
Abstract—We investigate efficient downlink precoding for all-
digital downlink mmWave massive MIMO, with the number
of users scaling with the number of antennas. The iterative
computations required for optimal linear precoding are a se-
vere bottleneck as the number of antennas increases, with the
computational complexity per iteration scaling cubically with the
number of antennas. In this paper, we propose a near-optimal
linear precoding algorithm that exploits the sparsity of mmWave
channels, employing a beamspace decomposition which limits the
spatial channel seen by each user to a small window which does
not scale with the number of antennas. This drastically reduces
the complexity of computing the precoder, with complexity per
iteration scaling linearly with the number of users, and makes
it feasible to scale the system up to hundreds of antennas as
considered in this paper.

Keywords—Low-complexity Precoding, Downlink Multiuser
MIMO, Downlink Interference Suppression.

I. INTRODUCTION

We investigate linear transmit precoding for all-digital mil-
limeter wave (mmWave) massive MIMO cellular downlink
with a large number N of base station antennas, and with
the number of simultaneously served users K scaling with N :
we set K = βN , where β is termed the load factor. This
complements our earlier work [1]–[3] in which we explore
the feasibility, efficacy, and challenges of the uplink in such
a system. Specifically, we had shown in [2] that the signal
processing for uplink receive beamforming could be vastly
simplified with beamspace techniques that exploit the sparsity
of the mmWave channel. In this paper, we demonstrate that
beamspace techniques may have an even greater impact in
terms of accomplishing downlink precoding with reasonable
complexity as K and N get large. The problem of linear
downlink precoding involves two tasks, power allocation sub-
ject to a total budget at the base station, and beamforming for
interference suppression across users. Such power allocation is
not possible on the uplink: a mobile might use power control
and not use the entirety of its power budget, but it cannot
transfer this power to another user. However, optimal linear
downlink precoding can be mapped [4], [5] to a virtual uplink
problem with analogous power control and beamforming steps.
Contribution: Optimal downlink precoding is typically ac-
complished by iterative optimization, with computational com-
plexity scaling as O(KN2), or O(N3) in the scaling regime
of interest. This is clearly infeasible for the regimes of interest

to us: at mmWave frequencies, hundreds of base station
antennas can be packed into compact form factors, which
opens up the capability to support a correspondingly large
number of simultaneous users in each base station sector using
spatial multiplexing. In this paper, we propose precoding in
beamspace, exploiting the sparsity of the spatial channel from
the base station to each mobile user. Under our model, the
channel vector for each user in beamspace spans a few spatial
frequency bins, and the optimal beamformer for a given user
is well approximated over a window in beamspace whose size
W does not scale with the number of base station antennas.
The computational complexity of the resulting algorithm is
O(KW 2), which is linear in the number of users/antennas,
and can therefore scale to the regimes of interest to us. Our
numerical results illustrate the drastic reduction in complexity,
and show that, for a computational budget which yields near-
optimal performance with the proposed scheme, the perfor-
mance of the standard approach to computing the precoder
exhibits significantly poorer performance (e.g., 6 dB worse
SINR) because of the small number of iterations that can be
run within that computational budget.
Related Work: The transmit precoding problem can be posed
as minimizing the total transmitted power at the base station,
subject to each user attaining a desired SINR. The duality
between this problem and that of receive beamforming problem
was pointed out in [4], [5], and used to provide an iterative
algorithm that converges to the optimal solution, assuming that
a feasible solution exists. Discussion of feasibility within this
duality framework was included in [6]

An alternative formulation of transmit precoding is to max-
imize the minimum SINR across users. In this form, the
problem is always feasible, and can be solved by considering
fixed point iterations for normalized transmit beamforming
vectors and power allocations [7]. This is the approach adopted
in this paper as we seek to exploit spatial channel sparsity in
beamspace.

It is worth noting that the connections between various
forms of the transmit precoding problem are discussed in [8],
where the authors also provide fast algorithms to approach
local optima which are globally optimum under sufficiently
weak interference.
Notation: We use lowercase bold letters for vectors, and
uppercase bold letters for matrices. The notation x = [xi]

I
i=0

represents column vector x of length I and its elements are
denoted by xi. For a matrix, we use X = [xi,j ]

I,J
i=0,j=0. If
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Figure 1: Downlink massive MIMO system model.

the size of the vector or the matrix can be inferred from the
context, we write X = [xi,j ]i,j for simplicity. {.}Kk=1 denotes
a list of K scalars, vectors or matrices.

