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Abstract—Search and Rescue (SAR) missions in harsh and
unstructured Sub-Terranean (Sub-T) environments in the pres-
ence of aerosol particles have recently become the main focus in
the field of robotics. Aerosol particles such as smoke and dust
directly affect the performance of any mobile robotic platform
due to their reliance on their onboard perception systems for
autonomous navigation and localization in Global Navigation
Satellite System (GNSS)-denied environments. Although obstacle
avoidance and object detection algorithms are robust to the
presence of noise to some degree, their performance directly relies
on the quality of captured data by onboard sensors such as Light
Detection And Ranging (LiDAR) and camera. Thus, this paper
proposes a novel modular agnostic filtration pipeline based on
intensity and spatial information such as local point density for
removal of detected smoke particles from Point Cloud (PCL)
prior to its utilization for collision detection. Furthermore, the
efficacy of the proposed framework in the presence of smoke
during multiple frontier exploration missions is investigated while
the experimental results are presented to facilitate comparison
with other methodologies and their computational impact. This
provides valuable insight to the research community for better
utilization of filtration schemes based on available computation
resources while considering the safe autonomous navigation of
mobile robots.

Index Terms—outlier rejection, aerosol particles, heteroge-
neous robotic systems

I. INTRODUCTION AND BACKGROUND

In recent years, hybrid-robotic systems with multi-sensor
payloads have been deployed in harsh SAR scenarios [1] to
not only aid in the exploration of the Perceptually Degraded
Environments (PDE)s [2] by inspecting the environmental and
structural conditions [3] but also assist rescue workers by
increasing their situational awareness to improve rescue efforts
while ensuring their safety [4] in such time-critical operations.

Furthermore, such autonomous robotic platforms mainly
rely on their onboard perception systems in GNSS-denied en-
vironments such as Sub-T and extra-terrestrial sub-surfaces [5]
for Simultaneous Localization and Mapping (SLAM). To
ensure operational safety in such hazardous environments, a
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combination of LiDAR and vision-based sensors is utilized
to perform pose estimation [6] and collision avoidance [7].
The presence of aerosol particles such as smoke [8] and
dust [6] directly affects the performance of these sensors and
increases the noise in captured data. In particular, LiDAR
sensors are negatively influenced by aerosol particles which
cause undesired measurements [9] of the laser beam thereby
resulting in occlusions and additional cluttered and noisy
points in generated PCLs [10]; see Figure 1.

It must be noted that LiDARs are more prone to such
issues in comparison to RADARs [11] due to their inherent
beam divergence and short pulse duration [9]. However, due
to their performance in poorly-illuminated environments, ac-
curate range measurements and higher spatial resolution [12]
compared to RADARs and RGB-D cameras, LiDARs have
been deployed on many autonomous robotic platforms [13].

Fig. 1: Behavior of LiDAR in the presence of dust, where the
propulsion system of a drone entrains dust particles.

The acquired PCLs are not only used for autonomous
navigation of complex environments [13] but also to monitor
environmental changes [14], detect artifacts [15], and assess
traversability [16]. Therefore, it is vital to identify and remove
the points caused by aerosol particles prior to the utilization
of data for any other downstream algorithms. To address the
aforementioned issues, various PCL filtration methods have
been proposed [17]. These methods can be mainly divided
into either classical or learning-based approaches [18].

Classical methods such as Radius Outlier Removal
(ROR) [19] and Statistical Outlier Removal (SOR) [20] mostly
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(a) Raw PCL with dust. (b) Our framework on. (c) Dust isolated in the PCL.

(d) Histogram of LiDAR intensity for a). (e) Histogram of LiDAR intensity for b). (f) Histogram of LiDAR intensity for c).

