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Abstract—Sea State is significant to the operations on the sea.
The traditional model-based approaches need lots of knowledge
of vessels, which limit the real-world use. This paper proposes a
spectrogram-based deep learning model for sea state estimation
(SpectralNet). In this model, the ship motion data is converted
to spectrogram using short time Fourier transform (STFT).
Unlike other methods, the spectrogram of each sensor will
be combined to a new image. And then, a 2D convolutional
neural network (CNN) is built as the classifier and the sea state
can be identified. The experimental results show the proposed
approach can achieve higher classification accuracy compared
these methods applied directly in raw time series data. Through
the comparison results of the proposed approach and the com-
bination of spectrogram of different number of sensors, the
proposed approach can achieve highest classification accuracy,
and the classification accuracy is growing with the number of
combined sensors. The sensitivity analysis finds the classification
accuracy is easily influenced by the scale factor of images.

I. INTRODUCTION

In the era of artificial intelligence, ship intelligence has
become the focus of future ship development [1]. One of
the important manifestations of ship intelligence being able to
become intelligent is that it needs to be able to predict wave-
induced loads and response. Therefore, how to accurately and
independently perceive the external environment has become
a key aspect in the development of autonomous ship.

To fully understand the external environment, the traditional
means is to use the external sensors, such as wave buoys,
weather forecast, or satellite measurement, to measure the
sea state. Those methods are widely used even though there
are still some limitations. For example, the wave buoys need
to be placed by humans, and its position is usually close
to the shore. The information of weather forecast often lags
up to several hours. As for the satellite data, the resolution
is the bottleneck limiting its widely applications. Nowadays,
wave radars have been installed and applied on some ships.
Although the measurements of wave radar are more accurate,
it is not widely applied for it still suffers from high cost and
frequent calibrations.

To overcome the disadvantages of the traditional methods,
there is a trend to consider the wave buoy-like approach. In
those approaches, the ship is considered as a huge wave buoy
and its motion data would be utilized for the estimation of
sea state [2]. The reason is that the wave-induced motion
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provide the basis for the estimation of on-site sea state. On
the basis of this idea, there are two branches for sea state
estimation: model-based method and data-based method. The
model-based methods are to combine the mathematical model
of ship and the motion data to infer the sea state. While, the
data-based approaches are directly using the sensor data to
build machine learning or deep learning models on which sea
state information could be inferred.

Enormous works have been done for the model-based
approaches [3]. These model-based approaches are mainly
focusing on the frequency domain, where the knowledge of
a vessel is essential. The assumption of these methods is that
there is a known transfer function mapping the sea state to
the ship movements. The wave spectrum (information) can
be calculated from the motion data and the transfer functions
by using spectral analysis. Brodtkorb et al. proposed a novel
method, which is computationally efficient and no assumptions
on the wave spectrum shape, for the dynamic positioning
(DP) vessels based on ship motion data [4]. Montazeri et al.
proposed a shipboard wave estimation approach, in which the
parameters describing the wave spectrum are optimized using
the global search basin with proper constraints [5]. A network-
based approach for sea state estimation is proposed in recent
year, which focuses on weighting the single ship-specific wave
spectrum obtained from multiple ships [6]. Obviously, the
accuracy of the estimation relies inherently on availability of
accurate transfer functions, and moreover, these methods are
hard to be applied to the real-world use.

In the age of big data and artificial intelligence, purely data-
based sea state method are ever-increasing with its biggest
advantage can remarkably enhance high accuracy without
requiring the knowledge of vessels. Data driven methods
are using machine learning or deep learning techniques to
extract features either time or frequency domains, or both. The
machine learning based methods always based on the human-
made features, while the deep learning based approaches can
extract features purely based on their own structures without
the help of humans. Although machine learning or deep
learning technology has been widely used in other fields, they
are rarely used in sea state estimation. A first feature-based
approach is proposed by Tu et al. for identifying sea state [7].
To overcome the limitations of feature-based methods, a deep
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Fig. 1: Procedures for the proposed approach.

learning-based model is proposed by Cheng et al. [8]. Mak et
al. studied two deep neural networks for sea state estimation
on the basis of 6-DOF ship motion data [9]. Cheng et al.
proposed a dense connected convolutional neural network to
estimate wave height and wave direction, simultaneously [10].