II. THE DOWNLINK PRECODING PROBLEM

Consider the downlink system depicted in Fig. 1. The base
station employs a linear array with N elements to simulta-
neously serve K = βN mobile users. We assume that each
mobile can perform ideal receive beamforming towards the
base station, and include the gain due to such spatial matched
filtering into the spatial channel hk from the base station to
mobile k, k = 1, ...,K.
Linear Precoding: The linear precoder at the base station
allocates power pk to mobile k, and employs beamforming
direction {w̄k} (normalized to unit norm), so that the trans-
mitted signal is given by

y =

K∑
i=1

w̄i
√
pixi, (1)

where xk is the kth user symbol. Thence, the kth user’s
equipment receives

zk = hHk w̄k
√
pkxk +

K∑
i=1
i 6=k

hHk w̄i
√
pixi + nk, (2)

where nk is additive white Gaussian noise (AWGN) with
variance σ2

k.
In Fig. 1, the weights acquisition block computes the power

allocation and beamforming directions, given the mobile users’
channel vectors, {hk}, and receiver noise variances, {σ2

k},
along with the total power budget, Ptot. The beamformer block
performs the actual precoding (1) using the computed weights.
SINR: The signal-to-interference-plus-noise ratio (SINR) of
the kth user is given by

SINRk =
|hHk w̄k|2pk

σ2
k +

K∑
i=1
i6=k

|hHk w̄i|2pi
. (3)

The SINR is a widely used performance measure because,
under a Gaussian approximation for the interference-plus-
noise, it provides an excellent approximation for the bit error
rate (BER) (e.g., see [9] for the closely related problem of
uplink multiuser detection), as well as for the achievable data
rate.
Channel Model: We assume that the channel between the base
station and any mobile is dominated by a single path, so that,
for a linear array, the N × 1 spatial channel for the kth mobile
is given by

hk = Ak [1 ejΩk ej2Ωk . . . ej(N−1)Ωk ]ᵀ, (4)

where Ωk is the spatial frequency and |Ak| the channel
amplitude for the path.

Such a model is well suited for mmWave channels for
several reasons:
• Typical surfaces (e.g., roads, concrete walls) look

rougher at small carrier wavelengths. Hence a significant
portion of the energy from a reflection is scattered. Thus,
mmWave channels are typically comprised of a small
number of dominant paths.

• The relative delay between different paths is large (rel-
ative to the symbol interval) for the large signaling
bandwidths at mmWave bands. Gathering the energy
across a large number of symbols using an appropriately
designed space-time filter is computationally complex.
Hence a reasonable design is to focus spatial beams
along a single dominant path.

• For a large antenna array, beamforming along a given
path significantly attenuates other paths, so that they can
be safely neglected post-beamforming.

A. Problem Formulation
We consider here the max-min fair formulation of the

precoding optimization problem. Thus, precoding weights ac-
quisition block calculates the beamforming directions, {w̄k},
and the power allocation, {pk}, by solving the following
optimization problem:

γo = max
w̄k,pk∀k

min
k

SINRk (5a)

s.t.

K∑
i=1

pi ≤ Ptot, (5b)

‖w̄k‖2 = 1 ∀k, (5c)
pk ≥ 0 ∀k. (5d)

This problem can be cast as a generalized eigenvalue problem
and is always feasible [7].

After defining suitable Lagrange multipliers λk, the optimal-
ity conditions for problem (5) can be formulated as follows,

hHk

(
I +

K∑
i=1

λi
σ2
i

hih
H
i

)−1

hk
λk
σ2
k

=
γo

1 + γo
∀k, (6)

K∑
i=1

λi =Ptot, (7)

λk ≥0 ∀k. (8)



Algorithm 1 Fixed point iteration to find optimal λk [7]

Input: {hk}, {σ2
k}, and Ptot

Output: {λk}
1: initialize λk = Ptot/K
2: repeat
3: set B =

(
I +

∑
i hih

H
i λi/σ

2
i

)
(III)

4: set G = B−1 (IV)
5: set qk = hHk Ghkλk/σ

2
k (V)

6: set λ̄k = λk/qk
7: set λk = Ptotλ̄k/

∑
i λ̄i

8: until qk are all equal ∀k.

