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Abstract—Finding an optimal schedule(s) for the buildings’ 
energy equipment cluster is vital to realize sustainable 
development and energy-saving goals. However, high-impact 
uncertainties pose critical challenges in this regard. To relax 
these challenges, this paper develops an optimization model for 
operating the buildings’ energy equipment cluster under 
uncertain predictions whose principal elements are the energy 
hub (EH) concept and the two-point estimate (TPE) method. 
The EH concept is used to find levels of the degree of freedom 
for optimization by modeling efficiently how multi-carrier 
energy resources and demands can be connected through this 
cluster of converters, conditioners, storage, and others. The TPE 
method is, however, used to improve the reliability and 
robustness of the model’s predictions, leading to better decision-
making under uncertainty. The TPE method integrates high-
impact uncertainties related to multi-carrier energy prices and 
demands and the production capacity of renewable energy 
resources in optimization. The proposed optimization model has 
been applied to an industrial building, and its sufficiency and 
profitableness are examined in different scenarios. 

Keywords—Buildings, energy hub, integrated energy systems, 
two-point estimate method, uncertainty. 

NOMENCLATURE 
 Index and set: 
𝑡, T  Index and set for the operation horizon 
 Parameters: 
𝐻  Minimum output heat of the HP 

𝐻  Maximum output heat of the HP 
𝑆  The PV array area 
𝜓  Coefficient of performance for the HP 
𝜂 ,  The CHP efficiency for gas to electricity 
𝜂 ,  The CHP efficiency for gas to heat 
𝜂 ,  The charging efficiency of the BS 
𝜂 ,  The discharging efficiency of the BS 
𝜒  The self-discharge rate of the ES 
𝜑  The emission factor of the natural gas 
𝜑  The emission factor of the purchased 

electricity 
𝜛  The cost factor of the CO2 emission 
 Variables: 
𝑏 , , 
𝑏 ,  

Binary variable to define the heating and 
cooling modes of the HP 

𝑏 , , 
𝑏 ,  

Binary variable to define the charging and 
discharging modes of the BS 

𝐷  Predicted cooling demand 
𝐷  Predicted Electricity demand 
𝐷  Predicted heating demand 
𝐸 ,  Charged electricity in the BS 
𝐸 ,  Discharged electricity from the BS 
𝐻  The heat generated by the heat pump 

𝐼  Solar radiation intensity 
𝑃 ,  Input power to the TR 
𝑃 ,  Purchased electricity from the network 
𝑉 ,  Consumed gas by the CHP 
𝑉 ,  Purchased gas from the network 
𝜋  Predicted price for purchasing electricity 
𝜋  Predicted price for purchasing natural gas 

Note: 
The corresponding variables are expanded for the 

operation horizon index t. 

The corresponding parameters and variables are 
considered for the cooling, power, and energy by changing the 
capital letter H to C, P, and E, respectively. For example, 
𝐻  changes to 𝐶  (the cooling generated by the heat 
pump) by changing H to C. 

The corresponding parameters and variables are 
considered for the photovoltaic, combined heat and power, 
auxiliary boiler, absorption chiller, transformer, electrical 
storage, and heating storage by replacing the subtitle hp with 
the pv, chp, ab, ach, tr, es, and hs, respectively. For example, 
𝐻  changes to the minimum level of stored energy in the 
electrical storage by replacing H with E and hp with es). 

I. INTRODUCTION 

A. Background and Motivation 

Urban area customers consume around 67% of global 
energy consumption; consequently, they are the main culprit 
in producing greenhouse gas emissions (GGEs), a share of 
about 70% [1]. Around 60% of the energy consumed in these 
regions can be attributed to various residential, commercial, 
industrial, or office buildings [2]. Conventionally, buildings 
met all their needs for different energy carriers by connecting 
to the relevant supply infrastructure (e.g., electricity, gas, and 
district heating networks). Precisely, they were passive end-
users (consumers) that only consumed different energy 
carriers. This structure had a low level of degree of freedom 
for optimization. There are currently notable changes taking 
place as a result of the restructuring of the power system, 
techno-economic revolutions in scaled-down renewable 
energy resources (RERs), new advancements in multi-carrier 
energy conversion and storage technologies, updated 
environmental monitoring roadmaps, and other factors. These 
changes challenge our conventional notions of multi-carrier 
energy supply infrastructures and integrated energy systems 
(IESs) [3], [4]. Buildings serve as a vital part of this new 
environment, transitioning from a consumer to a prosumer 
(active end-users that can consume, produce, store, and supply 
different energy carriers) [5], [6]. This role change brings a 
higher degree of freedom for optimization in buildings, 
especially in the process of their operation in the form of IESs.  