These deep learning models can learn more non-linear
abstract features and can use more useful information than
traditional machine learning methods. Therefore, the clas-
sification accuracy of deep learning models is higher than
that of traditional methods. In [8], a model was established
with 3 parallel branches to extract the features in the time
domain, frequency domain, and the spatial relation of motion
data, aiming at improving the classification accuracy of sea
states. Although the deep learning-based approach shows great
potential in the application of sea state estimation, the model is
lack of interpretability. In order to improve the interpretability
of deep learning models, a new model is proposed. In this
method, the ship motion data is converted into spectrogram-
based images which contain both time and frequency infor-
mation, by utilizing the short-time Fourier transform (STFT).
And then, the images will be fed into a three-layer CNN, so
as to obtain the sea states.

The main contributions of this paper are twofold: 1) As
far as we know, this paper is the first try to estimate sea
states using converted 2D time-frequency images from ship
motion data. 2) the proposed method is verified on the ship
motion data which is from a dynamical positioning (DP)
vessel. Through the experimental results, our proposed method
obtains the best estimation accuracy.

The reminder of the paper is organized as follows. Section
II introduces the proposed approach. Section III presents case
studies and evaluation results. Conclusion and future work are
shown in Section IV.

II. SPECTROGRAM BASED SEA STATE ESTIMATION
MODEL

A. Approach overview

Sea State is defined as the situation of wave and wind in
the open sea for certain location and moment [11]. In each
ship, there are an inertial measurement unit (IMU), which can
measure the motion of the vessel. The task of this paper is how
to employ the ship motion data to infer the sea condition.
The overall procedure of the proposed sea state estimation
model is represented in Fig. 1. The raw ship motion data
would be segmented into small sequences of certain window
size without overlapping. There are nine different sensors
are utilized, and the detailed information can be found it in
Section II-B. Afterwards, each sequence of the nine sensors
is transformed into an image with the help of STFT. In this
paper, we combined the nine images into a bigger image.
The process of combine the nine images is introduced in
Section II-C. These transformed images are the input of the
proposed 2D CNN model, and the sea state can be identified
and classified. There are five different sea state: calm, smooth,
slight, moderate, and rough, which is defined based on the
wave height.

B. Data pre-processing

In this paper, simulation data, which is from the Offshore
Simulator Center AS (OSC), is utilized. The OSC is equipped
with powerful physics engines that can generate almost the
same wind and wave as actual environment. In this paper,
there are nine parameters are utilized as the input, as shown
in Table L.

Data preprocessing is usually aimed at cleaning data noise
and normalizing data. Statistical estimation or median filtering
are widely used methods to process the data. At the same
time, ship data usually has the characteristics of discontinuity,
information redundancy and so on. According to these data
characteristics, the method developed in our previous paper is
utilized [12].



TABLE I: Input parameter specification

Input Unit Description

Surge velocity | [m/s] Velocity in surge direction
Sway velocity [m/s] Velocity in sway direction
Yaw velocity [deg/s] | Velocity in yaw direction
Roll velocity [deg/s] | Velocity in roll direction
Pitch velocity [deg/s] | Velocity in pitch direction
Heave velocity | [deg/s] | Velocity in heave direction
Heading [deg] Rotation around the yaw axis
Roll [deg] Rotation around the roll axis
Pitch [deg] Rotation around the pitch axis
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Fig. 2: Time series to image.

C. Time series to spectrogram

A spectrogram of time series can be utilized to describe both
the time and frequency information. In order to calculate the
spectrogram, the time series will be firstly spilt into small size
with certain width (window size), and then the spectrogram
function would be performed. To obtain the spectrogram, an
enhanced mathematical method, STFT, which is variant of
discrete Fourier transform (DFT), is utilized.

For a sensor signal, the STFT-based spectrogram can be
obtained as follows:

o}
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where z[k] is the time series data with sampling rate of 20
Hz. w represents the window function. The Hanning window
is employed in the this paper. Then the magnitude square of
the STFT is the spectrogram:

spectrogram{z(t)}(m,w) = |X(m,w)|? 2)

Additionally, after the transformation from motion data of
each sensor to image, these nine images is combined into a
bigger image for providing more information to CNN model,
which is shown in Fig. 2.

