of the task as well as the physical aspects of the sensors,
actuators and the work that is to be performed in the
environment. ICPS operate in worlds that are non-
deterministic. Hence their actions have to take into
consideration the time-constraints that the environment
imposes upon them. It is there, at the intersection of the
cyber and the physical boundaries of an ICPS, that the most
challenging aspects of its design need to be addressed [12].
Leitao [3] comments that the novelty of ICPS lies not in the
establishment of new technologies. Rather, they draw
together existing approaches from the domains of industrial
control, real-time systems, service-oriented computing and
distributed processing.

ICPS faults are defined as any operation that leads to
unacceptable behavior or degraded performance [13], [14].
Sensors can include complex electronic interfaces that
exhibit both breakdowns and anomalous behavior [15]. The
electromechanical actuators that move the vanes in air
ducts can also jam when they ice-over. Damaged position
sensors can report their alignment incorrectly in these

Fig. 1: Sub-systems of a typical building HVAC installation.

Fig. 2: Room controller built with IEC 61499 function blocks.

3

cases. Software faults, which are often indistinguishable
from hardware faults, can be introduced into FBs that were
previously working correctly via updates that have not been
fully tested.

3. MULTI-AGENT SYSTEMS AND AGENT
BELIEFS
Multi-Agent Systems first attracted interest in the 1980s as
a way of performing control and management tasks within
complex dynamic environments [16]. Bratman introduced
the Belief-Desire-Intention (BDI) paradigm [17].
Traditionally, a BDI agent maintains beliefs about its
environment, other agents, and itself as well as desires that
it wishes to satisfy and intentions to act towards the
fulfillment of selected desires. In the GORITE (Goal
ORIented TEams) Multi-Agent Framework [18], desires
are represented explicitly as goals [16]. When an agent
commits to the achievement of a goal (based on its current
beliefs), that goal becomes an intention. Further-more,
GORITE agents (and teams) can be members of other
teams which have their own beliefs, desires and intentions.

Beliefs provide a model of the domain the agent operates
in [19]. For fault diagnosis, this model encompasses both
the design of the ICPS that the agents are examining as well
as sufficient knowledge of the physical environment the
ICPS is interacting with. The agents gather all their
knowledge of the physical environment via the ICPS itself.
For example, the temperatures which the agents use to
determine if the HVAC is working properly are
thosecaptured by the FB that reads the room sensor. In our
FDE design, reference temperatures are not captured by the
agents themselves from other separate sensors co-located in
the environment.

Definition 1 (Beliefs). Every agent contains a set of
beliefs B = {b1,…,} such that each belief b ∈	 B is a
tuple ⟨Δ,v⟩ where

• Δ is a skill that the agent can use.
• v is the veracity of the belief held by the agent

about the skill. This may be true, false or
undetermined.

In the FDE, agents can have three types of beliefs
- interaction beliefs, system-under-diagnostics (SUD)
beliefs and dynamic diagnostics beliefs.

A. Beliefs about abilities to interact with other agents
Agents are imbued with beliefs about the skills and tools
they can wield to perform goals.

Definition 2 (Interaction belief). A belief b = ⟨Δ,v⟩ is an
interaction belief when Δ describes a
pair (A,S). A represents an agent and the S is the
signature of a method that can be used by that agent to
interact with the FBA and other agents.

While pursuing its current goal, an agent instance knows
how to communicate with other named agents in its team
using skills such as Jane.say(text). Agents share diagnostic
data on asynchronous FDE back channels where all
communication is buffered in personal queues. The agent

skill Jane.hear() retrieves the last message sent from that
agent. This belief structure also models IEC 61499-specific
domain knowledge needed to interact with the FBA being
diagnosed.

Fig. 3 shows Diagnostic Points (DPs) that a FDE agent can
use to interact with an application FB to capture telemetry
and trigger test values. When an agent performs a rewire()
interaction, a specialized DP diagnostic FB instance is
inserted into an event and data path to enable it to read
values and pass events transparently through the FBA. The
gateClose() command isolates this information path so that
a trigger() command can inject test values which are then
captured further down the path from other DPs using the
read() command. While other belief sets are dynamic, the
capabilities captured in this first core set are static, intrinsic
skills since they are core domain-specific abilities of the
agent. Hence, the veracity of interaction beliefs is set
to true. As a future direction of this work, a more dynamic
setting can enable these beliefs to change over time.

