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Abstract 
Neural saturation in Deep Neural Networks (DNNs) has 
been studied extensively, but remains relatively unexplored 
in Convolutional Neural Networks (CNNs). Understanding 
and alleviating the effects of convolutional kernel 
saturation is critical for enhancing CNN models 
classification accuracies. In this paper, we analyze the 
effect of convolutional kernel saturation in CNNs and 
propose a simple data augmentation technique to mitigate 
saturation and increase classification accuracy, by 
supplementing negative images to the training dataset. We 
hypothesize that greater semantic feature information can 
be extracted using negative images since they have the 
same structural information as standard images but differ 
in their data representations. Varied data representations 
decrease the probability of kernel saturation and thus 
increase the effectiveness of kernel weight updates. The two 
datasets selected to evaluate our hypothesis were CIFAR-
10 and STL-10 as they have similar image classes but differ 
in image resolutions thus making for a better 
understanding of the saturation phenomenon. MNIST 
dataset was used to highlight the ineffectiveness of the 
technique for linearly separable data. The ResNet CNN 
architecture was chosen since the skip connections in the 
network ensure the most important features contributing 
the most to classification accuracy are retained. Our 
results show that CNNs are indeed susceptible to 
convolutional kernel saturation and that supplementing 
negative images to the training dataset can offer a 
statistically significant increase in classification 
accuracies when compared against models trained on the 
original datasets. Our results present accuracy increases 
of 6.98% and 3.16% on the STL-10 and CIFAR-10 datasets 
respectively. 
 
Index Terms: Kernel Saturation, data 
augmentation, negative images, convolutional neural 
network (CNN), entropy  
 

 

1. INTRODUCTION 
Convolutional Neural Networks (CNNs) are the state-of- 
the-art for complex computer vision tasks such as image 
classification, image localization [1], [2], speech 
recognition [3] and natural language processing [4]. The 
two facets of a CNN model are the convolutional and 
classification blocks. The convolutional block extracts 
features from the input data and generates feature maps that 
are passed onto the classification block for final recognition 
and generation of class probabilities. The classification 
block is a conventional multi-layer Artificial Neural 
Network (ANN) with multiple layers of fully connected 
neurons. Failure to achieve optimal feature extractions in 
the convolutional block leads to knock-on effects in the 
classification block, causing suboptimal classification 
performance. While an all-convolutional network has been 
proposed by [5], state-of-the-art CNN models such as 
Residual Network (ResNet) [6] still use a traditional setup 
with a final fully connected classification block.  

While state-of-the-art models such as ResNet-50 perform 
extremely well, they are susceptible to training afflictions 
such as overfitting, underfitting, passiveness towards 
spatial variances [7], limited feature extraction 
capabilities [8] and neural saturation [9]. These training 
afflictions lead to premature convergences to local optima 
rather than a true convergence to the global optimum. In 
this paper, we focus on saturation in the convolutional 
block of a CNN model as it is relatively less explored 
compared to the other training afflictions previously 
mentioned. Saturation occurs predominantly during the 
backpropagation step of learning in neural networks when 
a non-linear differentiable activation function ρ is applied 
to an input dimensional vector x = ⟨x1 , x2 · · · xd⟩. A neuron 
is said to be fully saturated when its output 𝑦 = 
ρ(∑ 𝜔!𝑥! + 𝑏!"

!#$ ), acquires values close to the bounded 
subset of 𝜌, where 𝜌 is the non-linear activation function, 
𝜔! is the computed convolutional filters from which a 
regression vector is calculated, 𝑏! is the bias, 𝒙𝒊  ∈  𝑿. In 
order for a neuron to be fully saturated, the gradient(𝜕) of 
𝑦 relative to the input 𝒙𝒊, 𝜕𝑦/𝜕𝑥! approaches zero for a 
logistical activation function. Inversely, the weights 
associated with such fully saturated neurons must be 
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substantial to reach the bounded subset of 𝜌. In other words, 
a neuron is saturated when the weight updates calculated 
from the error are so negligible that it causes no apparent 
change in the magnitude affecting convergence. 

