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Abstract

In this paper the attitude tracking control problem of a 2 degrees-of-freedom helicopter
system with network induced constraints is studied. A predictor feedback control
law is developed to compensate a known delay in the communication, where the
inputs are quantized before transmitted over the network. Stability of the closed-loop
system is established, where tracking is achieved with bounded tracking errors due
to the network issues. The developed predictor-based controller is experimentally
tested on the helicopter system, where we demonstrate that tracking is achieved in
presence of both input delay and quantization.

E.1 Introduction

Air vehicles such as unmanned aerial vehicles (UAVs) and helicopters provide great
accessibility and have a wide range of applications such as transport, search and
rescue, inspection, monitoring and photography. Unmanned aircraft are controlled by
a human operator from ground or fully autonomously by electronic systems, where
remote controlled systems are sensitive to time delays and also the sampling and
quantization of signals before transmitted in the communication network affect the
performance of such systems.

For an attitude tracking control problem where signals are sent through a network,
both quantization and delay have impact on the tracking performance. Quantization
naturally exists in networked control systems (NCSs), where a quantizer can be





       

considered as a devise that converts a continuous signal into a piecewise constant
signal, which leads to quantization errors that are nonlinear. These errors can
not be ignored when the resolution in the network is low, since it will affect the
performance and stability of the system. Quantization can also be considered as
useful, from the advantage of reducing occupation rate of transmission bandwidth in
the communication channel [1]. Tracking control of systems with input quantization
has been investigated in e.g. [2–5] for uncertain nonlinear systems, in [6] for a group
of unmanned aerial vehicles with unknown parameters, in [7] for under-actuated
autonomous underwater vehicles (AUVs) and in [8] for a 2 degrees-of-freedom (DOF)
helicoper system.

One of the first tools for handling delays was the Smith predictor used for
compensating a pure time-delay for open-loop stable plants. A modified Smith
predictor compensates for both the predicted effect of the control input and of the
future evolution of the system state, and also works for unstable plants [9]. Several
predictor based approaches have been proposed to compensate input delays for
linear systems in [10–12] and nonlinear systems in [13–19] where a backstepping
transformation was introduced in the control design in [13], which makes it possible
to show stability of the closed-loop system using a Lyapunov functional. In [20] the
attitude stabilization of a quadrotor with a known input delay was considered where
a predictor feedback controller was developed to compensate the delay. Compared
to stabilization to a desired attitude, the problem of tracking a changing reference
signal with time is more difficult. Unless knowing the reference signal in advance,
and by sending the reference signal the delayed-time units ahead to the controller, it
is not possible to track the desired signal perfectly in presence of a delay. In [21], the
tracking control problem of nonlinear networked and quantized control systems was
studied. In [22] a predictor feedback controller was developed for trajectory tracking
where both input delay and parameters were unknown.

In this paper we are focusing on the problem of tracking a given reference attitude
for a nonlinear multiple-input multiple-output (MIMO) helicopter system with 2
DOF, when there is a known constant time-delay of D-time units for the inputs and
at the same time, the inputs are quantized before transmitted over the network. The
main contributions in this paper are dealing with the simultaneous issues caused
by quantization and delay, where the effect of the delay is compensated for by the
design of a predictor feedback controller, and where the effect of quantization is
analytically shown to be related to the tracking error. A higher quantization level
increases the tracking error. Simulations and experiments are carried out to illustrate
the proposed control scheme.

The paper is organized as follows. In Section E.2, the dynamical model of the
helicopter system, the control problem and the considered quantizer are presented.
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Figure E.1: Control system with input quantization and delay over a network.

Section E.3 provides the predictor-feedback control design, in Section E.4 a proof of
stability on the basis of a Lyapunov functional is given and in Section E.5 experimental
results of the proposed method implemented on the helicopter system are presented
and Section E.6 sums up the paper in a conclusion.

E.2 Dynamical Model and Problem Statement

E.2.1 Notations

Vectors are denoted by small bold letters and matrices with capitalized bold letters.
λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively. For vector functions, the norm ∥u(t)∥2 =

√∫D
0 u(x, t)⊤u(x, t)dx denotes

the spatial L2 norm.