Fig. 2: Test 1. Row 1: Generated PCL map. Left, original PCL, middle, filtered PCL and isolated dust, right. Row 2: Weibull
distributions for the PCLs.

rely on spatial information within PCLs to remove outliers
based on the local density and distribution of points. This
is feasible as points resulting from the aerosol particles
have relatively low density compared with their neighboring
clusters [21]. However, these methods do not perform reli-
ably in varying density PCLs, where the density of PCLs
is proportional to the measured range. Therefore, Dynamic
Radius Outlier Removal (DROR) [22] and Dynamic Statistical
Outlier Removal (DSOR) [23] are proposed to improve the
shortcomings of previous methods by dynamically adjusting
the radius based on the range of any given points from
the LiDAR to preserve more environmental features [21].
Moreover, by utilizing inherent information such as intensity,
aerosol particles can be further identified in LiDAR data [10]
as they tend to have low intensity due to the absorption and
refraction of most of the beam emitted by LiDAR [24]. Thus,
to further improve Low-intensity Outlier Removal (LiOR) [25]
and previous dynamic methods, a combination of the DROR
and LiOR is proposed [24] to not only address the sparsity
issues in the LiDAR data but also improve the F1-score when
compared to the previous methods. Compared to DROR, Low-
Intensity Dynamic Radius Outlier Removal (LiDROR) has
lower time complexity due to the removal of points from PCL
at long-range as well as fewer computational operations which
resulted from the initial thresholding based on LiOR [25].

Learning-based methods employ both traditional Machine
Learning (ML)-based algorithms such as k-Nearest Neighbor
(k-NN) [26] and Density-based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [27] as well as current deep-
learning approaches that are based on various Neural Network
(NN) architectures [28] to perform either point- or voxel-wise
classification [17]. Additional information such as remittance
is also used to further improve the classification of such
networks based on the correlation between material type and
its reflectance [29]. Furthermore, both the spatial and temporal
information is exploited to classify the outliers in PCL by
utilizing motion-guided attention blocks [30]. By leveraging
the semantic segmentation networks that are well-established,
a voxel-wise classifier is capable of segmentation of aerosol

particles in the PCLs [31]. This limits the scope of their usage
onboard Micro Aerial Vehicles (MAV)s, where due to the
payload limitations, only a simple lightweight computing unit
can be deployed.

Moreover, other approaches based on Low-Dimensional
Manifold Model (LDMM) [32] and Moving Least Squares
(MLS) [33] are proposed that exploit the self-similarity of
patches from PCL [34]. However, neither of these outlier
removal methods can perform reliably in real-time [34]. There-
fore, a more robust and computationally efficient framework is
required for onboard deployment for autonomous navigation
of heterogeneous-robotic systems.

In this paper, a novel modular agnostic filtration framework
is proposed to dynamically remove points in LiDAR PCLs
resulting from the presence of aerosol particles based on
the combination of statistical outlier detection and smoothing
filter. Furthermore, the proposed framework is directly coupled
to the velocity of the platform and the density of the PCL while
performing dynamic down-sampling to ensure low latency and
computational complexity.

II. CONTRIBUTIONS

The main contributions of this study are as follows: (a) An
online platform-agnostic modular filtration framework for Li-
DAR data based on both inherent and spatial information
from PCL that relies on Dynamic onboard Statistical Cluster
Outlier Removal (DoSCOR) approach, which runs solely on
CPU. (b) Integration and coupling of the velocity of the robotic
platform and time complexity of the algorithm for an adaptive
activation of modules for close and long-range filtration. (c)
Utilization of Savitzky–Golay (SG) filter to perform outlier
rejection via smoothing of the data in 1D. (d) Evaluation of
the proposed framework and its viability for field deployment
and utilization in conjunction with collision avoidance method
based on the Artificial Potential Field (APF) [13]. (e) Ex-
perimental performance evaluation of the proposed approach
in Sub-T environments in the presence of aerosol particles.

The remainder of this article is structured as follows.
Section III presents a detailed description of the implemented
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Fig. 3: Overview of the PCL filtration framework.

framework and discuss individual modules of the pipeline and
their corresponding functionalities. Furthermore, experimental
evaluation of the proposed pipeline and its effect on the ob-
stacle avoidance algorithm is presented in Section IV. Finally,
we conclude this article by discussing the achieved results and
future work in Section V.

III. METHODOLOGY

In this Section, the proposed modular outlier detection
and removal method that is based on the dynamic clustering
and SG is presented. The overall proposed pipeline with
its subsequent processes is shown in Figure 3. Element-
wise pipeline descriptions and their computational impact are
further analyzed and presented in this section.

A. Environmental Noise Characterization
As shown in Figure 2, aerosol particles such as smoke and

dust in Sub-T environments make an evident impact on SLAM
algorithms. The resulting maps of the environment based on
the acquired PCLs in such conditions are cluttered and noisy
and prevent optimal exploration and detection of survivors
in SAR missions. Figure 4 illustrates an example of such
environments, where the proposed framework is assessed in
the presence of aerosol particles.

