
ar
X

iv
:1

70
5.

02
67

1v
1 

 [
cs

.D
C

] 
 7

 M
ay

 2
01

7

Lightweight Robust Framework for

Workload Scheduling in Clouds

Muhammed Abdulazeez, Dariusz R. Kowalski, Prudence W.H. Wong
Department of Computer Science, University of Liverpool, UK,

Email: [m.abdulazeez,d.kowalski,pwong]@liverpool.ac.uk
Pawel Garncarek

Institute of Computer Science, Wroclaw University, Poland,
Email:pgarn@cs.uni.wroc.pl

September 18, 2018

Abstract

Reliability, security and stability of cloud services without sacrificing
too much resources have become a desired feature in the area of workload
management in clouds. The paper proposes and evaluates a lightweight
framework for scheduling a workload which part could be unreliable.
This unreliability could be caused by various types of failures or attacks.
Our framework for robust workload scheduling efficiently combines clas-
sic fault-tolerant and security tools, such as packet/job scanning, with
workload scheduling, and it does not use any heavy resource-consuming
tools, e.g., cryptography or non-linear optimization. More specifically, the
framework uses a novel objective function to allocate jobs to servers and
constantly decides which job to scan based on a formula associated with
the objective function. We show how to set up the objective function
and the corresponding scanning procedure to make the system provably
stable, provided it satisfies a specific stability condition. As a result, we
show that our framework assures cloud stability even if naive scanning-all
and scanning-none strategies are not stable. We extend the framework
to decentralized scheduling and evaluate it under several popular routing
procedures.

1 Introduction

Cloud computing [14] enables ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources. It is becoming more and
more popular for businesses to access computing facilities without investing in
IT infrastructure. [1, 2, 3, 4]. Cloud users send in resource requests in an online
manner and the cloud provider allocates the required resources for the required
amount of time. What is important, the resource allocation is transparent to
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the users. The provider allocates resources based on the system dynamicity and
current system load. We refer readers to surveys on cloud computing for cloud
technology [8, 5, 24].

While there is a growth in the use of cloud services, many potential users
are still reluctant to deploy their business in the cloud. Major concerns are its
reliability, security and stability [18]. There are different reliability and secu-
rity issues depending on different delivery models of cloud services, including
Software as Service (SaS), Platform as Service (PaS) and Infrastructure as Ser-
vice (IaS). In this work we focus on the IaS model. This technology makes the
users and provider reside at different locations and virtually access the resources
over the Internet, therefore any security concerns threatening the Internet also
threaten the cloud. In particular, we consider the scenarios when part of the
workload is unreliable, e.g., fault-prone or generated by malicious sources, and
propose a lightweight framework that combines load management and detection
of unreliable traffic. We investigate how to strike a balance between efficient
workload scheduling and packet/job scanning so that we can maintain stability
(as a guarantee of bounded buffers at machines) without sacrificing too much
resources to filter out the unreliable part of the workload. IaS provides users
with computing infrastructure in the form of Virtual Machines (VM). Follow-
ing [11], we assume that the users request resources such as memory, CPU and
storage, for a certain amount of time in the form of VMs; this corresponds to
a job to be done. Upon receiving the requests (typically in a form of packets),
the system has to allocate the required resources by scheduling the VMs on the
server. We extend the model in [11] by considering scenarios where part of the
workload is genuine and the other unreliable. Genuine traffic comes from real
users; completing these requests counts towards system’s work done. Unreliable
traffic is subject to failures or comes from attackers, who aim to disrupt the
system by issuing requests that occupy resources; completing these does not
count as proper work done. We adopt a classic reliability and security tool of
packet scanning to detect these malicious packets [15]. While scanning is able to
distinguish genuine from unreliable requests,it consumes and wastes resources
that would normally be used for serving genuine workload.

On the other hand, as we do not know whether the packets are faulty/fake
until we scan them, we may also waste time and resources in scanning genuine
packets. Therefore, the scheduling algorithm needs to strike a balance between
the resources wasted by scanning and by performing unreliable requests without
scanning them.

We consider centralized and distributed scheduling algorithms. In the cen-
tralized setting, there are central queues, and upon arrival jobs are added to the
central queues corresponding to the requested type of VMs; recall that there is
a limited number of types of VMs (as each of VMs is in fact a small operating
system [11]) and each job is allocated to a VM of the requested type. When
the resources become available, the centralized scheduling algorithm determines
which set of jobs is to be served and to which servers the VMs are mapped to.
In the distributed setting, each server has its own queues; upon arrival, a job
request is forwarded to some server and stored in the server’s local queue cor-
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responding to the requested type of VMs. The requests from these local queues
are served by a distributed scheduling algorithm locally on the server.

The system is stable if the queues do not tend to increase without bound.
We aim to characterize the maximum arrival rates of genuine and unreliable
requests under which there is an algorithm to maintain the stability of the
system and to develop such algorithm if it exists. In addition, to guarantee
quality of service, we also measure job latency, which is defined as the amount
of time a job resides in the system since its arrival. We present the precise
model in Section 2 and the proposed algorithms and analysis in Sections 3 to 6.
We present the experiments and conclude in Sections 7 and 8.

1.1 Related Work

Apart from maintaining stability, there are many other design issues related to
workload management in cloud computing. Cloud utilization has been consid-
ered in [22, 16, 23]. Optimizing other costs of running the services has been
considered [17, 21, 22].

The algorithms we propose here are inspired by the MaxWeight algorithm
analyzed in [20] in the context of scheduling genuine workload only, and could be
seen as its efficient generalizations to unreliable environments. The MaxWeight
algorithm has been since investigated extensively [13, 19, 12]. Detecting and
distinguishing unreliable or malicious from genuine requests and a number of
approaches have been proposed [15, 7]. In this paper, we assume that such a
tool to scan a packet and detect potentially unreliable or malicious packages is
available. The authors in [10] studied jobs with unknown duration and analyzed
several decentralized approaches and showed that some are throughput-optimal
while others are not. Another study [9] aimed to optimize recovery time after
failures; it is different from our aim to prevent the impact of failures by tailored
combination of scheduling and scanning tools.