E.2.2 Problem Statement

We are considering a control problem as shown in Fig. E.1, where the input vector
u is quantized before transmitted in the communication network and there is a
time-delay D in the network. The system is assumed noiseless, so that the quantized
signals are recovered after transmission, and so the system receives the quantized
delayed input uQ(t−D).

The control objective is to develop a predictor based control law to compensate
for a constant known input delay for a multi input nonlinear helicopter system to
track a given reference attitude signal. From the derived error dynamics, we will
design a controller so that stability of the origin of the error system is maintained in
the presence of both quantization and delay of the input.
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Figure E.2: Map of the uniform quantizer for u > 0.

E.2.3 Quantizer

In this paper we consider a uniform quantizer for the inputs, where the quantizer for
each input signal is modeled as

Q(u) = uQ =

 ui sgn(u), ui − l
2 < |u| ≤ ui + l

2

0, |u| ≤ u0
, (E.1)

where Q(·) is a quantizer, u0 > 0, u1 = u0 + l
2 , ui+1 = ui + l, l > 0 is the length

of the quantization interval, sgn(u) is the sign function. The uniform quantization
uQ ∈ U = {0,±ui}, and a map of the quantization for ui > 0 is shown in Fig. E.2.

The following property holds for the uniform quantizer

|uQ − u| ≤ δ, (E.2)

where δ > 0 denotes the quantization bound. Clearly, the property in (E.2) is
satisfied with δ = max{u0,

l
2}. When a vector is quantized, we have

uQ =
[
uQ

1 uQ
2 · · · uQ

n

]⊤
, (E.3)
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Figure E.3: Quanser Aero helicopter system.

and so each vector element is bounded by (E.2), and we have

∥uQ − u∥ = ∥d∥ ≤ ∥δ∥ ∆= δu, (E.4)

where d is the quantization error.

E.2.4 Mathematical Model

The helicopter system shown in Fig. E.3 is a two-rotor laboratory equipment for
flight control-based experiments. With a horizontal position of the main thruster and
a vertical position of the tail thruster, this resembles a helicopter with two propellers
driven by two DC motors. The helicopter is a MIMO system with 2 DOF, and can
rotate around two axes. This is considered as a rigid body and a mathematical model
is derived using Euler-Lagrange equations and expressed as:

M (q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = uQ(t−D), (E.5)

where

M(q) =
Ip +mr2 0

0 Iy +mr2 sin2 q1

 , (E.6)

C(q, q̇) =
 0 −mr2 sin q1 cos q1q̇2

mr2 sin q1 cos q1q̇2 mr2 sin q1 cos q1q̇1

 , (E.7)

g(q) =
[
mgr sin q1 0

]⊤
, q =

[
q1 q2

]⊤
, (E.8)





       

and where q, q̇, q̈ ∈ R2 are angles, angular velocities and accelerations, M(q),
C(q, q̇),D ∈ R2×2 are the inertia, Coriolis and damping matrices, respectively,
where D is a constant matrix, g(q) ∈ R2 is a vector of gravitational loading, r is
the distance between the center of mass and the origin of the body-fixed frame, Ip

and Iy are the moments of inertia of q1 and q2 respectively, g is the gravitational
acceleration, and m is the total mass of the Aero body.

Defining x = [q⊤, q̇⊤]⊤ = [x⊤
1 ,x

⊤
2 ] ∈ R4, and u ∈ R2, the system can be written

in state space form as

ẋ(t) = f(x(t),uQ(t−D)). (E.9)

For tracking of a reference signal xr(t), the error states are defined as

z1 = xr − x1, (E.10)

z2 = ż1 + Az1, (E.11)

where A is a constant positive definite matrix, and the error dynamics is given as

ż(t) = f(z(t),uQ(t−D)) =
 z2 − Az1

Az2 + h − M−1uQ(t−D)

 , (E.12)

h = ẍr − A⊤Az1 + M−1 [(C + D)(ẋr + Az1 − z2) + g] . (E.13)

The change of coordinates (E.10)–(E.11) are chosen by following the backstepping
design procedure [23], where a similar design is given in e.g. [24]. To achieve the
control objective, the following assumption regarding the reference signal is imposed:

Assumption 1. The desired angles, angular velocities and accelerations, xr(t), ẋr(t), ẍr(t) ∈
R2, are known, continuous and bounded for all t ≥ t0 ≥ 0.