TABLE I.  A COMPREHENSIVE AUDIT OF THE LITERATURE  

Ref. 

Energy carriers Energy equipment cluster Uncertainty Optimization process 
Input 
energy 

resource 

Output 
energy 
demand 

Energy converter and 
conditioner 

Energy 
storage 

Uncertainty 
consideration 

Non-
deterministic 

model 

Objective 
functions 

Solution 
method 

[7] EL, G, and 
SO 

EL, HE, and 
CO 

GB, GT, ECH, ACH, and PV ES --- --- OC TAS 

[8] EL, G, and 
HE 

EL, HE, and 
CO 

HP, CHP, GB, ECH, and 
ACH 

HS and 
ES 

--- --- OC ABCA 

[9], 
[10] 

EL, G, and 
SO 

EL and HE [9], [10]: PV and CHP [10]: 
GB and HP 

ES --- --- [9]: PS 
[10]: OC 

[9]: Heuristic 
[10]: PSO 

[11] EL, G, SO, 
WI, and HE 

EL, HE, CO, 
and HY 

GB, CHP, PV, WT, ACH, 
ECH, EB, FC, TR, and ELC 

HS, ES, 
and GS 

--- --- OC Gurobi 

[12] EL, G, and 
SO 

EL, HE, and 
CO 

GB, CHP, PV, and ACH HS --- --- OC LP, GA, and 
PSO 

[13], 
[14] 

EL, G, SO, 
and WI 

EL, HE, and 
CO 

[13], [14]: PV, WT, GT, 
ECH, GB, and HEX [13]: 
ACH 

HS, ES, 
and CS 

--- --- OC GAMS: 
MILP 

[15] EL and SO EL, HE, and 
CO 

HP, PV, and ECH HS and 
CS 

--- --- OC --- 

[16] G EL and HE CHP HS EL, G, and HE prices MCS PR --- 
[17] EL and G EL, HE, and 

CO 
AB, ACH, TR, and CCHP ES EL and G prices, ED MCS and 

CVaR 
OC and 
EC 

GAMS: 
MILP 

[18] EL and G EL, HE, and 
G 

EB and CHP HS and 
ES 

PV and WT output, 
ED and HD, EL and 
G prices 

SDMM OC NC&CG 

[19] EL, G, and 
SO 

EL, HE, and 
CO 

PV, CCHP, and TR --- PV output and ED SDMM OC MILP 

[20] EL, G, SO, 
and WI 

EL and HE PV, WT, GB, and CHP HS and 
ES 

EL price and charging 
load of the EV 

MCS and RO OC MILP 

[21] EL, G, SO, 
and HE 

EL, HE, and 
CO 

PV, GV, HP, and CHP HS and 
ES 

PV output, ED, and 
HD 

MCS OC and 
EC 

MILP 

This 
work 

EL, G, and 
SO 

EL, HE, and 
CO 

PV, AB, ACH, HP, CHP, 
and TR 

HS and 
ES 

EL, and G prices, ED, 
HD, CD, and PV 
output 

TPE method OC and 
EC 

GAMS: 
MILP 

In this Table: AB, auxilary boiler; ABCA, artificial bee colony algorithm; ACH, absorbtion chiller; CCHP, combined cooling, heat, and power; CD, 
cooling demand; CHP, combined heat and power; CO, cooling; CS, cooling storgae; CVaR; conditional value-at-risk; EB, electric boiler; EC, emission 
cost; ELC, electrolytic cell; ECH, electric chiller; ED, electrical demand; EL, electricity; ES, electrical storage; EV, electric vehicle; FC, fuel cell; G, gas; 
GA, genetic algorithm; GB, gas boiler; GS, gas storage; GT, gas turbine; HD, heating demand; HE, heating; HEX, heat exchanger; HP, heat pump; HS, 
heat storage; HY, hydrogen; LP, linear programming; MCS, Monte Carlo simuation; NC&CG, nested column-and-constraint generation; OC, operational 
cost; PR, profit; PS, peak shaving; PSO, particle swarm optimization; PV, photovoltaic; RO, robust optimization; SDMM, scenario-based decision-making 
method; SO, solar; TAS, tabu search; TPE, two-point estimate; TR, transformer; WI, wind; WT, wind turbine. 