1.2 Our Contributions

We propose a lightweight robust framework to manage workload in clouds under
unreliable workload scenarios. Extending the model in [11, 20], we propose to
detect unreliable part of the traffic by scanning only some specifically selected
jobs without sacrificing too much resources.

• We propose a theoretical model to capture the essence of this condi-
tional scanning and show that under a certain system capacity region
and stochastic arrival pattern of genuine and unreliable jobs there exists
an algorithm, called RobustMaxWork, that manages the workload while
maintaining queue stability (i.e., the queue is bounded and does not grow
to infinity size).

• We show how to efficiently compute the optimal scanning strategy (vec-
tor).
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• We prove that there is no stable algorithm for the workload outside the
capacity region for which RobustMaxWork is stable.

• We propose several distributed versions of RobustMaxWork and discuss
various extensions of theoretical results.

• We evaluate the algorithms and the proposed model using extensive sim-
ulations, with respect to the maximum and average latency over time.

2 Model

We consider a cloud system modeled by a network of physical machines that
have limited available resources (for instance, CPU, memory, storage, . . . ) and
is supposed to be able to process an ongoing stream of jobs.

Servers. We consider a set of n networked servers (physical machines).
Each server has its own resources that it can distribute among jobs, that is, for
each resource it has a fixed capacity.

Jobs. A job is specified by its type and length. Since there are limited
number of virtual machine types, we only consider limited number of job types
– there are J types of jobs. Each type is a set of demands for resources; more
specifically, for each available server resource a job type has a number specifying
how much of this resource is required in order to process any job of this type.

There are I different lengths of jobs possible: L1, . . . , LI

We consider online random arrival model, where new jobs arrive indepen-
dently of each other and are identically distributed across all time slots, and the
variance of arrival length is finite. Let λi,j denote expected sum of lengths of
genuine (i.e., user-generated) type-j jobs of length Li that arrive per time slot,
for any positive integers j ≤ J and i ≤ I.

Processing jobs and feasible configurations. Each server can process
a set of jobs simultaneously, as long as the cumulative amount of each resource
used by these jobs does not exceed the server capacity for this resource. Pro-
cessing jobs is done in synchronous time steps, also called rounds. The whole
system capacity is a linear sum of capacities of all the servers. Given job types
and server capacities, one can compute the set S of all feasible configurations,
where feasible configuration denotes a vector N = (N1, . . . , NJ) such that the
system can process simultaneously Nj type-j jobs, for every j.

Malicious jobs and security tools. Let κi,j denote the expected sum
of lengths of malicious jobs of type-j of length Li that arrive per time slot.
Similarly as genuine jobs, malicious jobs arrive independently of each other and
are identically distributed across all time slots, and the variance is finite. We
assume that we have a scanning tool that, given a job, can detect whether
it is a genuine user request (we will call it a good job) or a malicious request
(a malicious job). Each scanning takes 1 time slot per job and requires same
resources as the original job (scanning is done on the same virtual machine).

Central scheduler. We consider a central scheduler with a queue of all
injected, but not yet finished, jobs. The scheduler decides which servers process
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which jobs for the next time slot. After this time slot, all unfinished jobs
return to the scheduler with saved progress and can be processed further at
a later time and by a different server. This property of a system is called
preemptiveness. The centralized algorithm, called RobustMaxWork, will be
introduced in Section 3.

Distributed scheduler. In decentralized approach all servers maintain
separate queues for jobs of type j, therefore when a job arrives decision has
to be made as to which server to route the job to. Each server runs locally
a protocol RobustMaxWork with respect to its local queues. The distributed
implementations of algorithm RobustMaxWork will be presented in Section 6.

Notation.

• n denotes the number of servers in the cloud;

• I denotes the number of different job lengths;

• J denotes the number of different job types;

• A(t) = (A1(t), . . . , AJ (t)) denotes the vector of sets of type-j jobs, for
j ≤ J , which arrive to the system in the beginning of time slot t;

• Q(t) denotes the vector of queue lengths (i.e., sum of lengths of jobs in
the queue) for each type of jobs in the beginning of time slot t;

• Qj(t) denotes the total length of users’ and malicious type-j jobs, for
j ≤ J , in the beginning of time slot t;

In addition there are the following notations regarding RobustMaxWork al-
gorithm:

• αi,j is a probability of scanning type-j job of length Li; the algorithm may
implement a specific scanning strategy, i.e.,

use a specific vector α.

• Xj(t) is the total length of queued type-j jobs that will not be scanned,
taken in the beginning of time slot t (i.e., the algorithm scanned them
already or decided not to scan them at all);

• Yj(t) is the total length of queued type-j jobs that will be scanned, taken
in the beginning of time slot t (i.e., the algorithm has already decided to
scan them, but has not scanned them yet);

• Zj(t) = Zj(Q(t)) is the expected time required to process type-j jobs
stored in queue in the beginning of time slot t; the formula with an expla-
nation for it will be given in section 3;

• aj is the expected time required to process type-j jobs that arrive in one
time slot; the formula with an explanation for it will be given in section
5;
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Whenever time slot t is clearly fixed or understood from the context, we may
omit an argument t from the formulas.

Scanning strategies. We will compare the following scanning strategies:

• Scan-None— always executes a job without scanning, i.e., αi,j = 0 for all
i, j;

• Scan-All — scans all jobs except those with processing time shorter or
equal to the scanning time (recall that scanning takes 1 time slot), i.e.,
αi,j = 0 for Li ≤ 1 and αi,j = 1 otherwise;

• Scan-Opt— will be defined in section 5.2.