E.3 Predictor-Feedback Control Design

To compensate for the input delay, we derive a predictor-feedback controller for the
system. A nominal controller for the error system (E.12) without quantization and
delay D = 0, can be formulated as

u(t) = κ (z(t),xr(t)) = M (h + (A + B)z2 + z1), (E.14)

where B is a positive definite matrix, and makes the origin exponentially stable in
the absence of delay and quantization. System (E.12) can be equivalently modeled





          


by a cascade of ODE-PDE [17]

ż(t) = f(z(t),u(0, t)), (E.15)

ut(x, t) = ux(x, t), (E.16)

u(D, t) = uQ(t), (E.17)

where the actuator state is modeled by a transport PDE and where the solution to
(E.16)–(E.17) is given by u(x, t) = uQ(t+ x−D) for all x ∈ [0, D].

The predictor feedback controller is defined as [14]

uQ(t) = Q (κ[p(D, t),xr(t+D)]) , (E.18)

where the predictor state is given as

p(x, t) = z(t) +
∫ x

0
f(p(y, t),u(y, t))dy,∀x ∈ [0, D], (E.19)

where, assuming perfect model f , p(x, t) = z(t + x) ∀x ∈ [0, D], and so p(D, t) =
z(t+D) is the D-time units ahead predictor of z(t). Then the delayed input

u(0, t) = uQ(t−D) = Q (κ[t,p(0, t)]) = κ(t, z(t)) + d(t), (E.20)

where d(t) is the quantization error which satisfies (E.4).

E.4 Stability Analysis

To analyze the closed-loop stability, we first establish some preliminary results as
stated in the following Lemma.

Lemma 1. The open loop system ż = f(z,ω) is forward complete.

Proof. Consider the nonnegative-valued, radially unbounded, smooth Lyapunov
function and its derivative [18]

V1(z) = 1
2z⊤z, (E.21)

V̇1 = z⊤
1 (z2 − Az1) + z⊤

2 (Az2 + h − M−1ω)

≤ c1V1 + 1
2ω⊤ω + c2(x⊤

r xr + ẋ⊤
r ẋr + ẍ⊤

r ẍr)

≤ c1V1 + c3, ∀z ∈ R4,ω ∈ R2, (E.22)

where c(·) are positive constants, Assumption 1 is used, and where ω is a bounded
input. Then, the system ż is forward complete and solutions exist globally.





       

A definition of forward completeness is given in e.g.[14]. Since the system is
forward complete, the problem of a finite escape phenomenon is avoided, and ensures
that for every initial condition and every bounded input signal, the corresponding
solution is defined for all t ≥ 0.

Following [17], we define the direct and inverse backstepping transformation

w(x, t) = u(x, t) −Q (κ[x+ t,p(x, t)]) , (E.23)

u(x, t) = w(x, t) +Q (κ[x+ t,π(x, t)]) , (E.24)

where for all x ∈ [0, D],

π(x, t) =z(t) +
∫ x

0
f(π(y, t), Q (κ[t+ y,π(y, t)]) + w(y, t))dy, (E.25)

where π(x, t) are used to generate the target predictor state π(D, t).

By [17, Lemma 1], the transformation (E.23) maps the closed loop system
consisting of the error system (E.15)–(E.17) and the control law (E.18)–(E.19) into
the target system

ż(t) = f(z(t),w(0, t) + κ(t, z(t)) + d(t))

=
 z2(t) − Az1(t)
−z1(t) − Bz2(t) − M−1w(0, t)− M−1d(t)

 , (E.26)

wx(x, t) = wt(x, t), ∀x ∈ [0, D], (E.27)

w(D, t) = 0. (E.28)

By [17, Lemma 2], (E.24) is the inverse of (E.23). We now state our main result in
the following theorem.