B. Beliefs about the FBA
Before the diagnostic goals are assigned, a second belief
structure is made available to the agent that provides
knowledge about the FBA and its structure.

Definition 3 (System belief). A belief b = ⟨Δ,v⟩, ve is
called a system belief when is described by the
triple ⟨fb1,trg,fb2⟩. fb1 and fb2 are function block instances
in the system under diagnostics, and trg represents the
conditions (events and variable values) under which a
transition can be triggered by the agent from fb1 to fb2.

IEC 61499 Application Definition files are optimized to
work with development IDEs such as 4diac [20]. However,
their structure is hard for an agent to navigate since the
parameters for each FB are stored in different parts of the
XML-format file. Fig. 4 shows the agents belief structure
about the FBA restructured as a Directed Graph. FBs are
modeled as nodes and connections as directed edges. The
name of an edge corresponds to the Output Event or Data
Output on the FB the node describes. The internal data
structure that holds this information is much easier for the
agents to navigate when rewiring the FBA to insert DPs.

Fig. 5 shows the hierarchical organization of the
information stored in each node about the individual FB.
Agents are able to access the FB data during their diagnosis
by referencing the single instance inside the FDE
application belief data structure.

Each node of this belief structure provides the agent with
detailed knowledge to allow it to reliably interact with each
FB [4]. Agents are responsible for determining by

Fig. 3: Capturing and triggering Diagnostic Points.

4

themselves how to interact with a particular FB, verifying
Input and Output data types so they can provide type-safe
test values. The Directed Graph structure also allows agents
to navigate fault paths autonomously, making decisions
about the next possible fault location while they investigate.
This belief structure is dynamic, providing the agents with
a way to remember the result of diagnosing a FB as they
traverse the FBA and update their beliefs about what is
wrong.

C. Beliefs about what is happening
As an agent performs a diagnosis, it forms new beliefs and
modifies its existing beliefs.

Definition 4 (Dynamic diagnostics belief). A
belief b=⟨Δ,v⟩ is a dynamic diagnostics belief if Δ is
represented as a pair (fbi, fq) where fbi is a function block
instance of the system under diagnosis and fq is a valid fault
code for fbi, obtained from a set of fault codes F.

In this belief structure, a belief about what is happening is
a fuzzy logic opinion about a particular FB, sensor, actuator
or algorithm in the FBA. The set B = {b0, b1, ..bn} captures
the agent’s beliefs about the FBA where bi represents either
a single BFB or a network of BFBs connected as a discrete
Composite Function Block (CFB). A BFB or CFB
represents the smallest unit of functionality an agent can
test and hence beliefs are atomic at this level.

During the design phase, a package of information was
created that identifies the DPs available for each FB. These
diagnostic packages contain sets of test values associated
with data pathways through the FB that can be used during
diagnosis to determine if the FB is performing correctly.
The agent interprets these diagnostic packages while
iterating each FB. A diagnostic harness is then created by
inserting all the numbered DP instances into the FBA using
rewire() commands. A belief is also established for each FB
that has DPs that can be monitored.

Before the FDE instructs the agent to begin operating, the
agent is provided with a set of goals that include monitoring
for fault signatures and executing diagnostic plans. The
agent is also provided with a definition of what constitutes
normal behavior for this FBA. One example of normal
behavior for the room controller shown in Fig. 2 is the
appearance of temperature readings at 500ms intervals
from Z_TEMPERATURE TEMP. These propagate through the
controller to appear at Z_CONTROLLER ZONE_TEMP. Even
when a temperature change has been requested, signaled by
either a CMD_UP or CMD_DOWN event, the HVAC
Industry ASHRAE Standard 55 specifies the optimal
occupant thermal comfort rate of change should be a ∆t ±
0.3°C/min [21].

The agent pursues its GORITE Monitor goal, launching the
FBA to run with its diagnostic harness enabled. All DP
instances begin passing events and data through
transparently to other FBs as well as back to the FDE agent.
Initial evaluations with the room controller cycling at
100ms intervals showed no measurable degradation in
performance with the diagnostic harness in-place. The
agent continues pursuing its Monitor goal until one or more
of its primary beliefs about normal operation are
invalidated. Fig. 6 shows the rewired Room Controller with
DPs inside the temperature sub-system. The agent
establishes an initial belief for the Monitor goal such that:

b0 = ⟨	fbZ_TEMPERATURE, vundetermined, f0⟩

If the result of the agent using the primary monitoring plan
to look for normal behavior determines that the FBA is
operating within tolerance then vundetermined → vtrue as the
agent reinforces this primary belief. Other primary beliefs
monitor the response from the room controller and the
HVAC Main Controller to a CMD_UP or CMD_DOWN
being issued by Z_SWITCHES. For an agent, the pursuit of
its Monitor goal is the repeated re-evaluation of each of its
beliefs by running the prescribed tests at defined intervals.