Stability. We say that, given arrival rates λ and κ, the algorithm is stable if
the expected queue size at any fixed time is bounded, i.e. lim sup

t→∞

E[
∑

j Qj(t)] <

∞.

3 Main Algorithm — Centralized Version

Algorithm RobustMaxWork (see Algorithm 1, with Algorithms 2, 3 and 4 as sub-
procedures) is parametrized by: scanning vector α = (αi,j)i≤I,j≤J ∈ [0, 1]I×J ,
vector of rates of genuine user’s requests λ = (λi,j)i≤I,j≤J , and vector of rates
of malicious requests κ = (κi,j)i≤I,j≤J . Upon arrival of type-j job of length
Li, algorithm RobustMaxWork decides to scan it with probability αi,j (c.f., the
first for all loop in Algorithm 1).

The key idea of RobustMaxWork is to measure the expected time required to
process all jobs of each type j and prioritize the jobs of type which accumulated
the most. The expected time (also called expected work) required to process all
jobs of type j accumulated in queue at time t is denoted by Zj(t).

It takes Xj time to process jobs that will not be scanned (jobs contributing
to Xj). Jobs contributing to Yj will need to be scanned (by definition of Yj),
which requires Yj ·E(1/lj) expected time. In expectance λj/(λj+κj) fraction of
scanned jobs are genuine, so after scanning, they still must be processed, taking
in total Yj · λj/(λj + κj) time. κj/(λj + κj) fraction of scanned jobs are fake
and after scanning they take no more processing time. Therefore:
Zj(t) = Xj(t) + Yj(t) · (λj/(λj + κj) + E(1/ℓj)),
where ℓj is a (random) length of arriving type-j jobs.

The algorithm then computes values Zj (c.f., the second for all loop in Algo-
rithm 1) and finds configuration N from the set of feasible server configurations

S that maximizes the sum
∑J

j=0 Zj(t)Nj , i.e., the objective of the algorithm in
each time slot t is:

max
N∈S

J∑

j=0

Zj(t)Nj .

This configuration is denoted by N ′. The quick intuition behind this function is
that the more jobs of a given type accumulate, the more weight should be put
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Algorithm 1 RobustMaxWork(λ, κ, α)

Recall that λ is the expected length of genuine jobs, κ is the expected length of
malicious jobs and α is probability of scanning jobs.

X ← ~0 // jobs that will not be scanned

Y ← ~0 // jobs be that will be scanned

Q← ~0 // all jobs

loop

new time slot begins
for all new type-j job τi,j of length Li do

r ← random value from [0; 1]
if r < αi,j then // τi,j to be scanned

Yj ← Yj + Li

Qj ← Qj + Li

else // τi,j not to be scanned

Xj ← Xj + Li

Qj ← Qj + Li

end if

end for

for all j do

Zj ← Xj + Yj(λj/(λj + κj) + E(1/Lj))
end for

N ′ ← argmaxN∈S

∑
j Nj · Zj

for all j do

for k ≤ N ′
j do

Process job(j)
end for

end for

end loop
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Algorithm 2 Process job(j)

if there are still jobs in Xj and Yj that are not yet scheduled to be processed
in this time slot then

r ← random value from [0; 1]
if r < Xj/(Xj + Yj) then

Process job X(j)
else

Process job Y(j)
end if

else if there are no jobs in Xj that are not yet processed in this time slot,
but there are still such jobs in Yj then

Process job Y(j)
else if there are no jobs in Yj that are not yet processed in this time slot,
but there are still such jobs in Xj then

Process job X(j)
else

Stay Idle
end if

Algorithm 3 Process job X(j) // not to be scanned

Process a unit of any unscheduled job contributing to Xj

Xj ← Xj − 1
Qj ← Qj − 1

Algorithm 4 Process job Y(j)// to be scanned

Scan any unscheduled job contributing to Yj

Li ← length of the scheduled job
Yj ← Yj − Li

if detected as malicious then
Qj ← Qj − Li

else

Xj ← Xj + Li

end if

8



to scheduling the jobs of that type in order to prevent further accumulation. Zj

here is the weight given to jobs of type j.
Finally, in the last for all loop, the algorithm processes N ′

j jobs of type j, for
each j ∈ {1, . . . , J}; that is, from each processed job it executes a unit of it and
the total size of Qj decreases by N ′

j at the end of time slot t. It is done by calling
procedure Process job(j), c.f., Algorithm 2. If N ′

j is larger than the number of
different type-j jobs in the queues, RobustMaxWork processes as many type-j
jobs as possible instead, each time processing a unit of each such job. (c.f., the
second part of procedure Process job(j)). If N ′

j is smaller than the number of
different type-j jobs in the queues, RobustMaxWork has to decide which type-j
jobs to process (c.f., the first part of procedure Process job(j)). It repeats N ′

j

times:

• with probability Xj/(Xj + Yj) it processes a job that will not be scanned
(i.e., a job that contributes to Xj),

• with probability Yj/(Xj + Yj) it scans a job pending for scanning (i.e., a
job that contributes to Yj).

If there are not enough jobs contributing to Xj , it processes all jobs contribut-
ing to Xj and as many jobs contributing to Yj as possible, so that altogether it
processes Nj type-j jobs. Vice versa, if there are not enough jobs contributing
to Yj , it processes all jobs contributing to Yj and as many jobs contributing
to Xj as possible. Processing and/or scanning a specific type-j job is done by
calling sub-procedures Process job X(j) and/or Process job Y(j), respectively
(c.f., Algorithms 3 and 4, resp.) directly from the execution of procedure Pro-
cess job(j).