The operation process is to obtain an optimum schedule(s) 
for the buildings’ energy equipment cluster that is involved in 
generating, converting, transferring, and distributing different 
energy carriers to minimize or maximize a set of techno-
economic and environmental objective functions under 
predefined constraints. Therefore, a potential capacity for 
saving different energy carriers, reducing GGEs, increasing 
reliability, and others can be envisioned in this process. 

B. Literature Review and Contribution 

There are different concepts in the literature to model 
buildings as IESs, such as the energy-service supply system, 
basic unit, microgrid, virtual power plant, and energy hub 
(EH) [22]. The EH is a highly effective tool that accurately 
models buildings as an IES by creating links between multi-
carrier energy resources and demands through conversion, 
storage, condition, and distribution processes [22]. Here, the 
authors concentrate on the literature scrutinizing buildings as 
an IES using the EH tool—micro multi-carrier EH (µMEH). 
In the literature, the mathematical models for operating 
µMEHs can fall into two policies for dealing with 
uncertainties: deterministic and non-deterministic [23]. In the 
former, the µMEH is designed to simulate the most severe 
scenario (highest possible values) for all parameters, including 
multi-carrier energy prices and demands, component outage 
rate, and the output power of RERs, regardless of how likely 
they are to happen [7]–[15]. These studies indicate that 
employing the μMEH with this policy offers the advantage of 

simplicity. However, it fails to accurately represent the 
behavior associated with various parameters in practical cases, 
resulting in impractical outcomes that lack real-world 
implementation capability. Hence, the logical choice to omit 
this substantial limitation present in deterministic policy is to 
construct the μMEH's model under a non-deterministic policy. 
Under this policy, the µMEH is simulated to encompass all 
potential scenarios that could arise in the future for parameters 
with stochastic characteristics, taking into account their 
respective probabilities of occurrence. These studies show that 
considering different uncertainties brings a much more 
adaptable operation process than the deterministic policy and 
provides more feasible outcomes in the µMEH’s operation 
studies. Detailed examinations represent that the buildings 
under investigation in these studies, depending on the 
geographical location, usage, available energy resources, 
required energy carriers, and others, have used various 
clusters of converters, storages, and conditioners to match 
their resources with demands optimally. In addition, each 
study has used different objective functions, constraints, and 
assumptions in optimization depending on the operator’s 
needs. Table I presents a comprehensive audit of all these 
features in μMEH studies. Abbreviations mentioned in Table 
I may be used in the rest of the paper. Table I shows that these 
studies have some weaknesses. First, they have an excessive 
dependence on electricity and gas networks and a lack of 
attention to RERs. Next, in some studies, important output 
energy carriers (e.g., cooling) are ignored. Then, they have 



excessive use of low-efficiency converters (e.g., single-input 
single-output and multiple-input single-output) in the energy 
equipment cluster. In addition, in some cases, they rely on 
unrealistic assumptions. Furthermore, they consider a limited 
number of uncertain parameters and use traditional methods 
for their handling. 

 In this paper, the authors develop an optimization model 
for operating a µMEH (an industrial building) under uncertain 
predictions considering realistic assumptions to relax these 
shortcomings. The EH concept and the TPE method form the 
foundation of the proposed model. The former perfectly 
models the buildings’ energy equipment cluster and their 
connections. The latter integrates uncertainties related to 
electricity and gas prices, electrical, heating, and cooling 
demands, as well as the production capacity of the PV system 
in the optimization model. The OC of the buildings’ energy 
equipment cluster and the EC are added together using 
weighting coefficients and considered the objective function 
(OF). Concurrently, technical and logical limitations are 
considered two classes of problem restrictions. Finally, this 
optimization model is formulated as a MILP optimization 
problem to use powerful commercial solvers of the GAMS 
platform to find the optimal solution. 