Fig. 4: The Function Block Application as a Directed Graph.

Fig. 5: Function Block information stored in a node.

Fig. 6: Rewired Room Controller with Diagnostic Points.

5

Invalidating any one of these beliefs in B causes the agent
to signal its GORITE Team that it is abandoning its primary
Monitoring goal in favor of pursuing its Diagnostic goal.
The agent adopts a divide-and-conquer strategy for
diagnosing faults in the temperature sensor sub-system of
the room controller. The agent first issues gateClose()
commands to some of the DP instances within the
temperature sub-system. This disconnects
Z_TEMPERATURE which is responsible for delivering the
temperature sensor readings. Z_SWITCHES is isolated by
gating DP4 and DP5 and updates to the HVAC Main
Controller are blocked by gating DP6 and DP7. The agent
then uses the set of tests for F_TO_C_CONV to exercise its
events, inputs and outputs. A range of nominal Fahrenheit
temperatures are injected via DP1 and captured as Celcius
values at DP2. Out-of-range values such as absolute zero
(−459.67oF) should trigger the ERROR event, captured by
DP3. If all test values are converted and captured correctly,
the agent updates the v of the bF_T O_C_CONV to true. The
agent continues down the data path checking each
subsequent FB and updating its beliefs until all the FBs
have been tested. This process caters for the possibility of
multiple fault candidates.

In subsequent Analyse and Report goals, the agent proposes
a diagnosis after iterating each belief to examine its
veracity. We simulated a number of fault scenarios to
determine how the agent would respond in each case. A
software update failure was simulated by modifying the
Fahrenheit to Celsius algorithm in F_TO_C_CONV to output
random readings when a test value was between 70°F and
80°F. The randomizer used to simulate the fault was tuned
so that it did not always generate errors in every test run.
This caused the agent to miss this intermittent behavior
during some diagnostic sessions. However, the FDE
correlates multiple diagnostic sessions to capture a more
comprehensive diagnosis and this discrepancy was reported
to be an intermittent rather than a hard fault.

Since sensors cannot usually be tested directly, the agent
established an initial belief for the temperature sensor
Z_TEMPERATURE as vundetermined. This returned a hypothesis
that the sensor may be faulty if all other FBs pass their
diagnostic tests. In all situations, any belief that cannot be
verified is reported as a possible fault with an implied lower
probability.

We examined a number of criteria while evaluating the
performance of our prototype FDE. GORITE is designed to
host multiple agents, efficiently co-ordinating goal sharing
and interaction while allowing the agents sufficient
headroom to perform their tasks. A GORITE sequential
BDI Goal execution mode was implemented for the FDE,
allowing the agent to step from Monitor goals into
Diagnose, Analyse, and Report goals. The performance of
the GORITE framework with the FBA executing on 100ms
cycles required the insertion of loops and multi-second
delays during goal execution to give the agent sufficient
time to capture all telemetry. With multiple agents sharing
tasks, this suggests that the framework still has sufficient
headroom left to allow the FDE to scale well. The DP probe
FBs are custom designed in C++ to be highly-efficient,
managing their own communications channels with their

agent using internal TCP/IP clients implemented in each
instance.

4. CONCLUSIONS AND FUTURE WORK
This paper demonstrates how relatively simple diagnostic
test scenarios, created during the design and creation of
each FB, provide a way to employ agents to perform
sophisticated fault monitoring and diagnosis. Since many
fault scenarios are elusive and only appear under certain
conditions, deploying agents for long-term monitoring
during commissioning or burn-in trials is a promising
approach. By ensuring that the DP FBs remain lightweight
probes rather than agents in their own right helps to
mitigate the effects of introducing additional FBs into the
application. This allows more realist evaluations of
performance issues such as timing.