As depicted in Figure 1, the behaviors of the LiDAR scans
in the presence of aerosol particles such as dust and smoke
are directly related to the decomposition of aerosol particles,
the LiDAR beam characteristics, and the material properties
of the environment where the robot is located [9]. These be-
haviors can be summarized as no obstruction, full obstruction,
partial obstruction, and full loss of LiDAR data [9]. In no
obstruction cases, due to the low density of aerosol particles,
the LiDAR can penetrate through the particles and detect
obstacles. However, this is not feasible when the LiDAR beam
is fully absorbed. Therefore, in the presence of high-density
aerosol particles, it is feasible to falsely classify such cloud
formations as either a part of the environment or obstacles. As
such, the combined effect results in noisy and cluttered PCLs
with possible occlusions that prevent optimal navigation of
the PDEs. Subsequently, other perception algorithms that rely
on LiDAR data such as SLAM, object detection, and collision
avoidance would be directly affected, and the resulting inter-
ference diminishes the operational capabilities of any robotic
platform [31].

B. Framework Architecture
The proposed framework solely requires unorganized unla-

beled PCLs and their xyz-coordinate values as well as LiDAR

intensity associated with these points. The scan measure-
ments captured by the onboard 3D LiDAR are represented
as a PCL in the Cartesian Coordinate System (CCS) and
are defined according to Robotic Operating System (ROS)
coordinate conventions as x - forward, y - left and z - up.
The acquired PCLs tend to have noise induced by small
particles that can be easily entrained with airflow from, for
instance, a drone propulsion system as shown in Figure 4.
Thus, the main objective behind the proposed framework is
the filtration of noise induced by these particles in three stages
as shown in Figure 3, where at first radius-based filtration
in a Spherical Coordinate System (SCS) is applied, next
intensity-based filtration in CCS is utilized to remove low-
intensity points from PCL, thereafter SG is applied to ranging
measurements in SCS to remove outliers and finally 2D ROR
filter in Cartesian Coordinate Frame (CCF) is used to ensure
that the spatial information of the small objects is preserved.

C. LiDAR Filtration

The LiDAR filtration in this paper is implemented in Python
within ROS to enable its integration with other frameworks
for online deployment. To ensure real-time performance with
low computational complexity and deployment in all possible
platforms, the input PCL is divided into close and long-range
segments to not only prevent loss of spatial information but
also create pseudo attention for regions that are vital for oper-
ational safety of the heterogeneous robotic system in Human-
swarm Interaction (HSI) setting. As shown in Figure 3, each
module requires a set of parameters to operate. Thus, the
values and selection criteria of these parameters are provided
in Table I.

1) Radius-based Filtration: To achieve safe traversal
in PDEs, Responsibility-sensitive Safety (RSS) model [35]
is used to perform radius-based filtration. This allows overall
performance improvement by minimizing the number of points
required to be processed for navigation while addressing oper-
ational safety concerns. To utilize the RSS model, coordinate
system conversion from CCS to SCS is performed. To obtain

TABLE I: Required parameters for the proposed framework.
Parameters Initial Values Hyper-parametric Conditions
rmax 30 m rmax = {max{dlon}|dlon ∈ [10, 100]}
rmin 5 m rmin = {max{τ}|τ ∈ [2, 10]}
Ith 2 Ith = {Q(p, α, γ)|max{p} ∈ [0.1, 0.15]}, Eq. 5
rd {4, 20}m rd = {min{d}|d ∈ [rmin − 1, rmax − 10]}
Knn 6 Knn = {min{k}|k ∈ [3, 6]}
rth 0.45 m rth = {min{r}|r ∈ [0.2, 0.6]}
cth 0.4 cth = {min{c}|c ∈ [0.1, 0.5]}
rnn 0.15 m rnn = {min{rnn}|rnn ∈ [0.1, 0.16]}



radial distance, r, inclination, θ, and azimuth, ϕ based on
(x, y, z), axial radius, ρ, is given as ρ = x2+y2. Thereafter, r
can be defined as r =

