
Path Extraction for Autonomous Mobile Robot
Using Skeletonization

Ryuki Higuchi
Department of Electrical and Computer Engineering

Yokohama National University
Tel: +81–45–339–4174

Email: higuchi-ryuki-wc@ynu.jp

Yasutaka Fujimoto
Department of Electrical and Computer Engineering

Yokohama National University
Tel: +81–45–339–4174

Email: fujimoto@ynu.ac.jp

Abstract—One of the most important tasks regarding au-
tonomous mobile robots is to plan a path for movement. Given
a pre-built map, a robot is able to follow a path that is
determined manually by setting way points on the map prior
to exploration. However, for cases without pre-built maps, a
robot has to derive its path while traveling autonomously and
analyzing the surrouding environment. In this paper, we propose
a method of path planning for autonomous movement under
unknown environments in the case where a pre-built map does
not exist. This system successfully determines way points on a
road following the skeleton extracted by combining multiple data
processing algorithms.

Index Terms—autonomous mobile robot, image processing,
skeletonization

I. Introduction

In recent years, extensive attention has been paid to
autonomous mobile robots including driverless cars. Au-
tonomous mobile robots allow us not only to reduce the
stress that comes with manual control, but also to access
dangerous areas that we are generally unable to. In the terms
of method behind autonomous movement, several studies have
used a pre-built map for simultaneous localization and map-
ping (SLAM) to realize autonomous movement by estimating
the position and orientation of the robot [1]. The robot will
then move along a pre-planned path on a map to reach the
destination. In addition, sensors that incorporate a great deal
of information, such as three-dimensional light detection and
ranging (3D-LiDAR) sensors are generally used to improve
accuracy [2] [3]. However, since the fact that creating this kind
of map is a very time-consuming process makes it difficult to
use the robot in unknown locations. Thus, alternative methods
that require little or no pre-built map have been also developed
[4] [5]. Most of these methods are based on straight movement
along roads and turns at intersections, which vary according to
how the orientation is determined and how the intersections
are detected. In [6] and [7], the direction of the road was
detected based on the direction of a point cloud. In another
study, a method that extracts the drivable region via a beam
model was proposed [8].

In the current paper, we propose a method based on the
extraction of a road skeleton undertaken while exploring in
an unknown environment. Even in challenging environments
such as outside areas, this method makes it possible to extracts

Fig. 1. Exterior of the wheelchair type mobile robot

passages using only a 2D laser sensor attached to the mobile
robot developed in our laboratory, which is shown in Fig.
1. This is achieved by combining several image processing
tools including skeleton pruning [9]. Our purpose is to realize
autonomous movement for various environments including
unknown and outside locations without a pre-built map.

II. ProposedMethod

As mentioned above, we do not use a pre-build map, which
means that we have to simultaneously build an environment
map and localize the robot on that map. This approach is
known as the simultaneous localization and mapping (SLAM)
method. Typical SLAM methods include the use of the Kalman
filter [12] and FastSLAM [13] based on a particle filter. In this
research, we used a SLAM method based on particle swarm
optimization (PSO) [14], with an occupancy grid map being
used to build a map based on scan matching via PSO. We

Fig. 2. Configuration of our method

Fig. 3. The coordinate of the robot and the center of input image

also employed a number of image processing techniques to
preprocess the image. The entire process consists of seven
processes and is classified into three parts as outlined in Fig.
2. Each of them is described in detail below.

A. Feature extraction

1) Creating the input image: Although a 2000 × 2000 px
map image is generated in this autonomous robot based on
SLAM, we resize this image to 300 × 300 px to reduce the
complexity of calculation. This down-sampling of the image
is necessary to process it in real time. The boundary between
the road and the impassable area is an important feature in
terms of extracting the skeleton of the road. Thus the priority
of the pixel value is determined as follows. First, cases in
which the pixel value is greater than 0.7 and less than 0.05
are the highest and second highest priority, respectively. All
other pixel values have the lowest priority. In addition, there is
the possibility of not being able to extract sufficient number of
features in the map because this would lead to the unobserved
area being included in front of the robot. Therefore, the center
of the input image would be a certain distance behind the robot
instead of over the robot itself. Suppose that the coordinate of
the robot is Xrobot,Yrobot, as shown in Fig. 3. The center of the
input image is then represented as follows:[

Xinput

Yinput

]
=

[
Xrobot − rback sinα
Yrobot − rback cosα

]
(1)

In Eq. (1), the variable rback is the distance between the robot
and the center of the input image and α is the angle of the
robot represented by −π ≤ α ≤ π.