As a consequence, the beamforming directions can be written
as follows,

w̄k =

(
I +

∑K
i=1

λi

σ2
i
hih

H
i

)−1

hk∥∥∥∥(I +
∑K
i=1

λi

σ2
i
hihHi

)−1

hk

∥∥∥∥
2

, (9)

and the power vector, p = [p1, . . . , pK ]ᵀ, can be evaluated by
solving the following system of linear equations,(

1 + γo
γo

I−
[
|hHi w̄j |2

|hHi w̄i|2

]K,K
i=1,j=1

)
p =

[
σ2
i

|hHi w̄i|2

]K
i=1

. (10)

It is evident that the Lagrange multipliers, λk, play a critical
role in solving the optimization problem posed in (5). Hence,
all solution approaches revolve around finding optimal (or sub-
optimal) values of the Lagrange multipliers λk.

B. Fixed Point Iterations for Optimal Precoding
We review the method proposed in [7] for tackling the

optimization problem (5). This provides a benchmark for
optimal precoding for general channel models, as well as a
basis for our proposed beamspace approach tailored to sparse
channels. The optimality condition (6) can be rewritten as
follows:

λk =
γo

1 + γo

σ2
k

hHk

(
I +

∑K
i=1

λi

σ2
i
hihHi

)−1

hk

∀k, (11)

which motivates using a fixed-point iteration method to find
the optimal Lagrange multipliers, {λk}. The scaling of the
fixed point depends on γo, which is the max-min SINR solu-
tion to the optimization problem, and is therefore unknown.
Thus, fixed point iterations are interleaved with a scaling
step based on the total power constraint (7). The resulting
algorithm, whose convergence is proved in [7], is summarized
as Algorithm 1: one fixed point iteration (steps 5 and 6)
is followed by imposing the total power constraint (step 7),
repeated until convergence to within some tolerance of the
optimality condition (6).

Most prior evaluations of optimal precoding focus on a
relatively small number of antennas. As we increase the num-
ber of antennas, the computational complexity for attaining

convergence becomes excessive. In order to compare our low-
complexity beamspace technique with the state of the art,
we consider terminating Algorithm 1 after a fixed number
of iterations based on a computational budget. The resulting
Lagrange multipliers are suboptimal, and the optimality con-
dition (6) is not necessarily satisfied. We can still compute the
normalized beamforming directions (9) using these suboptimal
Lagrange multipliers, but the power allocation (10) cannot
be used, since we do not know γo. Instead, we fix the
suboptimal beamforming directions w̄k, and solve an optimal
power allocation problem as follows to obtain a benchmark
for comparison:

max
pk∀k

min
k

|hHk w̄k|2pk

σ2
k +

K∑
i=1
i 6=k

|hHk w̄i|2pi
(12a)

s.t.

K∑
i=1

pi ≤ Ptot, (12b)

pk ≥ 0 ∀k. (12c)

Once again, the optimization problem (12) is always feasible
and admits a fixed point solution that satisfies

p̃ =

([
|hHi w̄j |2

|hHi w̄i|2

]K,K
i=1,j=1

− I

)
p +

[
σ2
i

|hHi w̄i|2

]K
i=1

, (13)

pk =p̃k
Ptot∑
i p̃i

. (14)

Computational Complexity: The complexity of Algorithm
1 is dominated by the steps labeled (III), (IV), and (V).
The computational complexity per iteration for these steps is
calculated as follows.
• (III): The complexity of computing matrix B ∈ CN×N

is O(KN2).
• (IV): The matrix inversion can be carried out efficiently

using Cholesky decomposition [10], whose complexity
is O(N3).

• (V): The complexity of this step is O(KN2).

III. PROPOSED BEAMSPACE SOLUTION

We define the beamspace representation of the channel
matrix as H̄ = [DFT (h1), . . . ,DFT (hK)] where DFT (.)
is the discrete Fourier transform (DFT) operator. We plot the
magnitude of H̄ in Fig. 2, which makes evident the sparsity
of single-path channels in beamspace. As shown in our prior
work [2], for such channel models, operating in beamspace
can significantly reduce the complexity of uplink multiuser
detection. Given downlink-uplink duality and the iterative
nature of optimization for downlink precoding, we expect even
greater savings in complexity in our present setting.