In short words, we could describe a single time slot of an execution of al-
gorithm RobustMaxWork as follows. We always have Xj + Yj = Qj , for any
type-j, as each job is either waiting for scanning or not (i.e., has been already
scanned or is not selected for scanning at all). Whenever a type-j job of length
Li arrives, with probability αi,j its length is added to Yj , otherwise its length is
added to Xj . When the algorithm executes one unit of a job contributing to Xj ,
Xj is reduced by 1. When the algorithm executes one unit of job contributing to
Yj , it means it scans it — if it was a genuine user job, its length is removed from
Yj and added to Xj (so the algorithm spent one round on scanning, but the
sum Xj + Yj remains the same); if it was a malicious job, its length is removed
from Yj .

4 Analysis

In this section we prove that algorithm RobustMaxWork is stable if there is
ε > 0 and vector a such that a ∈ (1− ε) · co(S).

Theorem 1. The RobustMaxWork algorithm is stable for all arrival patterns
λ, κ, for which there exists a stable algorithm.
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In the remainder of this section we will prove Theorem 1. We will need the
following result (extension of Foster’s criteria for irreducible Markov chains).

Theorem 2 ([6]). Consider a Markov chain Q(t) with state space Q. Consider
a random walk on it, starting from a state x. Let τx denote the time when the
random walk first reaches some recurrent state (or infinity if it never reaches
any). If there exists a lower bounded real function V : Q → R, an ǫ > 0 and a
finite subset Q0 of Q such that

E[V (Q(t+ 1))− V (Q(t))|Q(t) = q] < −ǫ, if q /∈ Q0, (1)

E[V (Q(t+ 1))|Q(t) = q] <∞, if q ∈ Q0, (2)

then we have
P (τq <∞) = 1, ∀q ∈ T (3)

and all states q ∈ ∪∞j=1Rj are positive recurrent.

Let V (Q(t)) =
∑

j(Zj(Q(t)))2. Note that V (Q(t)) ≥ 0 for all possible queue
states Q(t) ∈ Q. We show that there exist two positive numbers b, ǫ such that
the inequality

E[V (Q(t+ 1))− V (Q(t))|Q(t) = q] < −ǫ (4)

holds for all q ∈ Q for which qj ≥ b.
Let A(t) denote the vector of arrival lengths for each type of job, with dis-

tinction between jobs that will be scanned and jobs that will not be scanned, in
the beginning of time slot t. Let Alg(t) denote the vector of queue changes due
to algorithm decisions for each type of job, with distinction between jobs that
will be scanned and jobs that will not be scanned, in the beginning of time slot
t. We will be using Zj as a shorthand of Zj(Q(t)), A as a shorthand of A(t+1),
and Alg as a shorthand for Alg(t+ 1).

E[V (Q(t+ 1))− V (Q(t))|Q(t) = q]
= E[

∑
j [Zj(Q(t+ 1))2 − Z2

j ]|Q(t) = q]

= E[
∑

j [(Zj + Zj(A) − Zj(Alg))
2 − Z2

j ]|Q(t) = q]

= E[
∑

j [(Zj(A)− Zj(Alg))
2+

+2Zj(A− Zj(Alg))]|Q(t) = q]
≤ K + 2E[

∑
j [Zj · Zj(A)]|Q(t) = q]+

−2E[
∑

j [[Zj · Zj(Alg)]|Q(t) = q] .

The last inequality comes from E[
∑

j [(Zj(A)−Zj(Alg))
2]|Q(t) = q] being upper

bounded under assumption that the variances of arrival lengths are finite;
we denoted this upper bound by K.

Lemma 1. There exists finite set F ⊆ Q such that for all q ∈ Q − F :

K + 2E[
∑

j [Zj · Zj(A)]|Q(t) = q]+

−2E[
∑

j [[Zj · Zj(Alg)]|Q(t) = q] < 0 .

To prove Lemma 1, we need the following result:
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Lemma 2. For almost all queue states q there exists a feasible configuration
N ∈ S such that N · Z ≥ K + a · Z (where Z = Z(q) and · is scalar product).

Proof. We remind that vector α is chosen in such a way that the vector (1+ ǫ)a
lies inside convex hull of set S, further denoted by co(S) (set S is the set of
feasible server configurations N), where

aj = (λj + κj)((1 − αj) + αj(
λj

λj + κj

+ E(
1

L
))) .

Let a′ be a vector (a point) corresponding to intersection of vector a with
a face F of co(S). a′ ≥ (1 + ǫ)a is a linear combination of some feasible con-
figurations N (1), . . . , N (k) (configurations on the face F ). Therefore for any
non-negative vector Z there exists a configuration N such that N · Z ≥ a′ · Z
(at least one of N (1), . . . , N (k) is such a configuration). So N · Z ≥ (1 + ǫ)a ·Z,
thus N · Z − ǫ

1+ǫ
N · Z ≥ a · Z.

Consider the set of queue states Q′ = {q : ∃N ǫ
1+ǫ

N · Z(q) ≥ K}.

∀q ∈ Q′∃N ∈ S N · Z(q) ≥ K + a · Z(q) . (5)

In order to complete the proof of the lemma, it remains to show that Q−Q′

is finite.
Note that Zj is a monotonically increasing function and if direction of q is

same as q′ then direction of Z(q) is same as Z(q′). For each possible direction

of Z(q), for all q ∈ Q different from
−→
0 , there exists q′ ∈ Q′ such that Z(q′) is in

the same direction as Z(q) (q′ may be some multiplicity of q that is large enough
to “kill” constant K). Then for any q′′ ≥ q′ we have Z(q′′) ≥ K + b · Z(q′′).

For each possible direction of Z we can take the minimum vector q0 ∈ Q
′

such that Z(q0) is in the considered direction. Then we take one vector q′0 that
is greater than all q0’s for each direction.

In each direction there is a finite number of vectors smaller than the corre-
sponding q0. The lengths of vectors q0 are bounded, as the optimized function
is continuous and considered on a compact set of directions.

Hence the number of configurations of smaller length than the supremum q0
is finite, and so Q−Q′ is finite.