2) DBSCAN: Density-based spatial clustering of applica-
tions with noise (DBSCAN) [11] is employed for noise reduc-
tion during the first step of our method. This is one of a general
method of data-clustering algorithm and is used to classify a

Fig. 4. Overview of DBSCAN

point cloud based on the density of points. This clustering
method makes it possible to extract the noise points. For this
process, there are two main parameters to be determined: the
distance within which points will be recognized as part of the
same cluster and the minimum number of points in one cluster.
The algorithm begins from an arbitrary point, and points within
the specified distance are classified into the same cluster. The
points that are far away from any cluster or the points in
clusters that have less than the specified number of points are
labeled as noise points. For example, the point N shown in
Fig. 4 is a noise point because there is no other point within
the designated radius.

3) Canny edge detection: After the noise reduction, edge
detection is executed through Canny edge detection [10],
which is a robust and popular method for edge detection.
The process can be divided into four steps. First, a smoothing
process is conducted using a Gaussian filter derived via Eq.
(2). Second, the gradient vector at each pixel value is derived
by a convolving Sobel filter. As a third process, thinning is
undertaken through comparing the adjacent vector. Finally, the
edges are detected by setting a number of thresholds, and even
weak edges can be detected based on the those two thresholds.

θ(x, y) =
1

2πσ2 e
−(x2+y2)

2σ2

≈ 1
16

2|x|+|y|−2 (2)

In this equation, the filter size is 3 (−1 ≤ x ≤ 1, −1 ≤ y ≤ 1),
σ =

√
2
π
. The x and y represent the horizontal and vertical

axes in the image, respectively.

B. Line detection

1) Probabilistic Hough transform: In this section, we de-
scribe the method used for line detection: probabilistic Hough
transform. As shown in Fig. 5, arbitrary straight line L can
be represented as x cos θ + y sin θ = ρ. In this equation, ρ and
θ are the distance from the origin point and normal angle of
L, respectively. For general Hough transform, the pairs of ρ
and θ that pass through the point are found at every point of
the image, and a sufficient number of points in the same pair

Fig. 5. Expression of line in hough transform

can be detected as being part of a straight line. In this case,
every single point must be searched. In contrast, probabilistic
Hough transform is sequential process and works according to
following steps:

1) Choose the unscanned point randomly and initialize the
accumulator.

2) Search for combinations that have the maximum number
of votes on the accumulator and exceed the threshold.
Otherwise back to 1.

3) Calculate the coordinates of both ends of a line segment．
4) If the length of the line segment is greater than the

threshold, it is added to the detection target. Otherwise
back to 1.

5) Decrement the accumulator value corresponding to the
points contained in the line segment．

6) If there is unscanned point yet, back to 1．Otherwise
end．

2) Line clustering: Thus, the point cloud in the image
is transformed into line segments. Every line that can be
derived by probabilistic Hough transform is sorted according
to distance, and the line segments that are sufficiently close
to one another are classified into the same cluster. In this
paper, any two line segments within a distance of 20 px from
each other, corresponding to 2 m, are merged into the same
cluster. This process is applied to every line segment detected
as described in the previous section, and single line can be
classified into multiple clusters. Owing to various influences,
such as unstable scanning, a number of inappropriate clusters
might exist. Therefore, we set certain conditions and executed
processing to disable clusters with following features:
• less than three line segments; or
• a total line segment distance (of all segments included in

the cluster) of less than 2 m.

C. Thinning

1) Area division: Before extracting the map skeleton, the
map should be divided into multiple areas, with each area

corresponding to a region dominated by a cluster, to obtain
the borders among these areas. The dominant area of each
cluster is composed of the pixels closest to that cluster among
any others.

