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Abstract — This is a fact that the battery life is inversely 
related to the number of discharge cycles. However, these 
days, the bidirectional smart charging scenario of plug-in 
electric vehicles (PEVs) has become a hot trend, using 
them as a storage source at peak load or price. Therefore, 
this paper aims to present a simple and novel technique in 
predictive-based linear programming for limiting the 
number of discharge cycles of PEV. In this regard, a 
specified number of cycles is defined by the user such that 
the predictive algorithm tries to use these cycles in the 
most optimal way. In this paper, first, the effect of the 
discharging cycle on the battery life available in the 
literature is presented. Then, the photovoltaic-assisted 
charging station configuration and desired optimization 
algorithm are introduced. Following, the main novelty of 
this work, i.e. a linear technique for limiting the number 
of discharging cycles will be described. Finally, the 
simulation results are provided to validate the 
performance of the proposed method.  

Keywords—Battery degradation, Discharge cycles, Model 

predictive control, Plug-in electric vehicles, Smart charging. 

 

I. INTRODUCTION 

In recent years, the share of PEVs is growing rapidly in the 
automotive industry [1]. PEVs represent the two main 
categories of battery electric vehicles (BEVs) and plug-in 
hybrid electric vehicles (PHEVs). In the typical structure of 
these vehicles, electric motors are used for propulsion that are 
powered by the energy stored in their batteries. Also, to fully 
charge the batteries, PEVs need to be connected to a power 
outlet. In this regard, the battery plays a key role in these 
vehicles and therefore, one of the main challenges in replacing 
PEVs with conventional vehicles powered by fossil fuels is 
the battery and its health status [2].  

On the other hand, besides the usual duty of batteries in 
charging mode and feeding electric motors, they can also be 
used as energy storage sources when PEVs are parked. In fact, 
due to the planning of energy demand growth and control of 
charging and discharging modes of electric vehicles, the 
cooperation of renewable energy sources and PEVs, known as 
smart charging, has been become a hot trend recently [3]–[5]. 
In other words, the power generation of photovoltaic arrays is 
usually at its highest level around noon, while the energy 
demand of PEVs has two peaks, morning and afternoon. Some 
users charge their car in the morning after arriving at the 

workplace, and many of them are convenient for charging in 
the evening when they arrive at home, which often coincides 
with the daily load peak. As a result of the lack of coordination 
between these two emerging technologies, the load curve is 
far from a flat position more than before [6], [7]. Therefore, in 
recent studies, it has been tried to charge the vehicle's battery 
with solar power or employ its ability to store energy and use 
it during peak times or high prices. In simple terms, PV power 
generation is saved in the battery when the load or price is 
somewhat low such that be used at other times. However, 
excessive use of batteries will damage their health in several 
cases, which are described in [8]–[11] in detail. 

Given the aforementioned issues, this paper intends to 
develop a simple and novel technique to limit the number of 
discharge cycles. In this regard, the linear optimization 
approach based on model predictive control (MPC) is 
employed as a conventional method for smart charging of 
PEVs. Therefore, the proposed technique should have this 
capability to be implemented as a linear constraint so that can 
be added to the linear programming method.  

The rest of the paper is organized as follows: Section II 
describes a typical configuration of a PEV charging station 
briefly. Section III introduces the bidirectional smart charging 
algorithm. Section IV explains the proposed linear technique 
for limiting discharge cycle numbers. Finally, Sections V and 
VI present the simulation results and conclusion of this paper. 

II. CONFIGURATION OF CHARGING STATION 

First of all, it is necessary to introduce the common 
configuration of a PEV charging station and the role of various 
elements in it. In this paper, the desired structure is shown in 
Fig. 1, which consists of the utility grid, local loads, solar 
arrays, and PEVs. As mentioned, in the structures used 
recently, the use of renewable energies, especially solar 
energy, is inevitable. 