C. Paper Outline  

The structure of the article continues as follows. Section 
two presents the mathematical model of the μMEH’s energy 
equipment cluster in detail. Besides, section three describes 
the optimization model of the µMEH’s operation. Moreover, 
section four represents how the TPE method integrates high-
impact uncertainties in optimization. Next, section five 
implements case studies and discusses simulation results. 
Finally, section six ends the paper with a summary. 

II. MATHEMATICAL MODEL OF THE OFFERED 𝜇MEH 

Fig. 1 demostrates the configuration of the offered μMEH. 
The μMEH’s energy equipment cluster consists of converters 
(HP, CHP, AB, ACH, and PV), conditioners (TR), storages 
(ES and HS), and transmission lines (electrical cables, gas 
pipelines, and heat pipes). The μMEH is fed by electricity and 
natural gas from the upstream networks and solar radiation as 
input carriers and must feed electrical, heating, and cooling 
demands. 

A. Converters 

Converters convert input energy carriers into other carriers 
according to the type, nature, quantity, and quality required. 

 
Fig. 1. The structure of the proposed μMEH 

 Electric heat pump  

Electric HP is a heating and cooling system, based on the 
operating mode, that transfers heat from one location to 
another using electricity, making it an efficient and eco-
friendly alternative to traditional heating and cooling systems 
(see (1)-(4)) [8]. 

𝐻 𝐶 𝑃 .𝜓 ;∀𝑡 ∈ Ω  

𝐻 .𝑏 , 𝐻 𝐻 .𝑏 , ;∀𝑡 ∈ Ω  

𝐶 .𝑏 , 𝐶 𝐶 . 𝑏 , ;∀𝑡 ∈ Ω  

𝑏 , , 𝑏 , ∈ 0,1 , 𝑏 , 𝑏 , 0;∀𝑡 ∈ Ω    

 Combined heat and power  

The CHP system is the most well-known single-input and 
multiple-output converter, which uses natural gas as input and 
generates electricity and heat as outputs (see (5)-(8)) [8], [16]. 

𝑃 𝑉 , . 𝜂 , ;∀𝑡 ∈ Ω  

𝐻 𝑉 , . 𝜂 , ;∀𝑡 ∈ Ω  

𝑃 𝑃 𝑃 ;∀𝑡 ∈ Ω  

𝐻 𝐻 𝐻 ;∀𝑡 ∈ Ω  

 Auxiliary boiler 

The AB is used as a backup to provide heat in case the 
CHP and electric HP in heat generation mode fail to meet the 
HD of the µMEH completely. The AB uses natural gas as 
input and provides heating as output (see (9) and (10)) [17]. 

𝐻 𝑉 , . 𝜂 ;∀𝑡 ∈ Ω  

𝐻 𝐻 𝐻 ;∀𝑡 ∈ Ω  

 Absorption chiller 

The ACH is a refrigeration system that uses heat to drive 
the cooling cycle through the absorption and desorption of a 
refrigerant by a liquid absorbent (see (11) and (12)) [7], [11]. 

𝐶 𝐻 . 𝜂 ;∀𝑡 ∈ Ω  

𝐶 𝐶 𝐶 ;∀𝑡 ∈ Ω  

 Photovoltaic system 

Due to the negligible emission of GGEs, the PV system is 
the most environmentally friendly way of producing 
electricity. This system converts sunlight into electricity using 
solar cells (see (13) and (14)) [19]–[21]. 

𝑃 𝑆 . 𝐼 . 𝜂 ;∀𝑡 ∈ Ω  

𝑃 𝑃 𝑃 ;∀𝑡 ∈ Ω  

B. Conditioners 

In the conditioning process, the type and nature of input 
energy carriers remain unchanged in the output, and only their 
quantity\quality change. 

 Transformer  

The TR is used to transfer electrical energy from one 
circuit to another one using an electromagnetic induction 
process, typically by changing (increasing or decreasing) the 
voltage level of the power supply (see (15) and (16)) [19]. 



