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Abstract—Distributed Volt-Var Control (VVC) is a widely used
control mode of smart inverters. However, necessary VVC curve
parameters are remotely communicated to the smart inverter,
which opens doors for cyberattacks. If VVC curves of an
inverter are maliciously manipulated, the attacked inverter’s
reactive power injection will oscillate, causing undesirable voltage
oscillations to manifest in the distribution system, which, in turn,
threatens the system’s stability. In contrast with previous works
which proposed methods to mitigate the oscillations after they are
already present in the system, this paper presents an intrusion
detection method to detect malicious VVC curves once they are
communicated to the inverter. The proposed method utilizes
a Multi-Layer Perceptron (MLP) that is trained on features
extracted from only the local measurements of the inverter. After
a smart inverter is equipped with the proposed method, any
communicated VVC curve will be verified by the MLP once
received. If the curve is found to be malicious, it will be rejected,
thus preventing unwanted oscillations beforehand. Otherwise,
legitimate curves will be permitted. The performance of the
proposed scheme is verified using the 9-bus Canadian urban
benchmark distribution system simulated in PSCAD/EMTDC
environment. Our results show that the proposed solution can
accurately detect malicious VVC curves.

Index Terms—Cyber-physical security, distributed generation,
smart grid, volt-var control.

I. INTRODUCTION

SMART grids are increasingly being equipped with re-
newable energy sources and information and communi-

cation technologies, which is revolutionizing the way modern
grids are managed. Among the transformative technologies
required by both North American and European intercon-
nection standards [1], [2], distributed Volt-Var Control (D-
VVC) has gained popularity over the last decade. D-VVC is
a localized and autonomous method to control smart inverters
that accompany Distributed Generators (DGs), such as grid-
connected Photo-Voltaic (PV) systems, allowing the DGs to
take part in fulfilling the grid reactive power demand [3], [4].
A smart inverter operating in the VVC mode needs to receive
the VVC droop control function from the operator of the grid-
connected microgrid/distribution system [5].

Previous studies, e.g., [3], [6], have shown that the proper
design of the VVC curves, mainly the slopes of these curves,
is vital for the system’s stability. Very steep curves can result
in sustained voltage magnitude oscillations in the system.
However, current inverters do not have a mechanism to distin-
guish between proper VVC curves and improper curves that

could have been misconfigured or manipulated by a malicious
entity [7]. Motivated by previous successful attacks on inverter
control systems [8], it is possible that malicious entities
intentionally exploit the vulnerabilities in deployed inverters’
firmware ([9]), which allows them to use the remote update
capability of smart inverters to communicate malevolent VVC
curves [10]. It was experimentally proven that vicious ma-
nipulation of volt-var curves will result in significant voltage
violations [11]. Manipulation of the VVC parameters can
take the form of an insider attack, which renders the use of
traditional cryptographic techniques (e.g., using a MAC or a
signature scheme [12], [13]) on the inverter side insufficient.
In a nationwide attack, adversaries can target groups of smart
inverters, similar to how the Hawaiian utilities were able to
update the control functions of a staggering 800,000 inverters
in less than 24 hours [14]. Therefore, detecting malicious
curves is a crucial need.

In this paper, we present a learning-based Intrusion Detec-
tion system for VVC modes in smart inverters. The proposed
method, which relies on only the local measurements of the
inverter, employs a Multi-Layer Perceptron (MLP), which is
trained offline to differentiate between legitimate curves and
malicious curves that would result in stability issues in the
system. The proposed system is completely decentralized, and
all the features utilized by the MLP are extracted from the
available inverter measurements. Once trained, the proposed
scheme can be implemented within smart inverters to verify
a VVC curve once received, and detect and reject malicious
VVC curves. The proposed scheme can detect stealthy attacks
that can bypass detection schemes proposed by some of the
related works.

In the remainder of this paper, Section II depicts the key
differences between the proposed intrusion detection system
and related works. Section III demonstrates how cyberattacks
can target VVC function of smart inverters. The proposed
method is developed in Section IV. Furthermore, a case study
is presented in Section V where the proposed system is
implemented to evaluate its performance. Section VI shows
how the proposed method can be implemented to secure
Volt-Var Control Against Setpoint Manipulation Cyberattacks.
Finally, the paper is concluded in Section VII.
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Fig. 1. Illustration of distributed VVC droop curve. The reactive power
a smart inverter injects is determined based on the magnitude of the local
voltage. Positive Q values denote injected VAR. vn is the nominal voltage.