While there has been prior research on neural saturation in 
ANNs, including proposed methods to mitigate this 
phenomenon [9], to the best of our knowledge there is no 
literature studying this same concept in the convolutional 
block of a CNN. In this paper, we focus on understanding 
kernel saturation during the generation of feature maps in 
CNNs and propose a novel data augmentation technique for 
mitigating saturation of convolutional kernels. We 
hypothesize that supplementing training data with negative 
images will lead to more efficient extraction of semantic 
feature information, partially offsetting saturation of 
convolutional kernels, detailed extensively in Section 6-B. 
To generate negative images, a logical 
bitwise NOT operations are used, as it does not 
significantly modify the structural information of images in 
dataset, explained more in Section IV-A. Furthermore, the 
logical bitwise NOT operation used to create negative 
images can be performed in real-time using the less 
computationally intensive CPU rather than the GPU during 
model training, reducing computational overheads. 

We test our research hypothesis using the RESidual NET-
work (ResNet) CNN architecture [6] on two well known 
benchmarking datasets, CIFAR-10 [10] and STL-10 [11]. 
The ResNet architecture is chosen as it introduces stacked 
convolutional layers and skip connections which ensure 
only the most important feature information contributing to 
classification performance is retained. The CIFAR-10 and 
STL-10 datasets were chosen since they have similar image 
classes but differ in image resolutions thus making for a 
better understanding of the saturation phenomenon. We 
also employ two quantitative measures, Maximum Entropy 
(ME) and Signal to Noise Ratio (SNR) to analyze the 
informational content present in the datasets. 

Our results show that there is a statistically significant 
increase in classification accuracy when negative images 
are supplemented to the original datasets even though the 
ME measures do not increase significantly. Our reasoning 
for this increase in accuracy is that when the image data 
from the supplemented dataset is normalized, only the 
relevant semantic information is used for kernel weight 
updates while random structural differences in the images 
caused by noise become irrelevant, discussed more 
in Section 6. Furthermore, convolutional kernel saturation 
can be offset by using negative images as the loss function 
must effectively alternate between maximization and 
minimization as the images are essentially inverses to one 
another. This alternation encourages more controlled 
weight updates and is a more effective backpropagation 
mechanism. 

The main contributions of this paper are, presenting 
evidence to show CNNs are indeed susceptible to 
convolutional kernel saturation, and present a novel data 
augmentation technique that mitigates kernel saturation. 
The background information needed for the contributions 
made is outlined in Section 2, the theoretical basis for 
kernel saturation and the mathematical reasoning for 
showcasing the effectiveness of augmenting datasets with 

negative images is presented in Section 3. The 
experimental design and empirical validation are explained 
in Sections 4 and 5. Finally, discussion of the results, 
limitations of the study and the conclusion are highlighted 
in Sections 6, 7-A and 7. 
 

2. BACKGROUND 
The accuracy of any Neural Network (NN) depends on 
generating adequate internal feature representations from 
the input data. In CNNs, the feature representations are 
separated into 𝑁 feature maps generated from the input 
image of pixel size 𝑅 × 𝑅 using 𝑁 convolutional kernels 
with weight matrices 𝜔. The feature maps are hierarchical, 
meaning the feature maps generated at a given layer L are 
computed from the data propagated from the preceding 
layer 𝐿	 − 1. The three-dimensional input color images (2𝐷 
image of size 𝑅 × 𝑅 with 3 color channels) are 
dimensionally reduced down to 𝑁	2𝐷 feature maps of 
size 𝑆 × 𝑆, such that 𝑅	 ≥ 	𝑆. Dimensionally reducing a 
higher-order non-linearly separable complex function into 
a set of lower-order linearly separable matrices is not 
always exact and may exclude critical information. This 
limitation can be mitigated by introducing a non-linear 
activation function 𝜌 [12]. 

Assuming the input image is fed at the input layer with 
pixel 𝑅&,& indexed by 𝑅!,(& , the convolutional output at 
the 𝑛)* layer is denoted by 𝑦!". The backpropagation error 
can be calculated using the 𝑛)* layer gradient 𝜕𝑦&"/
𝜕𝑅&,&"+$ and the loss function l as 𝜕𝑙/𝜕𝑦&". Applying the 
chain rule to the error for a lower dimensional output 𝑑, we 
get 𝜕𝑙/𝜕𝑅&,&"+$ = ∑ @(𝜕𝑙/𝜕𝑦!!)C𝜕𝑦!!/𝜕𝑅!!

"+$DE-'
!'  [13]. The 

sum of all the convolutional kernels/filters performing a 
linear transformation for 𝒙𝒊 for a given layer 𝐿 is equal to 
2/∆ [8], where ∆	= 	𝑘	 × 𝑘 is the kernel width for 
the N convolutional neurons/unit subsampled by 2. 
 