𝑃 𝑃 , . 𝜂 ;∀𝑡 ∈ Ω  

𝑃 𝑃 𝑃 ;∀𝑡 ∈ Ω  

C. Storages 

In the µMEH’s operation, using suitable storage that helps 
maintain and increase flexibility and reliability is critical. 
Here, electrical and heating storages are desirable for energy 
backup due to their installation and operational benefits. They 
compensate or save the energy deficit or surplus due to the 
non-deterministic features of electrical, heating, and cooling 
demands, electricity and gas prices, the production capacity of 
the PV system, and others. For electrical storage, please see 
(17)-(22) [7]–[11]. 

𝐸 𝐸 𝜂 , .𝐸 , 𝐸 , 𝜂 ,⁄

𝜒 .𝐸 ;∀𝑡 ∈ Ω                     

𝐸 , .𝑏 , 𝐸 , 𝐸 , . 𝑏 , ;∀𝑡 ∈ Ω  

𝐸 , . 𝑏 , 𝐸 , 𝐸 , . 𝑏 , ;∀𝑡 ∈ Ω  

𝐸 𝐸 𝐸 ;∀𝑡 ∈ Ω  

𝐸 𝐸 ;∀𝑡 ∈ Ω      

𝑏 , ,𝑏 , ∈ 0,1 , 𝑏 , 𝑏 , 0;∀𝑡 ∈

Ω                                                      

In this study, the HS is modeled with a similar formulation 
of the ES (by replacing the capital letter E with H and the 
subtitle es with hs in (17)-(22)). 

III. OPTIMIZATION MODEL 

The operator’s main target is to provide a cost-effective 
and eco-friendly operation plan for the µMEH’s energy cluster 
equipment over the desired horizon (here, 24 hours). Hence, 
the operator considers the sum of OC (purchased energy cost 
from the upstream electricity and gas networks) and EC (the 
price of CO2 emission) as the OF in the optimization 
according to (23). The OF is subjected to technical and logical 
limitations, according to (24)-(30): 

𝑃 𝑃 𝑃 𝐸 , 𝑃 𝐷 ;∀𝑡 ∈

Ω 

𝑃 , 𝐸 , 𝑃 , ;∀𝑡 ∈ Ω  

𝑉 , 𝑉 , 𝑉 , ;∀𝑡 ∈ Ω  

𝐻 𝐻 𝐻 𝐻 , 𝐻 ,

𝐷 ;∀𝑡 ∈ Ω 

𝐶 𝐶 𝐷 ;∀𝑡 ∈ Ω  

Equations 1

4 , 7 , 8 , 10 , 12 , 14 , 16 , 17 22  

Equations 17

22 ;  with replacing E with H and 𝑒𝑠 with ℎ𝑠 

IV. UNCERTAINTY CONSIDERATION 
 

Here, the efficient TPE method is used to handle 
uncertainties in optimization. Unlike its original version, 
which requires 2  probability concentrations located at 2  
distinct positions to replace the original joint PDF of N 
uncertainty input parameters (UIPs) by matching the second-
order and third-order non-crossed moments; the TPE method 
needs only 2N probability concentration places, resulting in a 
significant decline in the computational complexity [23], [24]. 
Here, the electricity and gas prices, electrical, heating, and 
cooling demands, as well as the production capacity of the PV 
system, are considered as UIPs, as given by (31): 

𝑥 𝜋 ,𝜋 ,𝐷 ,𝐷 ,𝐷 ,𝑃 ;∀ 𝑡 ∈ Ω  

Thus, the proposed model is a multivariate function of 
UIPs, as given by (32): 

𝑦 𝑓 𝑥                                          

A sequential process to implement the TPE method in the 
µMEH’s operation process is developed as follows [23]: 

 Stage 1: Set the number of UIPs equal to N. 
 Stage 2: Set the first and second moments of the output 

variable y, using (33): 

E 𝑦 E 𝑦 0                          

 Stage 3: Set the counter of UIPs: 𝑛 1. 
 Stage 4: Compute the skewness coefficient related to the 

UIP n, using (34): 

𝜆𝑥𝑛,3
E 𝑥𝑛 𝜇𝑥𝑛

3 𝜎𝑥𝑛
3⁄  

In (34), 𝜇𝑥𝑛  and 𝜎𝑥𝑛  are the mean and variance of the UIP 

n, respectively. Also, E 𝑥 𝜇  is defined using (35): 