In the first place, due to the low incremental cost, the 
system controller tries to harvest the maximum possible power 
from the PV arrays by means of the maximum power point 
tracking (MPPT) technique. It should be noted that 
uncertainties and power fluctuations in photovoltaic arrays 
make challenges in power management optimization. In this 
regard, several approaches have been proposed to accurately 
predict PV production capacity [12]. Here, it is assumed that 
solar arrays are present with a maximum power of 14 kW and 
their output power during a whole day is estimated according 
to Fig. 2 (a).  



On the other side of the configuration under study, there 
are typical local loads with different and time-variable power 
demands, depending on the location of the charging station in 
residential buildings, workplaces, or private and public 
parking lots. Assuming the charging station in a residential 
building, as shown in Fig. 2 (b), the load demand is close to 
zero in the early hours of the day, while it has the highest 
values in the early hours of the night. It should be noted that 
load demand, like power generation in solar arrays, has 
uncertainties that are estimated by appropriate algorithms. In 
the usual structure, the load demand needs to be fully met by 
the production components.    

Before going to the next component i.e. PEV and 
describing its impact on the system structure, it is better to 
clarify the role of the utility grid. According to the general 
procedure, in this structure, the grid as the dominant element 
is responsible for power balancing among different elements 
in such a way as to compensate for the excess or lack of 
generated power according to Equation (1). 

                            
Grid Load EV PVP P P P    (1) 

This equation is known as the power balance equation, 
where its variables signs are considered with respect to the 
power directions assumed in Fig. 1. In other words, if the total 
power production is less than the power consumption, the 
power difference is injected into the system by the grid. 
Generally, the main purpose of scheduling methods is to 
reduce the cost of energy exchanged with the grid. In reality, 
however, the electricity price is highly variable and 
unbalanced in the wholesale market, while the approved price 
for residential users typically has two or three different levels. 
For example, the electricity price for home users in France is 
13.46 and 17.99 cents per kilowatt-hour, respectively, during 
normal and peak hours [13]. In this paper, to simplify and 

without losing generality, three different peaks are considered 
in the electricity price according to Fig. 3, and at other times, 
the price is almost constant.   

As the last element in the system, there is the PEV, which 
plays a major role in smart charging algorithms due to its 
nature. In fact, because PEVs are parked for around 90 percent 
of their lifetime, controlling their charge and discharge can 
bring some benefits for various actors [14][15]. Actors include 
the user or owner of PEV, the charging station owner, and the 
grid operator. In this work, Renault Zoe R110 with the 
specifications provided in Table 1 is considered as one of the 
most popular electric vehicles in France. In the next section, 
the types of optimization algorithms, different objective 
functions, and selected types in this paper are briefly 
presented.   

III. BIDIRECTIONAL SMART CHARGING ALGORITHM 

In general, smart charging algorithms of PEVs are divided 
into two main categories, including rule-based methods [16]–
[18] and optimization methods [19]–[24]. The rule-based 
algorithm, as its name implies, complies with defined rules 
that does not necessarily guarantee an optimal solution. 
Actually, due to the low computational volume and relatively 
high speed, this approach is usually employed as a 
complementary and real-time method to compensate for 
instantaneous errors. On the other hand, optimization 
algorithms are seeking available optimal solutions by 
considering objective functions and system constraints. 
However, heavy calculations and common uncertainties in the 
desired system indicate that it is necessary to use model 

TABLE I 
PEV SPECIFICATION DETAILS 

Symbol Description Value 

max/min

PEVP  Maximum/minimum PEV power 22/-22 kW 

nom

PEVE  Nominal capacity of PEV battery 41 kWh 

max/min

PEVSOC  
Maximum/minimum PEV State of 

charge (SOC) 
90%/20% 

max/min

ChP  Maximum/minimum charger power 15/-15 kW 

 

 
Fig. 3. Electricity price in a whole day (cents/kWh). 
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Fig. 2. Daily estimated power of (a) PV arrays (b) load demand. 

 
Fig. 1. Desired configuration of charging station. 
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predictive control (MPC) in parallel with optimization, which 
can deal with uncertainties well. There are several 
optimization methods in the literature such as linear, 
quadratic, nonlinear, dynamic, and robust. Obviously, the 
linear type is the simplest and fastest proposed optimization 
method in which all relations must be modeled linearly. In this 
regard, several studies have tried to use the linear optimization 
method even by approximating or simplifying nonlinear 
relationships [25], [26].  