D. CNN network

The CNN is utilized as the classifier for different sea state
in this paper. CNN is most widely used feature extractor and
classifier, which was introduced by LeCun [13]. With the
help of CNN models, various local features of images can
be extracted by studying the correlation of spatially adjacent
pixels. The proposed 2D CNN is illustrated in Fig. 3, as the
2D CNN is more suitable for the 2D images.

In the proposed 2D CNN network, the raw time series ship
motion data is first converted to a spectrogram with a pixel

TABLE II: Comparison with baselines

Window size | LSTM | CNN | SpectralNet
500 76.77 | 88.33 92.33
400 73.33 | 92.00 94.67
300 76.99 | 87.99 94.67
200 84.67 | 93.33 94.33
100 83.33 | 93.33 94.00

Average 79.02 | 91.00 94.00

size of 256 x 256, as described in the Section II-C. There are
three hidden layers totally in the proposed CNN network. For
each hidden layer, there is a Conv2D layer with kernel size of
5 x 5 and relu (rectified linear unit) as the activation function.
After that, MaxPooling2D with a pool size of (2, 2) is used.
In the proposed CNN network, the number of convolutional
kernels is 8, 16, and 32, respectively. The features extracted
by the three hidden layers is flattened, and then it is fed into
a Dense layer with 128 nodes. Finally, the features is sent
to a Softmax layer, and the sea state can be identified and
classified.

III. EXPERIMENTS

In order to evaluate the effectiveness of the proposed model,
we conduct extensive experiments on ship motion dataset. The
model is implemented by using Tensorflow [14] and trained
on the colab. During the training, the batch size is set to 32,
and the network is optimized using Adam with learning rate
0.001.

A. Dataset description and processing

Five sea states: calm, smooth, slight, moderate, and rough,
have been generated. From [8], [11], we can know the sum
of the probability of occurrence of these five sea states has
accounted for more than 96%. To reflect the complexity
of environmental changes, waves and winds are randomly
generated, ranging from 12 minutes to 30 minutes [8]. The
motion of a DP ship is collected, and the sampling frequency
of the system is 20 Hz. In this experiment, over 30 hours
of ship motion data were used. And the data is divided into
training and testing dataset with non-overlapping 80% and
20%, respectively.

Fig. 4 represents the final combination of the nine sensors
for the five sea states. From Fig. 4, we can see that different sea
conditions have different characteristics in the spectrogram.
like sea state 2, sea state 3, and sea state 4, there are more
significant distinguishable features. At the same time, we can
know that through this time-frequency map conversion, we
can get the following benefits: first, we can directly see the
characteristics of the time series data can not be seen directly
from the time-frequency map; Second, through the conversion
of time-frequency graphs, we can enhance the interpretability
of machine learning models.

B. Baseline comparison

The LSTM and CNN are chosen to compare with the
proposed SpectralNet on the ship motion dataset. The reason
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Fig. 3: Structure of the proposed CNN.

for the comparison with these two methods is that these two
methods are most widely used deep learning models for time
series classification. Unlike the SpectralNet which uses the
spectrograms transformed from time series data as the input,
the CNN and LSTM are directly employing the time series
data as the input. To evaluate the performance of the three
models, five datasets with different window size ranging from
100 to 500 are generated, and these three models will be tested
on the five datasets. In this experiment, the kernel size of CNN
is 3, and the number of filters is set to {64, 128,256, 512}. The
number of hidden nodes of LSTM is {8, 16, 32, 64, 128}. The
settings of SpectralNet is shown in Fig. 3. The mini-batch size
is set to 256, and the learning rate is set to 0.001. To be a fair
comparison, the best models of LSTM and CNN are chosen
from the settings of LSTM and CNN.