E 𝑥 𝜇 𝑥 , 𝜇 , .𝑝 𝑥 ,  (35) 

In (35), M and 𝑝 𝑥 ,  are the number of observations of 
the UIP n and the probability of observation m associated 
with the UIP n, respectively. 
 Stage 5: Compute the position and probability (weighting) 

of two concentration points associated with the UIP n, 
according to (36) and (37), respectively: 

𝜐𝑥𝑛,𝑖

𝜆𝑥𝑛,3

2
1 3 𝑖. N 𝜆𝑥𝑛,3

2⁄ 2
; ∀𝑖

∈ 1,2  

(36) 

𝑝𝑥𝑛,𝑖

1 𝑖. 𝜆𝑥𝑛,3

2N. N 𝜆𝑥𝑛,3
2⁄ 2

; ∀𝑖 ∈ 1,2  
(37) 

In (37), each probability’s value, 𝑝𝑥𝑛,𝑖
; ∀𝑖 ∈ 1,2 , can 

range from 0 to 1, but their total is always 1. 
 Stage 6: Compute two concentration points using (38): 
𝑢𝑥𝑛,𝑖

𝜇𝑥𝑛 𝜁𝑥𝑛,𝑖
. 𝜎𝑥𝑛 ; ∀𝑖 ∈ 1,2  

 Stage 7: Compute the output variable y based on the UIPs’ 
vector, using (39): 

𝑦 𝑓 𝑥 ;∀𝑥 𝜇 ,𝜇 , … ,𝑢
,
, … , 𝜇 ;∀𝑖 ∈ 1,2  

 Stage 8: Update E 𝑦  and E 𝑦 , using (40) and (41), 
respectively:

OF 𝜋 .𝑃 , 𝜋 .𝑉 , 𝜛 . 𝜑 .𝑃 , 𝜑 .𝑉 , ;∀𝑡 ∈ Ω  (23) 



E 𝑦 ≅ 𝑝
,

. 𝑓 𝜇 , 𝜇 , … ,𝑢
,
, … , 𝜇 ,𝜇 ;∀𝑖 ∈ 1,2  (40) 

E 𝑦 𝑝
,

. 𝑓 𝜇 ,𝜇 , … ,𝑢
,
, … , 𝜇 ,𝜇 ;∀𝑖 ∈ 1,2  (41) 

 Stage 9: Compute the mean (expected value) and the 
standard deviation of the output variable y, according to 
(42) and (43), respectively:  

𝜇𝑦 E 𝑦                                       

𝜎𝑦 √var 𝑦 E 𝑦2 E 𝑦 2 

 Stage 10: Set 𝑛 𝑛 1. If 𝑛 N, proceed to Stage 4; 
otherwise, move to the subsequent stage. 

 Stage 11: Stop.  

V. CASE STUDIES AND DISCUSSION 

For illustration, the offered optimization model is 
implemented on an industrial µMEH (building). The predicted 
values for electrical, heating, and cooling demand of this 
building as well as solar radiation intensity, are depicted in 
Fig. 2. Also, the predicted values for time-varying electricity 
and gas prices and the cost factor of the CO2 emission are 
shown in Fig. 3. These prices are used according to Denmark’s 
retail energy market [24]. Parameters related to the µMEH’s 
energy equipment and other essential simulation parameters 
are provided in Table II. Additional data can be found in [13], 
[14]. The proposed model is implemented in the GAMS 
environment using a Core i7 CPU clocked at 2.8 GHz and 
32 GB of RAM. Also, two different scenarios are considered 
to evaluate the efficiency of the proposed model as follows: 

 Scenario 1: The model ignores ES and TS. 
 Scenario 2: The model considers ES and TS. 

Optimal schedules of the µMEH’s energy equipment 
cluster under scenarios 1 and 2 and the hourly charging and 
discharging modes of ES and HS under scenario 2 are shown 
in Fig. 4 through Fig. 6, respectively. 