Also from another point of view, the general goal of smart 
charging can be different things such as reducing energy cost, 
power loss reduction, increasing the use of renewable energy 
sources, reducing load demand variations, and so on. 
Reducing the cost of energy exchanged with the grid is one of 
the most popular objective functions, which can be easily 
implemented with linear optimization. In this regard, the user-
friendly linear programming algorithm, introduced by the 
authors in [19], is considered the main controller in this paper. 
As shown in Fig. 4, this algorithm is implemented as an MPC-
based linear optimization that tries to charge the battery to the 
desired level (SOCfinal) at the lowest cost. Three different 
scenarios are examined in the proposed algorithm, including 
uncontrolled, unidirectional, and bidirectional smart 
scenarios. However, due to the topic and the impossibility of 
battery discharging in uncontrolled and unidirectional 
scenarios, only the bidirectional scenario will be considered. 

In summary, the bidirectional smart charging algorithm 
with linear optimization based on the predictive model is 
considered in this paper, which its objective function tries to 
reduce the cost of energy exchanged with the grid. The 
objective function and system constraints are optimized each 
5-minute time step for a 20-hour time horizon. In the next 
section, the proposed linear technique for limiting the number 
of discharge cycles in the desired time horizon will be 
presented. It should be noted that due to the linearity of the 
smart charging algorithm, the new constraint should also be 
applied linearly. 

IV. PROPOSED LINEAR TECHNIQUE 

 In accordance with the MPC-based linear optimization 
method described in the previous section, the vehicle output 
power is predicted for the next 241 steps (20-hour time 
horizon by 5-minute time step) in each step: 

           
1 2 3 240 241

241 1

; ; ;...; ;EV EV EV EV EV EV

current time step

P P P P P P

 

 
 
 
 

 (2) 

 However, only the first element of the above matrix, i.e. 
PEV1, is applied to the system in the current step. For the next 
step, it is necessary to update the system information then 
optimizing the vehicle output power again in the desired time 
horizon. As explained, to keep the battery in a healthy 
situation, it should be possible to control the number of 
discharge cycles in this time horizon. In the rest of this section, 
the proposed linear technique for limiting the number of 
discharge cycles is presented. It should be noted that it is easily 
possible to implement this constraint nonlinearly, but the main 
purpose is to examine its linear implementation. 

 First of all, according to the defined power directions, the 
vehicle output power has positive values in discharging mode, 
and it has negative values in charging mode as well. 
Therefore, to count and limit the number of discharge cycles, 
it is necessary to distinguish positive values of power from 
other values. In other words, positive values are displayed 
with digit 1, and negative or zero values are displayed with 
digit 0. In this regard, the floating symbol variable s with 241 
elements is defined in binary form as relation (3). 

          
's ' 'Type ' '

)

integer 'optimvar( , N,

o

, ,

,0, 1'LowerB und ' 'UpperBound ',

s 
 (3) 

where N represents the number of variable elements, and 
‘optimvar’ function creates optimization variables. As it can 
be seen, due to the impossibility of using the binary format, 
the integer format with upper (1) and lower (0) bounds has 
been replaced. Now to convert the output power to the desired 
binary variable linearly, the two constraints are used as 
Equations (4) and (5). 

        

max

optimprob.Constraints.s1 = optimconstr(N);

=1:1:N

optimprob.Constraints.s1( ) = ( ) 0;

for

iEV EV i

i

i P P s  

 (4) 

 
Fig. 4. MPC-based linear optimization algorithm. 
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TABLE II 
DIFFERENT VALUES OF THE TRANSITION VARIABLE 

              si 

  si-1 

0 
(charge or neutral) 

1 
(discharge) 

0 

(charge or neutral) 
0 - 0 = 0 1 - 0 = 1 

1 

(discharge) 
0 - 1 = -1 1 - 1 = 0 

 



    

max

optimprob.Constraints.s2 = optimconstr(N);