2) Skeletonization: The pixel which has more than two
kind of areas in the vicinity of 8 pixels become a candidate
points of skeleton, and the skeleton is expanded searching
these points by BFS (Breadth-First Search). We can have a
skeleton of the road with 2 pixels width at this moment.
The skeleton is supposed to be the path for autonomous
movement, so it has to be a 1 pixel width using thinning.
In this method, we apply the Hilditch thinning algorithm [15].
The skeleton expressed by the thickness of 1 pixel is connected
by four neighborhoods, not eight neighborhoods, because this
expression makes branch detection easy. By applying these
processing, we can finally get a binary image of a 1 pixel
width passage.

Algorithm 1 Thinning algorithm

Input: input map[300][300]: An image of the map created
by line clustering
m: Amount of line segments
p[m][2] : Endpoints of line segments

Output: output map[300][300]: An image of thinned path
for all (i, j) such that 0 ≤ i ≤ 300, 0 ≤ j ≤ 300 do

Find the nearest valid line segment cluster r(i, j)
end for
queue.push((150,150))
repeat

psearch ⇐ queue.front
if psearch has not been searched yet then

if n(R(psearch)) ≥ 2 then
pstart ⇐ psearch

else
queue.push(N8(psearch))

end if
end if

until pstart is found
queue.push(pstart)
while not queue.empty do

psearch ⇐ queue.front
if psearch has not been searched yet then

if n(R(psearch)) ≥ 2 then
output map[psearch.y][psearch.x]← 1
queue.push(N8(psearch))

else
output map[psearch.y][psearch.x]← 0

end if
end if

end while

3) Segment division: If a skeleton is extracted from a noisy
and unstable environmental map, passages that do not actually
exist are often detected accidentally. Therefore, for the final
step of process , the skeleton in the image is reviewed. To
prevent the robot from traveling on such a path, a process

to delete the wrong passage is implemented. Before partially
removing the passage, it is necessary to divide the skeleton
based on the intersection. The skeleton is divided into the same
segment until the branch point follows the passage. The pixel
which has more than three valid pixels in four neighborhoods
(right, left, up and down) is judged as a branch.

After dividing each passage into a number of segments,
each segmented passage is judged as either appropriate or
inappropriate based on the original map image. The map image
created by SLAM expresses the passable area and the impass-
able area, which might include an observed wall. Accordingly,
a judgment is made based on which area each passage passes
through on the map. In this paper, the decision is made via
the threshold processing, which deletes the passages that pass
through more than a specified ratio of impassable areas. In
other words, passages that pass through impassable areas at a
rate greater than the threshold are removed from the branch.

4) Setting way point: Finally, the robot realizes autonomous
movement by setting way point on the skeleton derived
above. Excluding the area behind the robot, each way point
is searched on a circumference with a radius of 2 m and
set on a skeleton that exists within that range. To prevent
situations in which multiple way points are set extremely close
to each other, the number of way points in each passage
is limited to one. Regarding path planning, a global path
planning, following definition described in [16], is represented
by specifying intersections which robot should turn. On the
other hand, a local path planning using a method based on A*
algorithm [17] is employed. This makes it possible to avoid
obstacles and minimize travel distance during next way point.

III. Simulation

To verify the accuracy of the outlined skeletonization
process during running, we implemented it in a simulation
environment. By reading the laser range finder scan data
acquired during past movement, it was possible to reproduce
the constructing a map. The image obtained by cutting out
the circumference of the robot from the constructed map and
resizing it was used as the input for skeletonization. The robot
began to run from the bottom in Fig. 6 constructing the map
and ended in the upper left corner of the image. The way points
derived by skeletonization were applied to path planning.
Accordingly, we can see the robot moved autonomously in this
simulation. As can be seen by path the robot traveled, indicated
red line in Fig. 6, the robot moved successfully throughout the
entire simulation. Each way point was set 2 m in front of the
robot each time the robot came within 40 cm of previously
determined way point.

Regarding the image processing in each moment, we con-
firmed it worked successfully. Multiple paths existed, as shown
in Fig. 7, which exhibits each every skeleton corresponding
to each extracted path. At the end of the process, the way
points indicated by the green circles were set in front of the
robot, expressed as a red circle in Fig. 7i. However, in the
figure, an intersection that existed in the real environment
could not be recognized because there was an obstacle that was

Fig. 6. The map constructed after the simulation and the trace of the robot

not included. To conduct a simulation that included turning,
we would have to fix this by specifying the intersection
beforehand.