√
ρ+ z2 while θ and ϕ are calculated

as θ = tan−1
(√

ρ

z

)
and ϕ = tan−1

(
y
x

)
, respectively. The

radius thresholds rmax is selected such that it satisfies the
following conditions:

rmax = max{dlon}, (1)

where dlon represents the longitudinal safe distances from
the center of the robotic platform. The longitudinal safe
distance is given by:

dlon = vrη + 1
2aaccelη

2 + (vr+ηaaccel)
2

2aminbrake
− (vf )

2

2amaxbrake
, (2)

where aaccel, aminbrake
and amaxbrake

represent the max-
imum acceleration as well as minimum deacceleration of
the robot and maximum deacceleration of the dynamic ob-
stacle in the environment, respectively. Moreover, vr is the
current velocity of the robot and vf represents the velocity
of the dynamic obstacle. The estimated response time of
the dynamic obstacle in a poorly illuminated environment
is given by η. Additionally, the minimum radius threshold,
rmin, is adaptively selected based on the time complexity
of the algorithm and environmental complexity such that the
filtered close-range PCL contains a maximum of 30k points.
This is achieved by periodically sampling the number of
points in close-range PCL. The sampling frequency of 1 Hz
is selected for surveying close-range PCL as abrupt changes
in the environment are mission critical and they directly affect
the safety of the robot and rescue workers.

2) Intensity-based Outlier Removal: Based on the LiDAR
intensity analysis in the absence and presence of dust and
smoke [10], [25], it has been shown that the intensity of Li-
DAR data can be used to facilitate filtration of the noise in PCL
due to the presence of aerosol particles. Furthermore, the
intensity information can be utilized to distinguish and identify
the material of various surfaces based on their reflectivity [10].
Due to the scattering and absorption of the LiDAR beam by
the particles, the intensity value of aerosol particles in PCL
is low and their distribution can be characterized based on
Weibull Probability Density Function (PDF) [36]. The PDF of
the general Weibull distribution is as follows:

P (x, α, γ, µ) = γ
α

(
x−µ
α

)γ−1
exp

(
−
(

(x−µ)
α

)γ)
, (3)

where γ, µ, and α represent the shape, the location, and
the scale parameter, respectively. Moreover, x and α values
are subjected to x ≥ µ and α > 0. Given µ = 0, the general
Weibull distribution equation can be expressed in its standard
two-parameter form and is defined as:

P (x, α, γ) =
γ

α

(x

α

)γ−1

exp
(
−
(x

α

)γ)
. (4)

As shown in Figure 2 and Table II, the intensity distribution
of the noise generated in the PCL due to the presence of
the aerosol particles has Weibull distribution. This behavior is
observed independent of particle type as well as environmental

Fig. 4: Challenging Sub-T environment for LiDAR sensors.

factors [10]. Therefore, the intensity outlier rejection threshold,
Ith, has an adaptive nature for a given data stream and is
based on the Weibull Quantile Function (QF) [37], which is
calculated using the following equation:

Q(p, α, γ) = α (−ln (1− p))
1
γ , (5)

where p ∈ [0, 1] represents the probability value such that
the calculated Ith has less than or equal probability value, p,
as shown in Table I. Moreover, this behavior is observed in
row two of Figure 2, in which after the noise removal the
intensity threshold has changed.

3) Dynamic onboard Statistical Cluster Outlier Removal:
The proposed DoSCOR module is based on classical ML
clustering method, k-NN and its combination with SOR to
enhance its capabilities while addressing the non-uniformity
in PCLs. Kd-tree is used to structure the previously filtered
3D LiDAR data prior to performing an initial query ball-search
within the radius of 0.05 m to detect the nearest neighbors
of each point. This enables the analysis and characterization
of individual points based on their spatial properties such as
the distribution of neighboring points in PCL to identify and
detect aerosol particles. Prior to the calculation of the distance
vectors between the neighboring points and the resulting mean,
µ, and the standard deviation, σ, initial filtering is performed,
where the points with Knn ≤ 6 neighbors are removed from
the PCL. To calculate the global static distant threshold, sth,
µ and σ are calculated using the following equations:

µ =
1

n

n∑
i=1

di, (6)

σ =

√√√√ 1

n− 1

n∑
i=1

((di − µ)2), (7)

where n is the number of remaining neighbors for each
point Pi = (x, y, z) and di is the Euclidean distance mea-
sured between point Pi and its neighbors. The global distant
threshold can be formulated as sth = µ + (σ · cth), where
cth is a constant and its value is directly proportional to the
density of aerosol particle present in the environment. Given
the heterogeneous spatial distribution of points in PCL due
to the 3D LiDAR spatial resolution and the limited number
of beams, a dynamic threshold, dth, is proposed that can be
formulated as dth = (sth · di · rth), where parameter rth is
chosen based on the desired point rejection ratio such that
points with high spatial variance are removed.