II. PRELIMINARIES AND RELATED WORKS

In centralized VVC, a centralized controller −typically
the distribution transformer’s online tap-changer− coordinates
reactive power (Q) support between itself and the downstream
capacitors and DGs [15]. This approach relies on 2-way
communication links and is, therefore, highly vulnerable to
cyberattacks and more prone to other communication-related
problems [16]. On the other side, D-VVC offers a decentral-
ized and autonomous means of Reactive Power Control (RPC)
in smart distribution systems, where individual DGs participate
in RPC based on a predetermined control function that uses
only the local measurements of the DG’s grid connection
point. Fig. 1 shows the typical VVC droop function currently
available in smart inverters [3]. In a decentralized fashion,
this function, which relates the required reactive power to be
injected by the inverter (Qref ) to the locally measured voltage
(v), relies on a group of setpoints v̂ = [va, vb, vc, vd] that can
be remotely adjusted by the system operator.

A new false-data-injection attack (FDIA) against central-
ized VVC was proposed in [16], which can lead to signif-
icant under-voltage events. Cybersecurity of voltage control
in distribution systems with PVs was investigated [17]. A
cyberattack detection method for PV farms was proposed
in [18] based on Harmonic State Space Modeling. A state-
estimation-based centralized VVC strategy that accounts for
possible cyberattacks that can manipulate DG measurements
in centralized VVC schemes was proposed in [19].

Impacts of cyberattacks on smart inverter settings were
investigated in [20]. The authors of [11] demonstrated that
if VVC curves of a smart inverter are malevolently mod-
ified, especially inverted, the inverter exhibits an abnormal
behavior of generating reactive power at high voltage levels
and absorbing reactive power at low voltage levels. More
recently, in [7], the authors focused on mitigating the voltage
oscillations that occur in the power system after cyberattacks
already succeed in manipulating D-VVC curves of DGs in this
system. In [21], an attempt was made to develop mechanisms
to detect malicious VVC curves, which is essentially a set of
restrictions on the VVC curve based on physical invariants.
The main idea was to judge newly received curve parameters
based on the slope of the line connecting va and vd. However,
this detection mechanism can be easily bypassed if individual

Fig. 2. Block diagram of the VVC function in a smart inverter that interfaces
a Distributed Generator with the grid. Malicious entities can manipulate the
remotely-communicated VVC droop parameters.

curve parameters are manipulated, e.g., shifted, while keeping
the overall slope of the line va-vd unchanged (as will be shown
in Section III). Therefore, it can be noticed that there is still a
gap in developing an intrusion detection method to accurately
detect and prevent improper VVC curves, which we aim to
fill in this paper.

III. VULNERABILITY OF DISTRIBUTED VOLT-VAR
CONTROL TO CYBERATTACKS

In a decentralized manner, the VVC piece-wise function
determines the required reactive power to be injected by the
inverter (Qref ) based on only the magnitude of the local
voltage (v) that is often measured at the point of common
coupling of the inverter [3]. Fig. 2 illustrates the typical block
diagram of inverter control. As illustrated, for the reactive
power control performed by the VVC, firstly, the maximum
available reactive power (Qmax) is determined as

Qmax =
√
S2
max − P 2

ref (1)

where Smax is the rated apparent power of the inverter, and
Pref is the inverters reference active power. Afterward, the
desired reactive power is determined using the VVC droop
control function so that

Qref (t) =



Qmax vd ≤ v

Qmax.
(V−Vc)
(Vd−Vc)

vc ≤ v < vd

0 vb ≤ v < vc

−Qmax.
(V−VA)
(VB−VA) va ≤ v < vb

−Qmax v < va

(2)

where va, vb, vc, and vd are the remotely communicated droop
settings, as shown in Fig. 1. These settings shape the VVC
characteristics and, in return, affect how the inverter responds
to changes in the measured voltage v. Typically, the steeper the
curve, the faster the mitigation of voltage deviation problems,
at the cost of exposing the system to possible oscillations [7].



A malicious entity can remotely attack the inverter by
modifying the VVC set-points, as illustrated in Fig. 2. This
intrusion is possible if this entity (i) intercepts the communi-
cation link between the remote control center and the inverter
to be attacked, (ii) gains access to the control center, e.g.,
using stolen credentials or through a supply chain attack, or
(iii) exploits the vulnerabilities in the firmware of the targeted
inverter. This attack can also be cyber-physical, providing that
the malicious entities are capable of re-dispatching the set of
voltage breakpoints, i.e., va, vb, vc and vd, that parameterize
the droop curves in Figs. 1 for a subset of DGs in the distri-
bution system to cause voltage violations [22]. The success of
previous attacks on smart inverters, e.g., [8], is a clear example
of the vulnerability of current inverters to remote cyberattacks.
Once they take command of a communication channel to the
targeted inverter, the adversaries can carefully manipulate the
VVC curve to induce voltage oscillations in the system.