Proof of Lemma 1. Note that in Lemma 1, E[
∑

j [Zj · Zj(A)]] is the expected
value of the scalar product Z · Z(A) and E[

∑
j [[Zj · Zj(Alg)] is the expected

value of the scalar product Z · Z(Alg). According to Lemma 2, inequality from
lemma 1 is true for almost all queue states, i.e., there exists a finite set of states
F such that for all q ∈ Q − F the desired inequality holds.

Proof of Theorem 1. According to Lemma 1 and Theorem 2, given arrival rates
for which there exists some stable algorithm, RobustMaxWork algorithm reaches
positive recurrent state in a finite time, therefore it is stable.
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5 Determining feasible capacity region and scan-

ning frequency

5.1 Feasible capacity region

Lemma 3. Processing a type-j job for 1 time slot decreases Zj(Q(t)) by 1 on
average.

Proof. If the processed step was not scanning (i.e., processing a job from Xj)
then trivially Zj decreased by 1.

If the processed step was scanning a job of length Li (i.e., processing a job
from Yj), then:

• before scanning that job contributed
λj

λj+κj
· Li + 1 weight towards Zj;

• with probability
λj

λj+κj
it was a genuine job, so after scanning it contributes

Li towards Zj (increase in weight);

• with probability
κj

λj+κj
it was a malicious job, so after scanning it con-

tributes 0 towards Zj (decrease in weight).

Therefore, on average Zj decreases by

λj

λj+κj
(1−

κj

λj+κj
Li) +

κj

λj+κj
(1 +

λj

λj+κj
Li) =

= 1 +
λjκj

(λj+κj)2
(−Li + Li) = 1 .

Recall that αi,j is the probability of scanning type-j job of length Li, and
A(t) denotes the vector of arrival lengths for each type of job, with distinction
between jobs that will be scanned and jobs that will not be scanned in the
beginning of time slot t.

Let aj = aj(α, λ, κ) = E[Zj(A(t))] be the expected weight of type-j jobs
that arrive per time slot (arrivals are i.i.d. across time slots, so E[Aj(t)] =
E[Aj(t+ 1)] for all t). Then

aj =
∑

i

pi,j [(λj + κj)(1− αi,j) + αj(λj + κj)(
λj

λj + κj

+
1

Li

)],

where pi,j is the probability that type-j job has length Li. Addend (λj +
κj)(1−αi,j) corresponds to the weight of good and malicious jobs that will not

be scanned (so it contributes to Xj). Addend αj(λj + κj) ·
λj

λj+κj
corresponds

to the weight of good jobs that will be scanned but without scanning taken into
account yet (so it contributes to Yj). Addend αj(λj + κj) · 1/Li corresponds to
the weight of scanning good and malicious jobs (so it also contributes to Yj).
Let a = (a1, . . . , aJ).
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Theorem 3. If arrivals λ and κ are such that for all vectors α arrivals a /∈ co(S)
then no algorithm is stable.

Proof. Consider arrival rates λ, κ and scanning probabilities α such that a /∈
co(S).

We will show that for every algorithm there exists j such that E[Zj(Q(t))]
is unbounded.

In every time slot t the weight of queues Z(Q(t)) is changing on average by
E[Z(Q(t + 1)) − Z(Q(t))] = E[Z(Q(t) + A(t + 1) − Alg(t + 1)) − Z(Q(t))] =
E[Z(A(t+ 1))− Z(Alg(t+ 1))] = a− E[Z(Alg(t+ 1))].

Note that a /∈ co(S), while E[Z(Alg(t+1)] = N(t+1) ∈ co(S) (according to
Lemma 3). If we consider multiple time slots and any combination of algorithm
decisions N(t) then the vector of weights of queues Z(Q(t)) is growing in the
direction of vector a. Therefore there exists j such that Zj(Q(t)) is unbounded
with regard to t. Therefore Qj(t) is unbounded with regard to t, which is
contradictory with our definition of stability.

5.2 Optimal scanning frequencies

Theorem 4. If there exists a vector of scanning frequencies α(0) such that given
job arrival rates λ and κ are inside the capacity region (i.e., (1+ǫ)a(α(0), λ, κ) ∈
co(S) as defined in section 5), then there exists a vector of scanning frequencies
α(1) ∈ {0, 1}I×J such that these job arrivals are inside the capacity region ((1+
ǫ)a(α(1), λ, κ) ∈ co(S)).

Proof. Recall the following properties that we will be using in the proof. First,
scanning uses same resources as the scanned job. Second, if vector N ∈ S, then
also N ′ ∈ S for all 0 ≤ N ′ ≤ N . Therefore, if a ∈ co(S) then a′ ∈ co(S) for all
0 ≤ a′ ≤ a. (Inequalities between vectors a ≤ b mean that for all i, ai ≤ bi.)

Assume vector a(α(0), λ, κ) ∈ co(S), where aj(α, λ, κ) =
∑

i pi[(λj + κj)(1−

αi,j) + αi,j(λj + κj)(
λj

λj + κj

+ 1/Li)))], as defined in section 5. Therefore,

function aj(α, λ, κ) is independent of λk, κk, αi,k for k 6= j and for all i. Given
fixed λ and κ, aj(α, λ, κ) is a linear combination of scanning frequencies αi,j ∈
[0, 1], for all i.