A. ResNet 
One of the distinguishing characteristics of the ResNet 
architecture is the non-uniform propagation of information 
implemented through skip connections. Skip connections 
facilitate shorter gradient propagation to initial layers, 
eliminating the problem of vanishing and exploding 
gradients. The error minimization function can be 
computed using the approximation vector á𝜑(𝒙0) 	+ 	𝒙0, 𝜔ñ. 
The output of a residual learning block when the gradient 
is small resolves into identity transformations, which has 
been shown to increase performance [6]. Even though a 
few of the training afflictions referred to in Section I are 
resolved by the ResNet architecture, true convergence is 
not achieved. 
 
B. Maximum Entropy in Image Data 
Entropy measures are widely used in image processing for 
image enhancements such as de-noising and image 
restoration/reconstruction using de-convolution [14][15]–
[16]. Maximum Entropy (ME) is used to measure the 
maximum amount of information in images. The reason for 
using ME in this paper is to prove that the structural 
information in the negative images is equivalent to the 
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standard images. The method of calculating ME [17] is 
given in equation 1 

Where, 𝑖 is the number of independent choices that can be 
made with s number of distinct symbols. In grayscale 
images, 𝑖 would be 256 for the 0-255 gray levels with a 0 
value for black and 255 for white and s would be 784 for 
an image size of 28 × 28. ME measures are calculated 
separately for each of the color channels i.e. in case of color 
images Red, Green and Blue (RGB) and then averaged to 
get the final ME measure. 

As an image is dependent on neighboring pixels to 
represent information the relative probabilities of each 
individual pixel are near impossible to calculate, the open-
source scikit-image processing library written in python 
can be used to calculate the ME measures for color and 
grayscale images. SciKit-image processing library uses a 
disk (set to the size of the input training image) to scan 
across the input data and return the frequency count of color 
levels. Using this method we can calculate the maximum 
entropy measures for CIFAR-10 and STL-10 datasets 
as 6.850, 6.907 bits and 6.850, 6.907 for their negative 
counterparts respectively. 
 
C. Signal and Noise in Image Data 
Accurate, quantifiable estimation of image quality, 
regardless of variance, plays a pivotal role in applications 
of digital image processing. There are many measures to 
mathematically calculate digital image quality, including 
Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), Signal-to-Noise Ratio (SNR) and Peak Signal-to-
Noise Ratio (PSNR) [18]. According to [18], measures that 
consider the human visual system that integrate perceptual 
quality measures offer no distinct advantages over existing 
methods such as PSNR. The advantage of SNR over PSNR 
is that the former is the average intensity rather than the 
maximum squared intensity rather of the latter. 

PSNR would be a less strict criterion to use for accurate 
signal measurement compared to SNR since PSNR ≥ SNR 
and PSNR would be significantly affected for constant 
signals whose variances are null but power variances are 
not null. The definition of SNR varies depending on the 
research field [19] but according to [20], SNR is a measure 
that compares the level of the desired signal to the level of 
background noise in the fields of science and engineering. 
In this paper, the use of SNR is warranted since we aim to 
understand kernel saturation and the effect of weight 
updates through supplementing negative images, which in 
theory would have an inverse SNR to the standard images. 
Mathematically, SNR in digital images is defined as the 
ratio of the quotient of mean signal intensity to the standard 
deviation of the noise [21] and is given by Equation 2. 

Where, SNR is the signal to noise ratio (unit-less), μ(𝑆) the 
mean of signal data and 𝜎/ is the standard deviation of the 
signal data with respect to the random noise. 

The equation for calculating the mean of signal data is 
given in Equation 3, 

Where, 𝑆 ∈ [0 − 255], μ(𝑆) is the mean of signal data when 
the pixel values for S are in between 0-255 for red, green 
and blue color channels for CIFAR-10 and STL-10. 

The equation for calculating standard deviation of signal 
data with respect to noise is given by Equation 4. 

Where, 𝑆 ∈ [0 − 255], 𝜎/ is the standard deviation of the 
data, i.e. the signal data with respect to the noise, μ(𝑆) is the 
mean of signal data calculated using equation 3. 𝑅 is the 
total number of pixels in the data, 𝑅! is the value of 
the 𝑖)* pixel in the flattened image. 

Using equation 2, we can calculate SNR for CIFAR-10 and 
STL-10 with the mean of signal data calculated 
using Equation 3 and standard deviation computed 
using equation 4. The SNR values for CIFAR-10 and STL-
10 are 2.39, 1.99 and for their negative versions are 2.73, 
2.66 respectively. 
 