  
Fig. 2. The predicted values for electrical, heating, and cooling demand of 
the building as well as the solar radiation intensity  

 
Fig. 3. Time-varying electricity and gas prices, and CO2 emission price 

TABLE II.  INPUT PARAMETERS FOR DIFFERENT DEVICES  

Parameter Value Parameter Value 
HP 50 kWe 𝜂 ,  0.95 
𝜓  2.5 𝜂 ,  0.95 
CHP 600 kWe 𝜒  0.5% per hour 
𝜂 ,  0.35 𝐸 ,  20 kWh 
𝜂 ,  0.45 𝐸 ,  20 kWh 

AB 300 kW 𝐸  15 kWh 
𝜂  0.8 TS 80 kWh 

ACH 140 kW 𝜂 ,  0.9 
𝜂  1.2 𝜂 ,  0.9 
PV 20 kWp 𝜒  0.08% per hour 
𝑆  110 𝑚  𝐸 ,  20 kWh 
𝜂  0.157 𝐸 ,  20 kWh 
TR 650 kW 𝐸  15 kWh 
𝜂  0.98 𝜑  0.968 kg per kWh 
ES 100 kWh 𝜑  0.22 kg per 𝑚  

Also, the optimal values for the objective function under 
these case studies are given in Table III.  

 
Fig. 4. Optimal schedule of the energy equipment cluster in Scenario 1 

 
Fig. 5. Optimal schedule of the energy equipment cluster in Scenario 2 

 
Fig. 6. Hourly charging/discharging mode of ES and HS in Scenario 2 
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TABLE III.  OBJECTIVE FUNCTION VALUES IN CASE STUDIES 1 AND 2  

Scenario number The OC ($)  The EC ($) The OF ($) 
Scenario 1 6204.8253 311.1905 6516.0158 
Scenario 2 6056.6482 300.9827 6357.6309 

 
Figs. 4 through 6, and Table III show that the optimal 

schedule of the µMEH’s energy equipment cluster in both 
scenarios connects the input energy carriers and output energy 
demands optimally and flexibly, which reduces the OC and 
EC. As a significant part of the proposed model, the ES and 
HS have a major impact on the energy management of the 
µMEH. The time-varying electricity price, stochastic features 
of electrical, heating, and cooling demands, electricity and gas 
prices, and the production capacity of the PV system enable 
the operator to reduce the OC and EC by optimally charging 
and discharging the ES and HS (see Table III). Precisely, 
energy exchanges with upstream networks in more expensive 
hours are lower in scenario 2 than in scenario 1. Table IV gives 
the optimal result of implementing the proposed model under 
both scenarios with and without considering UIPs. 

TABLE IV.  RESULTS WITH AND WITHOUT CONSIDERING UIPS  

Scenario number Assumption The OF ($) 

Scenario 1 
Considering UIPs 6516.0158 

Ignoring UIPs 6584.3125 

Scenario 2 
Considering UIPs 6357.6309 

Ignoring UIPs 6412.6533 
 
From Table IV, the value of the OF considering UIPs is 

less than the scenario where they are ignored. This trend is 
observed in both scenarios. Therefore, integrating UIPs in the 
optimization related to the operation of the µMEH’s energy 
equipment cluster using the TPE method allow the operator to 
avoid unnecessary OC and reduce the EC.  

   
VI. CONCLUSION REMARKS 

This article defined an optimization model to find an 
optimal operation plan for the buildings’ energy equipment 
cluster under uncertain predictions. In this model, the EH 
concept was used to model the energy equipment cluster 
consisting of electric HP, CHP, AB, ACH, TR, PV, ES, and 
HS as well as their connections. In addition, the TPE method 
was used to integrate UIPs, electricity and gas prices, 
electrical, heating, and cooling demands, and the production 
capacity of the PV system in this model. Finally, this 
optimization model was applied to an industrial building. The 
obtained results show the feasibility and capabilities of the 
proposed model. Mainly, electrical and heating storages play 
a vital role in this model. They help match energy supply and 
demand better, reduce the need for an expensive and polluting 
energy mix, increase the share of RERs in building energy 
supply, provide cost savings for the building owner, and 
reduce GGEs, and others. Furthermore, it was also seen that 
considering different UIPs in the offered model could allow 
the operator to find a more flexible schedule for the building’s 
energy equipment cluster to avoid unnecessary energy costs.  
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