Therefore the vector αj = (α1,j , α2,j , . . . , αI,j) that minimizes aj is one of

the extreme points of region [0, 1]I . Furthermore, we can easily compute α
(1)
i,j

for all i that minimize aj, since each summand pi[(λj +κj)(1−αi,j)+αi,j(λj +

κj)(
λj

λj + κj

+ 1/Li)))] is independent of all other summands. Value α
(1)
i,j that

minimizes this summand is 0, if 1 ≤
λj

λj + κj

+1/Li, and 1 if 1 >
λj

λj + κj

+1/Li,

for each i, j, and can be computed using Algorithm 5.
This gives a(α(0), λ, κ) ≥ a(α(1), λ, κ)), which means that (1+ǫ)a(α(1), λ, κ)) ∈

co(S).
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Algorithm 5 Optimal scanning frequencies(λ, κ)

for all i, j do

if λi,j/(λi,j + κi,j) + 1/Li ≥ 1 then

αi,j ← 0
else

αi,j ← 1
end if

end for

6 Decentralization

Centralized scheduler uses the same queue for all type-j jobs that are waiting
in the system. In decentralized approach each server maintains its own queues
for jobs of type-j, therefore when a job arrives a decision has to be made as
to which server to route the job. In this section we specify and analyze six
different decentralized implementations of the main algorithm RobustMaxWork
from Section 3with different routing procedures.

Another distinct property of decentralized approach is using the main Ro-
bustMaxWork algorithm at each server to make scheduling decision.

In [10] the authors introduced the notion of refresh time. A time slot t is
a global refresh time if there is no job currently in queues in all the servers at
the beginning of t. Local refresh time occurs when there is no job currently
in service at the beginning of time slot t in a server v. Note that a global
refresh time happens when all servers have their local refresh times. In practice
global refresh times occurs rarely and intuitively it happens to be more rear as
the number of servers increase. Due to this phenomenon, all our decentralized
algorithms will rely only on the local refresh times at servers.

Decentralized RobustMaxWork for each server v. Upon local refresh time,
server v keeps idle until some of its queues are non-empty. Then it applies
RobustMaxWork with respect of its queues to find configuration N ′. Then it
keeps scheduling jobs according to this configuration every round until the next
local refresh time (i.e., there is no suitable job to apply configuration N ′. This
scheme is repeated.

Below we describe six specification of the decentralized RobustMaxWork
with different routing policies. Algorithm 1 and 3 were analysed in [10], 4 was
analysed in [11], and we designed 2, 5, and 6 in this work. We will discuss
the performance of the new algorithms and their comparisons with the existing
ones in the results section.

Algorithm 1: RobustMaxWork JSQ. Joint Shortest Queue (JSQ) paradigm
is used to route a newly arrived job, that is, it is sent to the server with the
queue with the smallest number of jobs of type-j, where j denotes the type of
the arrived job. This algorithm was analyzed in the context of cloud workload
in [10].

Algorithm 2: RobustMaxWork JSW. Joint Shortest Work (JSW) is used for
routing a newly arrived job; i.e., it is sent to the server with the minimum work
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load of type-j, where the work load is defined as a sum of lengths of jobs stored
in the local queue of type-j.

Algorithm 3: RobustMaxWork UR. Uniformly Random (UR) routing is used
for forwarding newly arrived job: each job that arrives into the system is routed
to one of the servers chosen uniformly at random. This algorithm was analyzed
in the context of cloud workload in [10]

Algorithm 4: RobustMaxWork RR. Round Robin (RR) routine is used for
allocating newly arrived jobs to the servers: for each type-j there is a pointer
going cyclically along the servers, showing which was the last server to which a
type-j job was allocated; when a new type-j job arrives it is sent to the next
server (modulo n) and the pointer is advanced to that server.

Algorithm 5: RobustMaxWork P2Q. Power of two Choices combined with
selection of the Shortest Queue (P2Q) is used for routing a newly arrived job of
a type-j: two servers are sampled uniformly at random, and the job is routed
to the server with the shorter type-j queue.

Algorithm 6: RobustMaxWork P2W. Power of two Choices combined with
selection of the Shortest Work load (P2W) is used for routing a newly arrived
job of a type-j: two servers are sampled uniformly at random, and the job is
routed to the server with the smaller workload of type-j(i.e., where the total
length of type-j jobs in the local queue is shorter).

7 Simulations

7.1 Experiment Setting

The setup for simulations, described in this section, is based on the one in
Maguluri et al. [11].

Servers and VMs We consider a server with 30 GB memory, 30 EC2 com-
puting units and 4000G storage space. There are 100 identical servers in the
cloud. Arriving jobs are served in the cloud based on three types of virtual ma-
chines described in Table 1. This gives three maximal configurations available
at each server: (2, 0, 0), (1, 0, 1) and (0, 1, 1).

Table 1: Representation of Instances in Amazon EC2
Instance type Memory (GB) vCPU Storage (GB)

Standard 15 8 1,690
High-Memory 17.1 6.5 420
High-CPU 7 20 1,690

Job arrivals We use the generic arrival vector λ∗ = 0.99 · (1, 1/3, 2/3) for the
genuine users’ workload, which is located at the border of the server capacity
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area (it is easy to observe that it is a normalized linear combination of the three
maximal configurations, additionally re-scaled by factor 0.99).

In each time step a job of type j = 1, 2, 3 is selected with probability
λ∗

j

130.5 ,
and its length is chosen according to the length distribution described below
with the mean length 130.5.

Similarly as above,
we define a malicious workload using a generic arrival vector κ∗ = (0.7, 0.01, 0.01),

and the procedure of generating a malicious traffic is analogous as above for gen-
erating the genuine users’ one.

Note that each of the arrival rates λ∗ and κ∗ is within the capacity range of
a server, whereas the combined workflow rate λ∗ + κ∗ is not.

Job size distribution When a new job is generated, with the probability
of 0.7 it is an integer that is uniformly distributed in the interval [1, 50], with
the probability of 0.15 it is an integer uniformly distributed in the interval
[251, 300], and with the probability of 0.15 it is an integer uniformly distributed
in the interval [451, 500].

Note that there are 150 possible job lengths, and the mean length is 130.5,
as assumed in the definition of arrival rates.