3. ME, SNR IN QUANTIFYING 
INFORMATION PROPAGATION IN CNNS 
ME in digital image processing provides the greatest 
amount of usable information in the image [15], while SNR 
indicates the quality of signal information for the 
image [22]. In other words, SNR reflects the extent to 
which the signal information is corrupted by random noise. 
ME and SNR measures are critical in quantitatively 
examining the input data for analyzing the effectiveness of 
kernel weight updates by measuring CNN models 
classification performance. This is because larger ME 
measures indicate greater usable signal information in the 
data, which warrants higher abstractions. Larger SNR 
values indicate the extent to which this signal/feature 
information can be extracted, which also corresponds to the 
extent of complex feature map abstraction. If CNNs are 
susceptible to kernel saturation, our hypothesis is that 
supplementing the training data with negative images 
having the same structural components (indicated through 
their ME measures), but inverse SNR information, might 
yield more effective weight updates due to the inherent 
spatial information but varied representations. Weight 
updates are performed using the backpropagation of errors 
using a partial derivative of the neural output computed 
using the gradient descent approach for error minimization 
of a loss function l. The loss function is calculated using the 
difference between the initial random kernel weights W and 
the output y for a given input 𝑥!, i.e. 𝑙(𝑊,  𝑦(𝑥0)  =  (W −
 y)1	for a Mean Squared Error function. 

The kernel weight update in CNNs depends on the amount 
of information (ME) in conjunction with the quality and 
complexity of signal information (SNR) present in the 
images. A low SNR indicates that there is more noise than 
signal information and low ME measures imply that there 
is less usable signal information in the images compared to 
noise. In circumstances where images have low SNRs like 
those present in the MNIST dataset, any attempts made to 
recover the original signal information using inverse 
filtering and other such methods produce convolutional 

𝑀𝐸 = log1(𝑠!) 𝑏𝑖𝑡𝑠   (1) 

𝑆𝑁𝑅 = 𝜇(𝑆̅)/𝜎! (2) 

𝜇(𝑆̅) = (Σ!#$" 𝑆)/𝑛 (3) 

𝜎/ = ^(1/𝑛)Σ!#$2 (𝑅! − 𝜇(�̅�)1) 
(4) 
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outputs of unacceptable quality. The quality is reduced 
because, according to [22], noise and signal are intertwined 
implying that noise in the data introduces distortions and 
errors, which leads to uncertainties. These uncertainties 
introduce a more considerable weight change than is 
warranted. The classification accuracy for the 
unaugmented MNIST dataset is already high (99.41%), 
since the signal data is simple and can be linearly separated. 
Substantial weight changes for simple datasets do not affect 
neural outputs since the global optimum can be easily found 
and therefore in these scenarios negative image data 
augmentation offer no significant increases in classification 
accuracies. 

Assume an image has a ME of 1, this would imply that to 
fully reconstruct the image, a single bit of information is 
sufficient. Now assume the SNR measure is 1, suggesting 
there is no corruption of the signal with noise. Therefore for 
complete classification accuracy, a single bit of information 
is sufficient for backpropagation and weight adjustment i.e. 
if the CNN outputs 0, the error will be 100% and the weight 
update enables the updated CNN to output 1. However, if 
the signal is corrupted by noise, the weight updates and 
error calculations need to be adjusted such that the noise or 
random variances are taken into account. Say the ME 
remains at 1, but SNR is 0.5, then the weight updates are 
calculated using the partial derivative of the loss explained 
earlier in this section. 
 

4. EXPERIMENTAL DESIGN 
Experimentation revolves around testing the effect of 
different ME and SNR measures on the saturation of 
convolutional kernels and the effect of saturation on 
convergence to the global optimum in deep CNNs. A 
quantitative methodology was employed to collect the test-
set classification accuracy for the three datasets, 
MNIST [23], CIFAR-10 [10], STL-10 [11]. The research 
hypothesis is that supplementing negative images increases 
classification accuracies. The hypothesis was examined 
against published standard state-of-the-art ResNet models, 
while keeping all other HPs such as learning rate and batch 
size constant with no data excluded or pre-processing steps 
applied to images in the datasets for three evaluation runs 
of 500 epoch instances. Learning rate was set to 0.001 using 
an adaptive optimizer (ADAM) and a batch size of 128 was 
selected based on configurations by the original authors of 
the proposed architectural models [6]. 
 