The adversaries can manipulate the four setpoints of the
VVC to construct an inverted curve, i.e., a curve whose first
and last segments have positive slopes [21], or a curve with
very steep non-zero first and last segments [21], [7]. Inverted
curves can be easily detected since the slopes of VVC inclined
segments are always negative by nature, which leaves us with
attacks that manipulate the slopes of the VVC curve.

To further restrict attackers, the work in [21] proposed im-
posing restrictions on the line connecting va and vd. However,
careful attackers can bypass these restrictions by shifting the
entire curve or manipulating only vc and vd. For instance,
attacks shifting the VVC setpoints can be represented as

v̂m = v̂pre + v̂α (3)

where v̂m is the vector of manipulated parameters, v̂pre is the
vector of the stable pre-attack parameters, and v̂α is the attack
vector, the amount by which the droop setpoint is manipulated.
A demonstration is provided below.

A. Cyberattacks on Distributed Volt-Var Control Function

To demonstrate cyberattacks targeting inverters operating in
VVC modes, the test system, shown in Fig. 3, is simulated in
PSCAD/EMTDC environment. The depicted 9-bus Canadian
urban benchmark distribution network [23], [24] consists of
two feeders, each with a rating of 8.7 MVA and an impedance
of 0.1529 + j 0.1406 Ω/km. The utility supplies power to these
feeders through a 20-MVA 115 kV/12.47 kV transformer with
a short-circuit level of 500 MVA and an X/R ratio of 6. This
system has four 2-MVA inverter-based Distributed Generators
(DGs), located at buses 4, 5, 6, and 9, and interfaced with
the system via 12.47 kV/0.6 kV transformers. DG1, which is
used in this paper to demonstrate the proposed solution, is
operating in VVC mode with va =0.95, vb = 0.98, vc = 1.02
and vd =1.05, all expressed in per-unit. Normally, v1 (the local
voltage of DG1) equals 1.011 pu. At time = 3s, attackers,
following Equation (3), commanded DG1 to update its vb and
vc with the values 1.02 pu and 1.04 pu, respectively. As a
result, the operating point v1, now falls between va and vb,

and the inverter injects reactive power unnecessarily. A few
seconds later, v1 oscillations manifest, as shown in Fig. 4. It
can be concluded from this section that there are many ways
to manipulate the VVC droop parameters, which motivates
developing an intrusion detection method to detect various
malicious curve parameters, as explained in Section IV.

IV. DEVELOPING AN INTRUSION DETECTION METHOD
FOR DISTRIBUTED VOLT-VAR CONTROL SCHEMES

The previous section demonstrated the vulnerability of
VVC in smart inverters to cyberattacks. It was also shown
that there are numerous ways attackers can manipulate the
curve parameters. What makes this kind of cyberattack more
challenging is the inherited non-linearity in the VVC con-
trol function, mainly since the inverter relies only on local
measurements. To this extent, we must develop a method to
differentiate between valid and malevolent curves once they
are communicated to the inverter. This method must only rely
on the local measurements of the inverter, i.e., the current and
voltage measurements. In this paper, we leverage learning-
based techniques to differentiate between malevolent and
legitimate settings. The selected model should be independent
of probabilistic information, such as the specific probability
density functions associated with faults or cyber-attacks. In-
stead, it should provide the necessary decision through only the
training process. To achieve this goal, the proposed solution
in this paper employs a Multi-Layer Perceptron (MLP) since
MLPs are known for their accuracy and speed [25]. MLP
architecture is illustrated in Fig. 5. In this paper, the MLP is
trained on features extracted from local inverter measurements
to predict whether the received curve, when applied, will result
in oscillations or not.

A. A MultiLayer Perceptron for Detection of Malicious Curves

To differentiate between benign and malicious curves, the
MLP maps the vector of input features x

x = [x1, x2, ..., xM ] (4)

where M is the number of input features, to a specific label ŷ,
which is either 0 (for stabilizing curves) or 1 (for manipulated
curves). To perform this classification, the MLP learns the
representation of large data structures, i.e., during training,
using the backpropagation concept [25]. In each feedforward
iteration, x propagates from the input layer to the output layer
passing through L dense layers, as shown in Fig. 5.