Set up of simulations. Since there are 100 homogenous servers, the over-
all arrival rates are: λ = 100 · λ∗ = (99, 33, 66) for genuine workload, and
κ = 100 · κ∗ = (70, 1, 1) for malicious workload. The job size distribution is
as specified above, same for each job type. We computed the following opti-
mal scanning vector α∗ for this setting, more precisely, the vector minimizing
expected arriving weight:

• α∗
i,1 = 0 for Li ≤ 2,

• α∗
i,2 = 0 for Li ≤ 34,

• α∗
i,3 = 0 for Li ≤ 50,

• α∗
i,j = 1 otherwise.

Each execution includes 4, 000, 000 time steps. We monitor the following
parameters every 200, 000 time steps:

• Average queue size by the recorded time step;

• Maximum queue size by the recorded time step;

• Average latency by the recorded time step;

• Maximum latency by the recorded time step.

In the first part, we output the results of the above measurements for centralized
protocols:
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LambdaFlow: RobustMaxWork applied for genuine flow only, (i.e., only
with genuine arrival rate λ), and no scanning is applied (i.e., ~α = 0);

ScanOPT: RobustMaxWork applied for simultaneous genuine and mali-
cious flows, with scanning defined by vector α∗;

ScanALL: RobustMaxWork applied for simultaneous genuine and ma-
licious flows, with scanning all jobs of size bigger than 1 (i.e., for every
j = 1, 2, 3, ~α1,j = 0 and ~αi,j = 1 for every i > 1);

ScanNONE: RobustMaxWork applied for simultaneous genuine and ma-
licious flows, with no scanning (i.e., ~α = 0).

As by theoretical part, it is expected that the first two executions should be
stable while the last one is not. We expect that the third execution is also not
stable, which would justify our research quest for searching of suitable scanning
vector. In order to visualize it, we also display differences and ratios between
the second and the third executions — the stable and the potentially unstable
one.

The second part of simulations is dedicated to decentralized algorithms. We
study how different routing protocols influence stability, when applied to the Ro-
bustMaxWork with the optimally selected scanning vector α∗. We compare the
six decentralized implementations with the centralized one, RobustMaxWork-
OPT. They are denoted by ScanOPT JSQ, ScanOPT JSW, ScanOPT UR, ScanOPT RR,
ScanOPT P2Q, ScanOPT P2W, and ScanOPT, respectively.

7.2 Results
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Figure 1: Comparison of average latency of LambdaFlow, ScanOPT, ScanALL
and ScanNONE strategies.

7.2.1 Centralized Approaches

In order to study throughput-optimality of the scanning strategies, we recorded
the latency over time for the different scanning strategies used, i.e., ScanALL,
ScanOPT and ScanNONE, comparing them with the execution LambdaFlow of
the genuine workload only. In Figure 1, the average latency of the ScanNONE
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Figure 2: Comparison of maximum latency of LambdaFlow, ScanOPT,
ScanALL and ScanNONE strategies.
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Figure 3: Ratio of ScanAll to ScanOpt latency and difference between ScanAll
and ScanOpt latency (indicating ScanALL becomes worse over time).

and ScanALL strategies grow rapidly, while it stabilizes for the ScanOPT strat-
egy. The right part of the Figure is the zoomed left part, in order to see clearly
the performance of ScanOPT versus ScanALL. The performance of ScanALL
strategy is even worse for maximum latency, where we observed that it increases
rapidly; this is shown in Figure 2. This indicates that some jobs will eventually
get stuck. In Figure 3 we analyzed the ratio and the difference between ScanALL
to ScanOPT latencies, and both are increasing. This indicates that ScanALL is
becoming worse over time, confirming the theory that ScanOPT stabilizes while
ScanALL does not (c.f., Theorem 1 and Theorem 3, respectively, applied to the
experiment setting of arrival rates λ, κ and scanning vectors α∗ and scan-all,
respectively).

The figures measuring queue sizes over time show that the trend is in fact
similar to the trend in latency with ScanALL performing considerably worse
than ScanOPT while ScanNone grow even more rapidly over time. Figure 4
shows the average while queue sizes while Figure 5 shows the maximum queue
sizes and Figure 6 shows the ratio and differences of ScanALL and ScanNONE
increasing overtime.
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Figure 4: Comparison of average queue sizes of LambdaFlow, ScanOPT,
ScanALL and ScanNONE strategies.
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Figure 5: Comparison of maximum queue sizes of LambdaFlow, ScanOPT,
ScanALL and ScanNONE strategies.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

1

1.5

2

2.5

Rounds

R
at

io
 o

f Q
ue

ue
 S

iz
es

 

 

Average
Maximum

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

500

1000

1500

2000

Rounds

D
iff

er
en

ce
 in

 Q
ue

ue
 S

iz
es

 

 

Average
Maximum

Figure 6: Ratio of ScanAll to ScanOpt Queue sizes and difference between
ScanAll and ScanOpt Queue Sizes.

7.2.2 Decentralized Approaches

In Figure 7, we compare the latency of the six decentralized algorithms us-
ing ScanOPT strategy, i.e., ScanOPT JSQ, ScanOPT JSW, ScanOPT P2Q,
ScanOPT P2W, ScanOPT UR and ScanOPT RR. The best performing algo-
rithm is the one based on JSW. This is followed by the two algorithms based
on power of choices, and then the one based on JSW. The worst performing
algorithms are the ones based on round robin and uniform random selection,
which grow rapidly.