Future directions for this work include plug-ins for creating
FB diagnostic packages directly inside IEC 61499
development systems such as 4diac. These would assist
engineers while they are building FBs. The ability to deploy
an agent to verify FBs iteratively addresses some of the
shortcomings of Unit Testing and Test-Driven Design in
current design tools. Analyzing the Execution Control
Chart (ECC) that drives state transitions in a FB is one
possible way of identifying DPs automatically when
creating diagnostic packages.

Collaboration between teams of distributed agents also
offers a way of addressing the challenges of modeling in
these environments. The dynamic models the agents create
by themselves from IEC 61499 design artifacts highlights
the value of the semi-autonomous design-time support
agents could provide.

REFERENCES
[1] J. D. McGregor, D. P. Gluch, and P. H. Feiler, “Analysis and Design

of Safety-critical, Cyber-Physical Systems,” ACM SIGAda Ada
Letters, vol. 36, no. 2, pp. 31–38, 2017.

[2] M. Ragheb, “Fault Tree Analysis and Alternative Configurations of
Angle of Attack (AOA) Sensors as Part of Maneuvering
Characteristics Augmentation System (MCAS),” mragheb. com,
2019.

[3] P. Leitao, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart agents in industrial cyber-physical systems,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 1086–1101, 2016.

[4] M. Wooldridge, An introduction to multiagent systems. John Wiley
& Sons, 2009.

[5] N. Friedman, “Modeling beliefs in dynamic systems,” Ph.D.
dissertation, Citeseer, 1997.

[6] I. E. Commission et al., “Function blocks–Part 1: Architecture,”
International Electrotechnical Commission, Geneva, Switzerland,
Tech. Rep. IEC, 2013.

[7] A. Kalachev, G. Zhabelova, V. Vyatkin, D. Jarvis, and C. Pang,
“Intelligent mechatronic system with decentralised control and multi-
agent planning,” in IECON 2018-44th Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 2018, pp. 3126–3133.

[8] D. Jarvis, J. Jarvis, A. Kalachev, G. Zhabelova, and V. Vyatkin,
“PROSA/G: An architecture for agent-based manufacturing
execution,” in 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1.
IEEE, 2018, pp. 155–160.

[9] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Kuo, “Formal Model
for IEC 61499 Function Blocks,” in Model-Driven Design Using IEC
61499. Springer, 2015, pp. 65–91.

[10] W. Dai, V. Vyatkin, and J. Christensen, “Applying IEC 61499 de-
sign paradigms: Object-oriented programming, component-based
design, and service-oriented architecture,” in Distributed Control

6

Applications: Guidelines, Design Patterns, and Application
Examples with the IEC 61499. CRC Press, 2015.

[11] M. Dey, S. P. Rana, and S. Dudley, “Smart building creation in large
scale HVAC environments through automated fault detection and
diagnosis,” Future Generation Computer Systems, 2018.

[12] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A
cyber- physical systems approach. MIT Press, 2016.

[13] F. Harirchi and N. Ozay, “Guaranteed model-based fault detection
in cyber-physical systems: A model invalidation approach,” arXiv,
2016.

[14] T. R. Thombare and L. Dole, “Review on fault diagnosis model in
automobile,” in Computational Intelligence and Computing Research
(ICCIC), 2014 IEEE International Conference on. IEEE, 2014, pp. 1–
4.

[15] Beamex, “Resistance measurement; 2,3 and 4 wire connection,”
2020. [Online]. Available: https://blog.beamex.com/ resistance-
measurement- 2- 3- or- 4- wire- connection

[16] A. S. Rao, M. P. Georgeff et al., “BDI agents: from theory to
practice.” in ICMAS, vol. 95, 1995, pp. 312–319.

[17] Bratman, Michael and others, Intention, plans, and practical reason.
Harvard University Press Cambridge, MA, 1987, vol. 10.

[18] D. Jarvis, J. Jarvis, R. Rönnquist, and L. C. Jain, “Multi-Agent
Systems,” in Multiagent Systems and Applications. Springer, 2013,
pp. 1–12.

[19] M. Ganzha, L. C. Jain, D. Jarvis, J. Jarvis, and R. Rönnquist,
Multiagent Systems and Applications. Springer, 2013.

[20] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sünder, A.
Valentini, and A. Martel, “Framework for distributed industrial
automation and control (4DIAC),” in Industrial Informatics, 2008.
INDIN 2008. 6th IEEE International Conference on. IEEE, 2008, pp.
283–288.

[21] ASHRAE, “ASHRAE Standard 55-2004,” Thermal environmental
conditions for human occupancy, vol. 3, 2004.