Let zj be the input of jth hidden layer, where j ∈
{1, 2, ...L}. Therefore, zj is the weighted sum of the outputs
of the preceding layer, which can be described as

zj =

{
wT

1 .x + bj j = 1

wT
j .ŷj−1 + bj j ∈ {2, ..., L}

(5)

where wj and bj are the weights vector and bias vector of zj ,
respectively. Accordingly, ŷj−1 is the output of the (j − 1)th

layer. In detail, the output of layers 1 to L− 1 is obtained as



Fig. 3. Medium-voltage 9-bus part of the Canadian benchmark network equipped with four inverter-based distributed generators operating in Volt-VAr mode.

Fig. 4. Oscillations in the voltage magnitude measured near DG1 following
an undetected cyberattack on the VVC setpoints of the inverter of DG1.

Fig. 5. Architecture of MLP.

ŷj = max(0, zj) (6)

Finally, the output of the final layer (Lth layer) is

ŷL =
1

1 + e−zL
(7)

which is obtained using the sigmoid function and yields a
binary output, i.e., 1 for a cyberattack or 0 for a benign curve.

B. Automatic Hyperparameter Tuning of the MLP

The goal of the training phase is to obtain the MLP model
with the best hyperparameter values that result in the highest

accuracy. Hyperparameters utilized include the number of lay-
ers, the size of each layer (number of nodes), the weights, the
regularization strength (λ), and the selection of the activation
function for each node. This paper leverages the usage of
automatic MLP tuning to obtain the desired MLP model in
a systematic way. Here, the Random Search algorithm is used
to update the hyperparameter values [26]. Here, the Random
Search algorithm aims to maximize the MLP’s accuracy using
the hyperparameters as variables.

V. SIMULATION RESULTS

This section depicts how the MLP, utilized by the proposed
intrusion detection system, is trained and tested to detect
cyberattacks that would otherwise disrupt the stability of the
system as demonstrated in Section III. A.

A. Data Generation and Features for Training the MLP

To ensure that the proposed solution is truly capable of
detecting malicious curves, a wide range of scenarios are
simulated. Using DG1 in the test system shown in Fig. 3, 2000
malicious scenarios are simulated, during which destabilizing
curves are communicated to the inverter of DG1. To generate
the scenarios, the voltage setpoints v̂ are varied following
Equation (3), under different system loading conditions. Simi-
larly, 2000 legitimate scenarios are simulated where stabilizing
curves are applied. For practicality, all the simulated curves
have non-zero segments. In each scenario, the inverter’s three-
phase current and voltage measurements are recorded from
the instant the new VVC is received until 10 seconds later.
From these measurements, a set of features is extracted to
train the MLP from each sample, which includes: (i) new VVC
curve parameters, (ii) magnitudes of the three-phase voltage
and current phasors, (iii) the direct and quadrature currents
and voltages, i.e., 3-phase voltages and currents after being
transformed to the direct-quadrature (d-q) domain, which are
already calculated by smart inverters [3], and (iv) ζ, which is
an intuitive reflection of the oscillations in each current/voltage
magnitude waveform, defined as



TABLE I
SUMMARY OF UTILIZED FEATURES

Features Remarks
va, vb, vc, vd Parameters of the new VVC curve

|I1|, |I2|, |I3|, Magnitudes of local current measurements

|V1|, |V2|, |V3|, Magnitudes of local voltage measurements

Id, Iq , Vd, Vq , Currents and voltages in dq domain

ζV1 , ζV2 , ζV3 Indication of oscillations in the voltage magnitudes

ζ = c.|vpcc − vn|p (8)

where |.| denotes the absolute value of the enclosed argument,
vpcc is the root mean squared voltage measured at the point
of common coupling of the inverter, vn is the nominal value
of vpcc per-unit, and c and p are positive integer constants.
When the VVC curve is legitimate, it results in a steady-state
condition, where the difference between vpcc and vn is zero.
However, following the usage of a malicious curve, oscillations
in vpcc manifest and vpcc can either increase or fall below
vn. p and c help magnify the amplitude of these oscillations,
thus easing the differentiation between minor fluctuations that
naturally exist in the power system and oscillations resulting
from malicious VVC curve parameters. This paper implements
p and c as 2 and 100, respectively. Table I summarizes the
utilized features. In each scenario, the above features are
inputted twice to the MLP, i.e., the features’ values before and
after the new curve is applied. Afterward, the generated dataset
is labeled as either ‘malicious’ or ‘legitimate,’ where malicious
curves are those that would eventually result in oscillations
appearing in the voltage of DG1, and legitimate curves are
the rest of the curves.