4) SG Smoothing and Outlier Removal: Similar to com-
monly used approaches in robotics, where Kalman filter or ML



is applied for regression, SG algorithm [38] can be utilized to
remove the outliers from LiDAR data via smoothing of PCL
based on local least-square polynomial approximation in 1D.
Denoting LiDAR range measurements, r, corrupted signal,
g(r), with additive noise, ϵr, with zero mean and finite vari-
ance of σ2, the g(r) can be formulated by g(r) = r+ ϵr [39].
Based on this assumption, the SG polynomial fitting can be
applied to the LiDAR range measurements to remove the noise
resulting from the presence of the aerosol particles.

The SG smoothing method can be categorized as a kernel-
based filtration due to its utilization of a symmetric sampling
window of length, w, to compute and minimize the mean-
squared error along the input range g(r). The length of the
sampling window is defined as w = 2m + 1, where w must
be larger than the desired fitted polynomial degree n to satisfy
the minimum input constraint [38]. Based on the least-square
criterion, the summation of the squared differences between
the observed range measurements, ri, and the estimated poly-
nomial, pi, can be modeled as a cost function δm, using the
following equation:

δm =

m∑
i=−m

(pi − ri)
2, (8)

where pi =
∑n

k=0 bnki
k. Moreover, the kth coefficient

of the polynomial pi is denoted by bn and its value can
be determined by differentiating δm with respect to bn and
minimizing the resulting equation. This leads to the following
equality equation:

n∑
k=0

(

m∑
i=−m

bnki
k+j) =

m∑
i=−m

(ijri), (9)

where j ∈ [0, n] is the index representing the equation
number, given that there are n+1 equations. To calculate the
coefficient vector b, the previous equality equation can be writ-
ten in a matrix form as (ATA)bn = AT ri, where bn can be
derived as bn = (ATA)−1AT ri, given any sequence of range
measurements, ri, from LiDAR [39]. Furthermore, due to the
non-uniformity of PCL, an incremental SG implementation is
proposed to not only have varied radius threshold, rd, for close
and long-range LiDAR data but also varied polynomial degree,
n, and window size, w, to prevent loss of spatial features
by over-smoothing of the PCL. Overall, the larger window
size and lower polynomial degree result in a higher degree of
filtration [39]. Therefore, to achieve the desired noise removal,
the optimal window size, wopt, is calculated as follows:

wopt =

[
2(n+ 2)((2n+ 3)!)2

((n+ 1)!)2)

σ2

νn

]2n+5

, (10)

where νn = 1
L

∑L
l=1(r

(n+2))2 and L is the maximum
number of sampling of the LiDAR data in a period τ [39].

5) 2D Radius Outlier Removal: To minimize the compu-
tational cost associated with ROR and preserve the environ-
mental features [21], the 2D ROR filter is implemented by
projecting the previously filtered PCL into XY -plane thereby
removing the z-axis spatial information from the PCL prior to
construction of the Kd-tree for organizing the 2D PCL. There-

after, a search query based on the radius, rnn, is performed
to detect the number of neighboring points prior to filtration.
Based on the parameter, Knn, which indicates the minimum
number of acceptable neighbors for each point Pd = (x, y)
in the 2D PCL, the outlier removal is performed. Finally, the
remaining points were merged with the close-range modules
to produce the filtered PCL as shown in Figure 3.

IV. RESULTS

In this section, the evaluation of the proposed frame-
work and its viability for deployment in real-world scenarios
in PDEs, specifically in Sub-T environment located in Luleå,
Sweden, is presented. To ensure the safety of both aerial and
terrestrial robotic platforms during field experimentation, their
traversal velocity is maintained at approximately 1.2 m/s.

A. System setup

The sensor setup and the heterogeneous robotic system,
which consists of an aerial and a terrestrial robot [1], is
utilized to evaluate the proposed filtration framework. Fur-
thermore, both platforms were equipped with Intel NUC 10
BXNUC10I5FNKPA2.