A. Datasets 
The CIFAR-10 dataset consists of 32 ×32 color natural 
images with ten classes including cars, airplanes and dogs. 
The dataset is balanced across 50,000 training and 10,000 
testing images. The STL-10 dataset includes 500 training 
and 800 test natural color images split into much of the 
same classes of natural images but in a higher 96× 96 
resolution, derived from the ImageNet dataset. The 
standardized testing protocol for STL-10 is not adopted in 
this paper, as the aim is to evaluate model accuracy for 
supervised learning problems instead of unsupervised 
feature extraction. To obtain the negative images of all the 
samples in the datasets we perform logical 
bitwise NOT operations on every pixel separately on the 

three color channels, Red (R), Green (G) and Blue (B) 
using the OpenCV python library. 
 

B. Experimental Setup 
All experimentation was performed using a single NVIDIA 
2080ti and Tesla P100 GPU with 12GB and 16GB of 
VRAM generously provided by InfuseAI Limited and the 
New-Zealand e-Science Infrastructure (NeSI) respectively. 
All models were saved after the predetermined number of 
epochs and each model was tested on the standard test-set 
images. The summary Table I presents the averaged results 
for the three 500 epoch runs. The training-validation split 
for all models was kept constant at 80%-20% for all the 
datasets, batch-size of 128 was based on the original 
ResNet paper [6], learning rate of 0.001 and an adaptive 
optimizer (ADAM) was used for faster convergence. There 
were no modifications made to the ResNet architecture 
with no image augmentation methods used to ensure 
reproducibility. 
 

5. RESULTS 
The averaged experimental results are presented in Table 
I for the two standard datasets along with the same datasets 
supplemented with negative images and training using only 
the negative images. Models were trained using only the 
negative images for 500 epochs only once. Further 
repetition was deemed unnecessary as there were 
significant differences that can realistically only arise when 
the models are not sufficiently converging to the input data. 
 
A. Statistical Analysis 
First, the Shapiro-Wilk test for normality was used to 
establish if the raw data was normally distributed. The data 
was normally distributed with all p-values meeting the 5% 
threshold. To discard any interpretations of the results 
which might be due to random chance, we select the  

 

Fig. 1. Illustration of random negative sample images for two 
class in the STL-10 and CIFAR-10 datasets 
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parametric paired t-test for statistical testing of the data. A 
paired t-test is the most applicable since we want to 
question if there is an observable difference in accuracies 
for the two sets of data, the standard dataset and the 
supplemented standard dataset on the same architectural 
model. In other words, is there a statistical difference in the 
classification accuracies when standard datasets are 
supplemented with negative images? 

Analysis was performed with the independent variable 
being the input dataset and the dependent variable being 
classification accuracy. Interpretation was done at the 
standard significance cut-off level of 0.05 using a two-
tailed test. A two-tailed test is warranted as the assumption 
is that the standard dataset supplemented with negative 
images might provide a higher classification accuracy 
compared to standard dataset but the inverse is also 
possible. The default null hypothesis is that no observable 
differences in accuracy are present. Both the natural image 
datasets (CIFAR-10 and STL-10) on the ResNet-50 
showed statistical significance with p-values of 0.0013 and 
0.0158 with means and variances of (80.65, 83.81), (56.08, 
63.06) and (0.0121, 0.0157), (3.5087, 0.1905) respectively. 
 

6. DISCUSSION 
A. Overview 
A visual representation of the kernel weights for the first 
convolutional layer of the ResNet-50 CNN architecture is 
presented in Figure 2 for the two experimental datasets and 
the same datasets supplemented with negative images. The 
visualizations are generated across multiple epoch 
instances for the initial, middle and last epoch where the 
model is improved from previous instances. Figure 
2 illustrates the kernel weight adjustments for the CIFAR- 

10 dataset are more varied and spread out across a larger 
set of epochs. Higher variance in the kernel weight updates 
can also be observed across the STL-10 dataset. The 
negative images are quite indistinguishable to the standard 
pictures, the ME and SNR measures for the negative 
images are 3.452 and 3.02, respectively. The standard 
dataset has ME and SNR measures of 3.139 and 0.44 
respectively, which implies the weight changes are highly 
tuned towards converging on a single set of images with the 
others being neglected as they offer little to no significance 
in the error backpropagation. In other words, the global 
optimum can be converged to easily and therefore adding 
negative images offers no significant improvement in 
classification accuracy, unlike complex natural images 
which behave differently. 