B. Training of the MLP

The dataset generated above is shuffled and then randomly
split into 80% for training and 20% for testing. The training
portion of the dataset is used to train the MLP, which is
performed in MATLAB environment. When the training com-
mences, hyperparameters are randomly initialized. To obtain
a more reliable estimate of the MLP model’s performance,
training is performed in conjunction with k-fold cross valida-
tion [27]. That is, in each epoch of the training, the training
dataset is divided into five equal folds, and then five separate
models are trained (each model is trained on a different fold
and validated against the remaining four folds). In this paper,
the optimum MLP model comes with three layers that consist
of 7 nodes, 159 nodes, and 1 node, respectively. The layers
are ReLU-activated and λ = 5.2128× 10−7.

C. Evaluation Metrics

A successfully detected malicious curve is labeled as a
true positive (TP) case. Correctly predicted legitimate curves
are considered true negative (TN) cases. Accordingly, false
positive (FP) and false negative (FN) cases are mispredicted

TABLE II
PERFORMANCE OF THE PROPOSED INTRUSION DETECTION METHOD

Metric Reults
Accuracy 99.75%
Precision 99.8 %

Recall 99.7 %
F1-score 99.74 %

TABLE III
CONFUSION MATRIX

Predicted Scenario
True Scenario Malicious benign

Malicious 99.7 % 0.2%
benign 0.3% 99.8 %

normal curves and malicious curves, respectively. To corrob-
orate the performance of the proposed intrusion detection
system, the following metrics are used:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score = 2× Precision × Recall
Precision + Recall

(12)

D. Evaluation Results

The trained/optimum MLP model is then tested on the
previously unseen 20% of the dataset held out for testing.
Table II depicts the performance evaluation results of the pro-
posed intrusion detection method. Overall, 99.7% of malicious
VVC curves are detected, which reflects the ability of the
proposed solution to protect the inverter-system interaction
from undesirable oscillations. Nonetheless, the rest of the
inverters can still mitigate these undetected cases, e.g., using
the approach described in [7]. On the other hand, 99.8% of
legitimate VVC curves are correctly classified and therefore
permitted, which shows that the proposed method minimally
restricts the controllability of the VVC process and system
operator.

VI. SECURING VOLT-VAR CONTROL AGAINST SETPOINT
MANIPULATION CYBERATTACKS

After integrating the proposed solution within smart invert-
ers, once a new curve is received, it will be evaluated by
the proposed solution, which will determine if it is a stabi-
lizing curve, and thus should be permitted or a destabilizing
curve, and thus the VVC continues adopting the old set of
setpoints. Implementing the proposed scheme helps prevent
many oscillations before they happen on the system. When a
malicious curve is detected, there are a few options regarding
how the attacked inverter should respond [21]. For instance,
the power system operator can pre-engineer all inverters in



the system to turn off the VVC mode and switch to the unity-
power-factor mode once attacked. This approach will prevent
attackers from threatening the voltage stability of the power
system. However, increased active power injection by the DGs
can result in increased system losses. Alternatively, the utility
may require attacked inverters to self-isolate. Nonetheless, this
option opens doors to denial-of-service attacks. Furthermore,
attacked inverters can revert to the last communicated sta-
ble curve or switch to a flattened curve pre-designed as a
backup curve [7]. Generally, more research is required in this
direction. It is also interesting to investigate the possibility
of utilizing one-class classifiers, as opposed to the considered
binary MLP. In addition, investigating the interpretability of
the utilized classifier is another interesting research direction.

VII. CONCLUSION

Distributed VVC is a widely adopted control mode for in-
verters equipping DGs. Smart inverters are required to support
remote updating of the VVC parameters, which poses a vul-
nerability that malicious entities can exploit and maliciously
manipulate the VVC curves of smart inverters and, in return,
threaten the distribution system’s voltage stability. This paper
presented an intrusion detection method that can prevent ma-
licious cyberattacks targeting the setpoints of the VVC mode.
When the inverter receives a new set of VVC curve setpoints,
the proposed method uses an MLP to confirm that these curves
are not malicious or will result in oscillations in the system
voltage. Only legitimate stabilizing curves will be allowed.
Otherwise, the inverter keeps using the last known stabiliz-
ing curves. The proposed method is entirely decentralized,
utilizes only the local measurements available for inverters,
and requires no additional communication. The performance
of the proposed solution was verified using the 9-bus Canadian
Urban benchmark system equipped with inverter-based DGs
and simulated in PSCAD/EMTDC. The training of the MLP
was performed in a MATLAB environment. Our results show
that the proposed intrusion detection method can accurately
differentiate between malicious and legitimate stabilizing VVC
curves. Therefore, the proposed method is recommended for
integration with smart inverters.
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