=1:1:N

optimprob.Constraints.s2( ) = ( (1 )) 0;

for

iEV EV i

i

i P P s    

 (5) 

where 𝑃𝐸𝑉
𝑚𝑎𝑥 indicates the maximum power of the vehicle, and 

‘optimconstr’ function creates empty optimization constraint 
arrays. In Equation (4), first, N different constraints are 
defined for the whole time horizon. Then, with the help of the 
given inequality, the variable s will be equal to 1 for the 
positive values of the vehicle output power. However, the 
variable is not specified for negative or zero values. In other 
words, it can be either 0 or 1 for those values. Therefore, 
Equation (5) is similarly employed to make the variable s 
equal to zero when the vehicle power is negative or zero. 

 In reality, a small discharge does not have much effect on 
battery life. In addition, due to leakage current, the battery is 
being really discharged in neutral mode. Therefore, instead of 
zero, it is better to consider the parameter ε to enter the 
discharge zone. In this paper, ε is considered to be 50 watts. 
With these assumptions, Equations (4) and (5) are rewritten as 
follows: 

    maxoptimprob.Constraints.s1( ) = (( ) ) ;
iEV EV ii P P s      (6) 

 maxoptimprob.Constraints.s2( ) = (( (1 )) ;  )
iEV EV ii P P s         (7) 

 So far, the discharge mode and other modes have been 
separated by the floating variable s. Next, by comparing the 
variable s in each step (si) with its previous step (si-1), the 
starting point of the discharge mode can be identified. For this 
purpose, the variable t is defined as follows. 

                            
1; 2,...,241i i it s s i    (8) 

As it can be understood, the variable t has only one 
element less than the variable s, and it may be equal to 0, 1, or 
-1. According to Table II, the variable t is equal to one, if and 
only if the state changes from the neutral or charging mode to 
the discharging mode.  

It is also observed that the value of t is equal to -1 when 
the discharge mode changes. Therefore, it is necessary to 
define a new slack variable with the help of equations similar 
to the previous equations, which is equal to 1 only in change 
to the discharge mode, and otherwise equal to 0. In this regard, 
the discharge cycle variable dc is defined as Equation (9). 

         
'dc ' 'Type

)

' 'integeoptimvar( , N-

r '

1, ,

0

r ,

, ,

'

'Lowe Bound 'U ,pperB 1ound '

dc 
 (9) 

Using Equations (10) and (11) allows the variable dc to be 
equal to 1 only when the value of t is greater than 0.2. 

   

1

optimprob.Constraints.dc1 = optimconstr(N 1);

= 2:1:N

optimprob.Constraints.dc1( ) = ((1 0.2) ) 0.2;

for

i i

i

i t dc 



   

 (10) 

1

optimprob.Constraints.dc2 = optimconstr(N 1);

= 2:1:N

optimprob.Constraints.dc2( ) = (1.2 (1 )) 0.2;

for

i i

i

i t dc 



     

 (11) 

Finally, it is possible to detect the beginning of discharge 
cycles with the help of the dc variable. However, if the vehicle 
is currently in the discharging mode, the dc variable does not 
show it. So, the number of discharge cycles Ndc can be 
obtained by Equation (12). 

                                 
1

1

1

N

dcN dc s


   (12) 

To control the number of discharge cycles, the number (x) 
must first be specified by the user or the system, then it is 
applied with the help of the following constraint. 

            
dc

dc

optimprob.Constraints.N  = optimconstr(1);

optimprob.Constraints.N (1) = ;dcN x
 (13) 

 In the next section, the control of the number of discharge 
cycles for different simulation scenarios is analyzed. 

V. SIMULATION RESULTS 

In this section, the effectiveness of the proposed linear 
technique for limiting discharge cycles will be investigated for 
several values. In this regard, the simulation results of the 
smart charging control algorithm are presented in 
MATLAB/Simulink software in three different modes. For 
this purpose, a PEV is considered in accordance with the 
specifications presented in Table I. For simplicity and better 
understanding of the results, it is assumed that the vehicle with 
an initial charge of 60% arrives at the charging station at 3 
o'clock in the morning. Also, based on the driver's order, this 
vehicle intends to leave at 22:30 with a final charge of 80%. 