IV. Conclusion

In this paper, we implemented skeletonization to determine
the setting way points for path planning in an autonomous
robot. Even though the map was constructed real time,
the autonomous movement that we expected was confirmed.
Fully autonomous movement including turning at intersections
specified beforehand can be realized by path planning and
path selection. However, a number of problems remained,
especially during the early part of the journey. We can improve
the situation by considering the behavior of the robot when the
map is not completed, such as through exploration to construct
a more detailed map. Finally, we are planning to apply this
method to autonomous movement in a real environment.

References
[1] J. Saarinen, H. Andreasson, T. Stoyanov and A. J. Lilienthal, “Normal

distributions transform Monte-Carlo localization (NDT-MCL),” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 382–389,
2013.

[2] Y. Zhang, J. Wang, X. Wang, C. Li and L. Wang, “A real-time curb
detection and tracking method for UGVs by using a 3D-LIDAR sensor,”
IEEE Conference on Control Applications, pp. 1020–1025, 2015.

[3] J. Wang and Y. Fujimoto, “High Accuracy Real-Time 6D SLAM with
Feature Extraction Using a Neural Network,” IEEJ Journal of Industry
Applications, vol. 10, no. 5, 2021.

[4] R. Toshimitsu and Y. Fujimoto, “Transformation Between Simple and
Detailed Maps Based on Line Matching for Robot Navigation,” proc.
IEEE International Conference on Industrial Informatics, 2019.

[5] A. Watanabe, S. Bando, K. Shinada, et al., “Road following based navi-
gation in park and pedestrian street by detecting orientation and finding
intersection,” International Conference on Mechatronics and Automation,
pp. 1763–1767, 2011.

(a) Input image (b) DBSCAN (c) Edge detection

(d) Hough transform (e) Line clustering (f) Area division

(g) Skeletonization (h) Segment division (i) Way point

Fig. 7. A result of Skeletonization

[6] R. Higuchi and Y. Fujimoto, “Road and Intersection Detection Using Con-
volutional Neural Network,” IEEE International Workshop on Advanced
Motion Control, 2020.

[7] R. Toshimitsu and Y. Fujimoto, “Detection of Road Direction Using 2D
LRF in Unknown Environment,” IEEJ Workshop on Sensing, Actuation,
Motion Control, and Optimization, 2018.

[8] S. Thrun, W. Burgard and D. Fox, “Probabilistic robotics,” MIT Press,
2005.

[9] W. Shen, X. Bai, R. Hu, H. Wang, and L. J. Latecki, “Skeleton growing
and pruning with bending potential ratio,” Pattern Recognition, vol. 44,
no. 2, pp. 196–209, 2011

[10] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pp. 679–698, 1986.

[11] M. Ester, H. P. Kriegel , J. Sander, X. Xu, “A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise,” Pro-
ceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, pp. 226–231, 1996.

[12] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-

Whyte and M. Csorba, “A solution to the simultaneous localization and
map building (SLAM) problem,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 3, pp. 229–241, June 2001.

[13] M. Michael et al., “FastSLAM 2.0: An improved particle filtering algo-
rithm for simultaneous localization and mapping that provably converges,”
International Joint Conference on Artificial Intelligence, pp. 1151–1156,
2003.

[14] T. Matsuno and Y. Fujimoto, “Experimental Verification of Localization
by Optimization Considering Occupancy,” IEEJ Workshop on Sensing,
Actuation, Motion Control, and Optimization, 2018.

[15] C. J. Hildich, “Linear Skeleton from Square Cupboards,” Machine
Intelligence, vol. 4, pp. 403–420, 1969.

[16] W. Khaksar et al., “A review on mobile robots motion path planning
in unknown environments,” IEEE International Symposium on Robotics
and Intelligent Sensors, pp. 295–300, 2015.

[17] Y. Hasegawa and Y. Fujimoto, “Experimental Verification of Path
Planning with SLAM,” IEEJ Journal of Industry Applications, vol. 5,
no. 3, pp. 253–260, 2016.