We can clearly see from Figure 3 that the feature extraction 
is smoother and more controlled for the dataset 
supplemented with negative images compared to the 
standard dataset. Furthermore, there are no adverse impacts 
from supplementing negative images. The ME values for 
the supplemented datasets do not significantly increase, as 
the amount of semantic information in the datasets remains 
the same. This is in stark contrast to the SNR measures 
which merely indicates that more number of pixels are 
brighter thus negative images have higher SNR measures. 
The difference in the SNR measures for the two datasets, 
however small, indicates the true signal variance 𝜎3 which 
forces kernel weight updates close to the mean ignoring 
pseudo-random variances caused by random noise. In other 
words, the loss function for a weight 
matrix 𝜔4" using xi feature inputs is 𝑙C𝜔4#D. 
 
B. Reasoning 
Assuming that the elements of 𝜔4" are represented in only 
a 2-dimensional space then the loss function 𝑙𝜔4" has an 
easy interpretation in a 3-dimensional space which can be 
trivially optimized for linear separation. Problems occur 
when the loss function remains unchanged over a large 
number of epochs making future kernel weight change 
susceptible and negligible weight updates cause premature 
convergences to local optima. This is because the 
backpropagation error calculated using the 𝑛)* layer 
gradient 𝜕𝑦&"/𝜕𝑅&,&"+$ and the loss function 𝑙 as 𝜕𝑙/
𝜕𝑦&" tends to ever-decreasing values for similar input thus 
saturating for any new input. 

Now assume the loss function for a weight 
matrix 𝜔5"-%  using 𝒙0-$ negative feature inputs is 𝑙(𝜔5"-%). 

Table I. SUMMARY TABLE OF RESULTS WITHOUT PRE-
PROCESSING OR REAL-TIME DATA AUGMENTATIONS 

 

 

Fig. 2. Visualized convolutional kernel weights with epoch 
instances for two experimental datasets extracted from a trained 
ResNet-50 architecture 

 
Fig. 3. Visualized activation maps after the final convolutional 
layer for a trained ResNet-50 architecture (89 epochs)  
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The nth layer gradient for this new loss function would have 
similar semantic information (indicated by the 
corresponding maximum entropy measure) but would 
require different feature representations (evidenced 
through varied SNR measure). Therefore, the back-
propagation error would be equivalent to maximizing the 
previous loss function. In other words 𝑙(𝜔4") = 1/𝑙(𝜔5"-%). 
The effect of this would be alternating between a 
maximization and minimization of the loss function. 
 
C. Special condition 
The special condition witnessed from the experimental data 
is that, even though there is an apparent increase in the 
classification accuracy, supplementing negative images 
will not be effective if the model gets saddled in a local 
optimum with an architecture that offers no skip 
connections such as VGGNet. Since there are no skip 
connections in the VGGNet architecture, kernel weight 
updates become close to zero causing saturation from 
which the model cannot recover. In these instances, 
supplementing negative images might decrease the 
probability of saturation but will not eliminate kernel 
saturation. Although a simple data augmentation technique 
such as using negative images show apparent improvement 
in classification accuracy, guarantees in convergence or 
mitigating neural saturation cannot be made. 
 

7. CONCLUSION 
We have reported in this paper that convolutional kernels 
are indeed susceptible to saturation, causing premature 
local optima convergences. We have proposed a novel real-
time image augmentation technique using bitwise 
logical NOT operations on datasets to mitigate 
convolutional kernel saturation and increase classification 
accuracy. The approach was empirically validated using the 
ResNet CNN architecture, ResNet-50 model on three well-
known benchmarking datasets, MNIST, CIFAR-10 and 
STL-10. Our results show smoother and more controlled 
kernel weight updates offering 3-7% increase in 
classification accuracy on CIFAR-10 and STL-10 datasets 
when compared against CNN models trained on standard 
datasets. 
 
A. Limitations and Future work 
Similar to other approaches used to enhance learning 
algorithms, augmenting/supplementing datasets with 
negative images does not necessarily yield perfect 
classification accuracies as seen through experimentation 
on the MNIST dataset. While the data augmentation 
technique has a solid mathematical basis for being 
implemented, convergence or mitigating neural saturation 
cannot be guaranteed. Furthermore, the statistical tests were 
performed with three data points and empirical validation 
of the technique was conducted on two datasets and one 
network architecture. Therefore, further experimentation 
using ImageNet and MS COCO datasets are reserved as 
future work along with examining the detrimental 
characteristics for simple datasets like MNIST. Our 
hypothesis is that negative images might offer increased 
generalization ability which requires further thorough 
experimentation reserved as future work. 
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