In the first simulation, the smart charging controller is 
employed without the presence of the proposed linear 
technique, which its results are shown in Fig. 5. In this figure, 
the output power of various elements, the PEV output power, 
the PEV state of charge (SOC), and the cumulative cost of the 
energy exchanged with the grid are available. It should be 
noted that the local load demand has positive values, but it is 
presented as negative values due to its consumption 

 
Fig. 5. Smart charging results without proposed linear technique. 
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characteristic. Also, as mentioned, the output power of solar 
arrays is considered as predicted and without uncertainty. As 
it can be seen in Fig. 5, there are three discharge periods in the 
output power of PEV corresponding to different price peaks. 
In fact, in the first price peak (before 6 o'clock), the stored 
energy of PEV is used along with PV power production to 
inject into the grid and feeding the local load as well. Then, 
due to the minimum capacity of the battery and the electricity 
price reduction, the vehicle is fully charged with solar arrays 
between 7 and 11 o'clock. Also, due to the sufficient time and 
appropriate power range, the power exchanged with the grid 
is equal to zero in this period, so all the energy is spent on 
vehicle charging. At the second price peak (between 11 and 
13 o'clock), all the energy stored in the battery is discharged 
again. After that, due to approaching the third price peak, the 
battery will be charged to the maximum capacity between 14 
and 17. It should be noted that the grid also helps to charge the 
vehicle at the beginning of this period because of the limited 
time. Finally, at the third peak price, the energy stored in the 
vehicle is discharged to the extent that it can be recharged to 
the desired amount (SOCfinal) at the time of departure. 
Therefore, it can be seen that the battery is charged to the 
desired value when leaving, and during this parking period, 
three discharge cycles are experienced. With these results, the 
charging station owner will receive $ 7.15 from the grid at the 
end of the day. In the next scenarios, the number of discharge 
cycles can be reduced using the proposed technique, and the 
results can be presented for one and two cycles.  

In the second scenario, the smart charging algorithm is 
implemented in the presence of the proposed linear technique 
assuming two discharge cycles, which its results are presented 
in Fig. 6. Again, PV output power and load profile are 
assumed to be constant. As it can be seen, the first discharge 
cycle corresponding to the first price peak is eliminated due to 
the added constraint. In other words, only two more profitable 
discharge cycles remain in the optimization. In fact, the 
optimization results only have been changed before the second 
price peak. Here, due to the desired limitation, the total cost 
received from the grid is slightly reduced, and instead, a lower 
discharge cycle is used.  

Finally, in the third scenario, the number of discharge 
cycles is considered equal to the minimum possible cycle, i.e. 
one cycle. The results related to this scenario are presented in 
Fig. 7. As expected, only the last price peak with higher values 
has remained in the optimization, and the other two discharge 
cycles are eliminated. At the same time, the total cost of 
energy has increased more than in previous scenarios. It is also 
clear that the optimization after the third price peak is similar 
to the previous scenarios because the constraint applied does 
not affect that time period. 

As it was illustrated, the linear constraint on the number of 
discharge cycles is correctly satisfied in all scenarios, and the 
desired final SOC selected by the user is obtained. 

VI. CONCLUSION 

In this paper, a novel linear technique was developed to 
control the number of discharge cycles in MPC-based 
optimization of PEVs. In fact, because of the importance of 
battery health, the user can contribute to the smart charging of 
the vehicle by specifying the number of discharge cycles 
during a whole day or during parking time. In this regard, the 
smart charging algorithm used along with the proposed 
technique select the most appropriate discharge cycles. It 
should be noted that it was possible to apply this limitation in 
other ways, but the linearity and simplicity of calculations can 
be mentioned as advantages of the proposed technique. In 
other words, the studied constraint was originally nonlinear, 
which was implemented as a linear problem using the 
proposed technique. For this purpose, a general structure of a 
PEV charging station assisted by PV arrays was introduced. 
Then, the effectiveness of the proposed technique was proved 
for different scenarios.  
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