Figure 8, shows the trend for maximum latency. Where as expected, the algo-
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Figure 7: Comparison of average latency using ScanOPT JSQ, ScanOPT JSW,
ScanOPT P2Q, ScanOPT P2W, ScanOPT UR and ScanOPT RR.
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Figure 8: Comparison of maximum latency using ScanOPT JSQ,
ScanOPT JSW, ScanOPT P2Q, ScanOPT P2W, ScanOPT UR and
ScanOPT RR.
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Figure 9: Decentralized Algorithms: Comparison of average queue
sizes using ScanOPT JSQ, ScanOPT JSW, ScanOPT P2Q, ScanOPT P2W,
ScanOPT UR and ScanOPT RR.

rithm based on JSW outperforms all the algorithms. A strange phenomenon we
noticed is that of JSQ. We do not have a clear explanation of this phenomenon,
although we suspect that this could be because choosing right configuration
based on workload, as is done by RobustMaxWork, causes long windows of time
without feeding the local queues using the shortest workload policy could make
these windows (and thus latencies) even longer than using the shortest work
paradigm.
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Figure 10: Decentralized Algorithms: Comparison of maximum queue
sizes using ScanOPT JSQ, ScanOPT JSW, ScanOPT P2Q, ScanOPT P2W,
ScanOPT UR and ScanOPT RR.

In Figure 9 we compared the average queue sizes of the 6 decentralized algo-
rithms using ScanOPT strategy i.e. ScanOPT JSQ, ScanOPT JSW, ScanOPT P2Q,
ScanOPT P2W, ScanOPT UR and ScanOPT RR. The best performing algo-
rithm is the one based on JSW it is not surprising because it considers the
exact amount of work left in all the servers to decide where to route new jobs.
This is followed by JSQ and then the two algorithms based on power of two
choices. The worst performing algorithms are the ones based on round robin
and uniform random selection which are not stabilizing. The performance is
very similar for maximum queue size comparison shown in Figure 10.

Therefore the general trend is that the algorithms based on checking all
the servers (JSQ and JSW) always outperform the ones based on power of
two choices (P2W and P2Q), this phenomenon is not surprising because the
algorithms based on all the servers consider the entire system state while the
ones based on power of two choices are random. It should be note that the
algorithms based on power of two choices are faster because decision can be
made in constant time (which server to send an arriving job) while the ones
based on all servers decision can only be made linear to the number of servers.

8 Conclusions, Extensions and Open Problems

8.1 Decentralized scheduling

We provided a rigorous mathematical analysis of a centralized scheduler Ro-
bustMaxWork with central queues, where jobs could be distributed to various
machines at any time after their arrival. Similar analysis applies to the decen-
tralized RobustMaxWork with Join-Shortest-Work (JSW) routing policy. Recall
that this policy, upon arrival of type-j job, sends it to machine that has min-

imum workload of type-j jobs, Z
(m)
j , which is defined as in section 2 but now

computed for each machine separately. Then each machine tries to maximize

work done, maxN∈S

∑J

j=0 Z
(m)
j (t)Nj . All the steps in the analysis of the main

algorithm RobustMaxWork apply in this setting, resulting in almost identical
analysis as in Section 4. An interesting open problem is to analyze mathe-
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matically the other five decentralized implementations of RobustMaxWork, and
perhaps other similar decentralized algorithms.

8.2 Non-preemptiveness

In the centralized RobustMaxWork we assumed that in regular time intervals
(at the beginning of each time step) all machines can be reconfigured — all jobs
could be rescheduled and redistributed among the machines, where they will be
further processed. In practice, interrupting execution of some jobs may be very
costly. One may consider a model, where a job, once started on a machine, can
not be paused or rescheduled for completion in a different time, nor processed
on a different machine. The main idea in adapting RobustMaxWork to this
model is to divide time into windows of length of T time slots. T should be
large enough so that any job could be started at the start of the time window
without breaking the above constraint. The algorithm will schedule jobs as
previously with an additional constraint that only jobs that can be finished
within a time window may be started. The stability analysis should remain
the same, except that the margin for unstable arrival rates should be made a
bit larger to accommodate potential losses of resources at the end of the time
window. Thus the higher T the better stability, though the latency may increase
- studying this trade-off is an interesting open problem.

8.3 Algorithms without knowledge of arrival rates

Finding the optimal scanning frequencies requires the knowledge of arrival rates
of jobs of each type, length and genuine/malicious status. In practice, however,
these values are not provided in advance. We can estimate them given a large
enough sample.

If arrival rates are not provided, we can start RobustMaxWork algorithm
using scan-all strategy for a fixed but sufficiently long amount of time. During
this time we learn the genuine/malicious status of jobs (due to the scan-all
strategy) and therefore we will be able to estimate user-generated and malicious
jobs arrival rates. We can then use scanning frequencies that are optimal for
the estimated arrival rates. Note that using a different scanning strategy at the
beginning for a fixed amount of time should not have impact on stability.

Furthermore, we can use scan-all strategy for a fixed amount of time repeat-
edly, with significantly longer pause after each time (during which we will be
using the scanning probabilities computed based on the estimates), in order to
enhance the quality of estimation of arrival rates, and thus using resources more
and more efficiently. If pauses get long enough, this strategy should give better
results than running scan-all strategy only once.

Another approach is to use scan-all strategy once and then run the algorithm
with optimal scanning frequencies for calculated estimations, but utilize infor-
mation given by scanning jobs according to optimal scanning frequencies. Since
job arrivals are i.i.d. among time slots, scanning x jobs randomly should give as
good estimations as scanning first x jobs. Therefore, even when using optimal
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scanning frequencies, we can improve our estimation of arrival rates each time
a job was scanned. Designing and analyzing a stable algorithm for more scarce
adversarial arrivals of malicious jobs is an interesting open problem.

8.4 Probability of successful scanning

We can also enhance the model by assuming that scanning can fail with some
probability p, i.e., a malicious job may be scanned but still not discovered as
a malicious one. In such model, if scanning failed on a malicious job, then
this job is indistinguishable from a genuine user-generated one. Therefore with
probability p scanned malicious jobs will have to be processed fully. We should
still be able to use RobustMaxWork algorithm, with a slight modification of the
formula for job weights Zj, which would have to include the failure probability
as additional factor in some components. As the result, the optimal scanning
frequencies may be slightly different but still in many cases better than scan-all
or scan-none.
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