B. Evaluation of SLAM Methods in the PDE

Current State-of-the-Art (SoA) SLAM algorithms such
as Direct LiDAR Odometry (DLO) [40] and LiDAR Inertial
Odometry via Smoothing and Mapping (LIO-SAM) [41] rely
on onboard sensors to achieve localization and mapping of
the environment by utilizing the fused LiDAR data in both
temporal and spatial domain with Inertial Measurement Unit
(IMU) data. To increase the fault tolerance, minimize the
impact of noise from acquired LiDAR data, and generate fast
and accurate key-frames, these algorithms utilize a combina-
tion of voxel-downsampling as well as an adaptive Iterative
Closest Point (ICP) scheme based on k-NN and convex hull.
However, these strategies are not sufficiently robust against
aerosol particles in PDEs as shown in Figure 2a with entrained
dust, Figure 5a and Figure 6a, where the generated smoke
is falsely identified as an obstacle and is included in the
generated map of the Sub-T environment.

Therefore, to assess the viability of the proposed framework
and its impact on the generated map based on DLO, several
comparative experiments as illustrated in Figure 5 and Figure 6
are performed in the presence of smoke, where the proposed
framework was utilized as a pre-processing step for PCL prior
to its utilization in DLO. Figure 5b and Figure 6b highlight
the identified aerosol particles which were not included in
the generated map when the proposed framework is utilized.
By utilizing the proposed framework the entrained dust, Test
1, can be also detected as shown in Figure 2c and removed
accordingly, as illustrated in Figure 2b.

C. Evaluation of APF in the PDE

By utilizing the APF method [13] in conjunction with
the filtered and unprocessed PCL data stream, the impact of
the proposed framework on obstacle detection and avoidance



(a) Generated map based on DLO from raw PCL in the presence
of smoke.

(b) Our framework on. Identified smoke in red, and the envi-
ronment in black.

Fig. 5: Test 2: DLO map generation with and without our
filtration framework.

(a) Generated map based on DLO from raw PCL in the presence
of smoke.

(b) Our framework on. Identified smoke in red, and the envi-
ronment in black.

Fig. 6: Test 3: DLO map generation with and without our
filtration framework.

algorithms is studied. As shown in Figure 7, without the
utilization of the proposed filtration scheme, the generated
reactive forces have a higher variance when compared to their
counterparts in Figure 8. Moreover, not only do the magnitude
and direction of repulsive forces generated by APF differ
in similar conditions in PDE but also in several instances,
the APF method could not detect the obstacles within the

TABLE II: Dynamic intensity threshold based on the fitted
Weibull distribution for outlier identification from various
experiments.

Experiments Weibull PDF Parameters
[α, γ, µ]

Intensity Threshold
[Ith]

Classes

Test 1 [0.771938, 3.613051, 0.0] 1.873639 51
Test 2 [0.263573, 3.347880, 1.0] 5.276786 28
Test 3 [0.228001, 1.996240, 1.0] 4.614035 57

Fig. 7: Potential field forces without the proposed framework.

Fig. 8: Potential field forces with the proposed framework.

smoke thereby generating inaccurate forces, which can be
observed in y−axis in Figure 7. It must be noted that such
false classification will directly affect SAR operations by
limiting the scope of autonomous exploration and further
hindering object detection algorithms to detect rescue workers
and survivors in such harsh environments.

V. CONCLUSIONS

In this paper, an agnostic modular filtration framework
for LiDAR data based on both the inherent and spatial informa-
tion from PCL in harsh and unstructured Sub-T environments
with the presence of aerosol particles is presented. The pro-
posed algorithm has demonstrated a solid performance in all
experiments having an operational frequency between 10 Hz
and 20 Hz for outlier detection and removal in a scalable
pipeline for denser PCLs. Further performance gains can be
realized by optimizing clustering methods, implementing dy-
namic non-uniform regional-based down-sampling of PCL and
by implementing the current framework in low-level language
like C++. The addition of spatial-temporal coupling can further
improve outlier detection and removal by identifying static
features thereby isolating noise and dynamic obstacles from
the environment. Finally, other unsupervised clustering meth-
ods such as HDBSCAN and Local Outlier Factor (LOF) can
be further evaluated and their performance, when compared
to the current framework, investigated to achieve either better
noise isolation or further time complexity improvement of the
proposed framework.
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