Theorem 1. Consider the closed-loop system consisting of the error dynamics
of the helicopter system (E.15)–(E.17), the control law (E.18)–(E.19) with input
quantization satisfying the bounded property (E.4), and the reference signal xr(t)
satisfying Assumption 1. If the gain matrices A and B are chosen to satisfy the
inequality

min{2λmin(A), 2λmin(B) − 2, 1} > c4 > 0, (E.29)

where c4 is a positive constant, then for all initial conditions z(t0) ∈ R4, u(x, t0) ∈
R2 ∀x ∈ [0, D] and for all t ≥ t0 ≥ 0, the following holds:

∥z(t)∥ + ∥w(t)∥2 ≤ c6 (∥z(t0)∥ + ∥w(t0)∥2) e− c4
2 (t−t0) + c5δu, (E.30)





          


where

c5 =
√

2k
c4

> 0, c6 =
√

2keD > 0, (E.31)

where k = max{1, λmax(M−1)2}.

Proof. Due to forward completeness of (E.15) (Lemma 1), the predictor state (E.19)
is well defined and therefore w(x, t) in (E.23) is well defined. It follows that the
target system (E.26)–(E.28) is well defined and that we can select the Lyapunov
function candidate

V2(t) = 1
2z(t)⊤z(t) + k

2

∫ D

0
exw(x, t)⊤w(x, t)dx, (E.32)

that satisfies

1
2E(t) ≤ V2(t) ≤ 1

2ke
DE(t), (E.33)

where

E(t) = z(t)⊤z(t) +
∫ D

0
w(x, t)⊤w(x, t)dx. (E.34)

The derivative of (E.32) is

V̇2 =−z⊤
1 Az1−z⊤

2 Bz2−z⊤
2 M−1w(0, t)−z⊤

2 M−1d(t)+k
∫ D

0
exw(x, t)⊤wt(x, t)dx

≤ − z⊤
1 Az1 − z⊤

2 Bz2 + z⊤
2 z2 − k

2w(0, t)⊤w(0, t) − k

2

∫ D

0
exw(x, t)⊤w(x, t)dx

+ k

2
(
w(0, t)⊤w(0, t) + δ2

u

)
, (E.35)

where Young’s inequality and integration by parts are used. By choosing matrices A

and B such that (E.29) holds, we have

V̇2 ≤ −c4V2 + k

2δ
2
u. (E.36)

From (E.36) and by using the comparison lemma [25, Lemma 3.4], then for all
t ≥ t0 ≥ 0,

V2(t) ≤ V2(t0)e−c4(t−t0) + k

2c4
δ2

u(1 − e−c4(t−t0))

≤ V2(t0)e−c4(t−t0) + k

2c4
δ2

u. (E.37)





       

Table E.1: Helicopter Parameters.

Symbol Value Units
Ip, Iy 0.0217 kgm2

m 1.075 kg
g 9.81 m/s2

r 0.0038 m
D [0.007 0;0 0.0095] kgm2/s

From (E.37) and (E.33) we have

E(t) ≤ k

c4
δ2

u + keDE(t0)e−c4(t−t0), (E.38)

and by using the inequality (∥z(t)∥ + ∥w(t)∥2)2 ≤ 2E(t) we get estimate (E.30).
This shows that the target system is uniformly ultimately bounded with an ultimate
bound that is directly related to the value of the quantization parameter.

Remark 1. From (E.30), tracking is achieved with a bounded error proportional to
the quantization.

E.5 Simulation and Experimental Results

In this section, the attitude tracking control problem is considered for the Quanser
Aero helicopter system, where both simulation using MATLAB/Simulink and ex-
periments on the helicopter system have been carried out. The initial values were
set to x(t0) = 0, where t0 defines the start of experiment. The parameters used for
simulation and experiment are shown in Table E.1, and the design parameters were
chosen as A = 3I and B = 1.6I and satisfies the inequality (E.29). The objective
in the experiment was to track a given sinusoidal signal for the attitude xr(t) in
presence of both quantization and delay of the inputs.