The accuracy of the three models is reported in Table II. It is
clearly to know that the LSTM obtains the worst performance
compared to the other two models. In addition, the over-fitting
of LSTM is more serious with the growing of the length
of window size. From Table II, we also can know that the
CNN is better than LSTM, with almost 15.16% improvement.
SpectralNet achieves the best accuracy regardless of average
accuracy or each window size. The results show that the
proposed SpectralNet can obtain more information from the
images than these conventional methods in time series data.

C. Comparison with non-combination

To illustrate the performance of the combination of the nine
sensors, we compare the proposed method with each the spec-
trogram of each sensor, the combination of two sensors, and
the combination of four sensors. During these comparisons, the
spectrogram will be first generated, as described in Section
II-C, and the CNN will be applied for classification. Fig. 5
represents the comparison of each sensor with the combination
of nine sensors, and the comparison of one sensor, two sensors,
four sensors, and nine sensors.

From Fig. 5a, it is obvious to know the combination
of nine sensors obtains the highest classification accuracy.
Among these sensors, we can see that the highest classification
accuracy happens when the sway velocity is using, and heave
velocity follows. To further illustrate the advantage of the com-
bination of the nine sensors, two sensors and four sensors with
the highest classification accuracy in Fig. 5a, are combined.
The one sensor in Fig. 5b means the one with the highest
classification accuracy, e.g. sway velocity. From Fig. 5b, it is
easy to know that the classification accuracy is growing with
more sensors are combined.

D. Sensitivity analysis

In the proposed model, there are two main parameters:
scale factor and batch size. In order to obtain the best
classification performance of sea state estimation, sensitivity
analysis is indispensable. To illustrated the importance of scale
factor and batch size in the proposed SpectralNet, several
experiments with different settings were performed. The model
performance is firstly tested with different scale factors when
keeping the other parameters unchanged in two different
window sizes. On the other hand, the batch size is varying
while the other parameters are keeping unchanged.

From Fig. 6a, we can know the highest classification accu-
racy happens when the scale factor is set to 256 in both cases.
When the scale factor is 512, that is the image is set to 512 x
512, the worst accuracy can be obtained. More interestingly,
the classification accuracy is growing when the scale factor is
from 32 to 256 in both cases. It is easy to know that when the
image is scaled to small, some information will lose. Thus,
the performance of CNN will decreased. While, if the image
is set to too big, the image might become blurred, and the
CNN cannot extract suitable features, either. From the Fig.
6b, we can see that the highest classification accuracy happens
when the batch size is 30, and with the growing of batch size,
the accuracy is decreasing. The reason is that when the batch
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Fig. 4: Combination of the nine sensors for the five sea states.

size is small, the classifier can extract feature in a more fine
fashion.

IV. CONCLUSION

In this paper, a sea state estimation method based on
ship motion data and deep learning techniques is proposed.
The ship motion data comes from the commercial simulation
platform, which can simulate the sea and the ship motion of
real world with high precision. To increase the interpretability
of the deep learning based sea state estimation models, the
raw ship motion data in the time domain is transformed into
two-dimensional time-frequency spectrogram by using STFT.
Different from other methods, this paper will combine all the
spectrograms of all univariate signals to a new spectrogram to

improve the classification accuracy. The transformed spectro-
grams would be used as the input of the 2D CNN models, and
the sea state can be identified using the CNN.

The proposed method is evaluated and verified by exper-
iments. From the comparison results with CNN and LSTM
tested on raw time series with different window size, the
proposed method achieved the highest classification accuracy
in all cases. In addition, to illustrate the importance of the
combination of spectrogram of each sensors, the proposed
method is compared with these models which utilize the
spectrogram from only one sensor, two sensors, and four
sensors. From the experimental results, the proposed approach
can achieve higher classification accuracy with the growing
of the number of combined sensors. Finally, the sensitivity
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Fig. 5: Combination of the nine sensors for the first four sea
states.

analysis of key parameters in the proposed model is conducted.
From the experimental results, we can know the classification
accuracy is easily influenced by the scale factor of images.

Future work should focus on how to further improve classi-
fication accuracy. First, a new method combining spectrograms
should be proposed to make the spectrograms more easily
reflect different sea conditions and sea state changes. Second,
a new deep learning model should be designed so that the
model can extract more subtle details regardless of the image
What is the scaling.
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