To illustrate the performance of the proposed predictor-based controller, we
first tested without the predictor and without quantization when there was a delay
for the input, and so the system received the delayed inputs u(t − D), where the
input vector is defined in (E.14). By increasing the delay, the system had more
oscillation, and when D = 0.1s, the oscillations increased during the experiment and
was stopped after about 4s. Figs. E.4–E.5 show the tracking of angle q1(t) and the
inputs u(t−D), respectively, from this experiment. This shows that the closed-loop
system becomes unstable without the predictor for delays greater or equal to 0.1s.

The proposed control law was then tested for different delays and quantization
parameters. The initial condition of the actuator state was set to u(x, t0) = 0 ∀ x ∈
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Figure E.4: Tracking of angle q1(t), with delay, without predictor.
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Figure E.6: Tracking of angle q1(t) from simulation and experiment with delay
D = 0.2s and quantization.

[0, D], and so the system received zero input until t = t0 + D. The results from
simulation and experiment, where the quantization parameters were set to l =
0.01, u0 = l/2 and with a time delay D = 0.2s, are shown in Figs. E.6–E.11, showing
tracking of the angles q(t), the tracking errors z(t) and the inputs uQ(t − D),
respectively, where the red plots are from simulation and the blue plots are from
experiment.

From Figs. E.6–E.9 we can see that the desired trajectory can be followed both
in simulation and when tested on the helicopter, illustrating our main results in
Theorem 1. From the simulation, there are only small tracking errors that are due
to the quantization. From the experiment, the tracking errors are higher relative to
the simulations due to several other disturbances to the system such as unmodeled
dynamics and sensor noise that affects the performance, and the helicopter have a
practical stabilization with this controller.

To compare results for different delays and quantization parameters, the total
tracking error was defined as

ztrack =
∫ tf

t0
z⊤

1 z1dτ, (E.39)

where t0 and tf define start and end of experiment, respectively, and the experiments
were run for 50 s where results are provided in Table E.2. From the results we see
that by increasing the delay, the total tracking error also increases for the helicopter
system, for mainly two reasons. First, since the system receives no input until D
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Figure E.7: Tracking of angle q2(t) from simulation and experiment with delay
D = 0.2s and quantization.
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Figure E.8: Tracking error z11(t) from simulation and experiment with delay D = 0.2s
and quantization.

Table E.2: Total tracking error from experiment with and without delay and quant-
ization. System receives input uQ(t−D).

Experiment
ztrack ×10−4

Quantization
No q. l = 0.010 l = 0.012 l = 0.014

Delay

D = 0 3222 3271 3305 3490
D = 0.1 4866 5278 5741 5689
D = 0.2 7274 8692 8518 9114
D = 0.3 13748 11788 13868 14038
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Figure E.9: Tracking error z12(t) from simulation and experiment with delay D = 0.2s
and quantization.
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Figure E.11: Input uQ
2 (t−D) from simulation and experiment with delay D = 0.2s

and quantization.

seconds after the start of experiment, the total tracking error increases during an
initial time period, since the reference signal is changing while the helicopter remains
stationary. Then, the system receives control input by the predictor based controller
and starts tracking the desired signal. So increasing D, increases the time before
control kicks in, and ztrack increases initially. Secondly, because the model is not
perfect and from other effects such as measurement errors, the tracking error increases
by an increase in the delay. From a perfect model without quantization, the total
tracking error will not increase after an initial time period since then z1 becomes
zero. The effect of quantization is also shown, where by increasing the quantization,
the measurement of the total tracking error increases. This is also affected by other
disturbances.

E.6 Conclusion

In this paper, the attitude tracking control problem of a nonlinear system with
networked induced delay and quantization for the inputs has been considered. A
predictor-feedback controller is proposed to compensate for the input delay. Based
on a Lyapunov approach, stability of the closed loop system is ensured and tracking
of a desired reference signal is achieved with a bounded tracking error that is directly
related to the quantization parameter. Simulations and experiments illustrate the
proof.
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