We describe the proposed beamspace optimization
algorithm, depicted in Algorithm 2, as follows. We assume
here that we have access to estimates of the N × 1 channel
vectors, {hk}, and hence account for the complexity of taking



DFT to go to beamspace. This process could potentially be
avoided by use of channel estimation techniques that utilize
beamspace techniques up front (e.g., the use of reciprocity,
and uplink techniques such as those in [2]).

1) Computing the DFT of the channel vectors: The DFT
is used to transform each channel vector hk from the antenna
domain to the beam domain to get h̄k evaluated as follows,

h̄ki =

N∑
n=1

hkne
−j2π(n−1)(i−1)/N . (15)

Using the fast Fourier transform (FFT) algorithm [11], the
complexity of this step becomes O(KN log(N)).
2) Energy detection: The energy distribution of the chan-
nel vector in beamspace is concentrated around its spatial
frequency. Because we do not know the spatial frequency
beforehand, we search for a window of size W that contains
most of the channel energy. The use of a sliding window for
this purpose incurs O(N) complexity per user.

For a given user, after finding the window that holds
most of its channel energy, it is convenient to define two
“synthetic” channels in beamspace: a truncated W × 1
channel h̃k centered on the chosen window for user k, and an
approximated N × 1 channel ĥk obtained by filling in zeros
around the window.

3) Computing Lagrange multipliers: We use steps similar
to Algorithm 1 to calculate Lagrange multipliers, but with a
drastic reduction of complexity by using synthetic channels in
beamspace.
• We use the approximated channel vectors, each containing
only W nonzero elements, to compute the matrix B. As a con-
sequence, the complexity of this step decreases to O(KW 2)
instead of O(KN2) per iteration, where W � N .
• In step (V) of Algorithm 1, we replace the original channel
vector with the approximated ones. For each user, only the
inverse of a small W ×W block inside B, denoted by Gk,
needs to be computed in step (IV): compare step (IV) in
Algorithm 1, where we invert the entire matrix B, with that
in Algorithm 2, where we invert K blocks of size W ×W .
Thus, the complexity of step (IV) is reduced from O(N3) to
O(KW 3).
• Finally, the complexity of step (V) is automatically reduced
from O(KN2) to O(KW 2).

IV. RESULTS

We consider the system depicted in Fig. 1, with number of
antennas fixed at N = 256. The field of view for the sector
is restricted to −π/3 ≤ θ ≤ π/3. The users are uniformly
distributed inside a region bordered by a minimum and a
maximum distance away from the base station, Rmin = 5 m
and Rmax = 100 m, respectively. While the user terminals are
placed randomly in our simulations, we enforce a minimum
separation in spatial frequency between any two users in order
not to incur excessive interference, arbitrarily choosing it as
half the 3 dB beamwidth: ∆Ωmin = 2.783

N [12]. BW3dB in
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Figure 2: Sparsity of single-path channel in beamspace.

Algorithm 2 Proposed beamspace approach to find near-
optimal λk

Input: {hk}, {σ2
k}, W and Ptot

Output: {λk}
1: set h̄k = FFT (hk) (I)

2: set `k = arg max
`

`+W−1∑
i=`

|h̄ki|2 (II)

3: set h̃k = [h̄ki]
`k+W−1
i=`k

4: set ĥk =
[
01×(`k−1) h̃ᵀ

k 01×(N−`k−W+1)

]ᵀ
5: initialize λk = Ptot/K
6: repeat
7: set B = [bij ]i,j =

(
I +

∑
i ĥiĥ

H
i λi/σ

2
i

)
(III)

8: set Gk =
(

[bij ]
`k+W−1,`k+W−1
i=`k,j=`k

)−1

(IV)

9: set qk = h̃Hk Gkh̃kλk/σ
2
k (V)

10: set λ̄k = λk/qk
11: set λk = Ptotλ̄k/

∑
i λ̄i

12: until qk are all equal ∀k.

Fig. 1 stands for the 3 dB beamwidth. We assume that users
with similar spatial frequency can be served in different time
or frequency resource blocks.

We measure link quality by the outage probability at a target
uncoded BER of 10−3 for QPSK, which corresponds to a target
SINR of 9.8 dB for each downlink user.

We define the SNRedge as the SNR that would be attained
by a single user at the cell edge (100 m away from the base
station) if the entire power budget of the base station were
directed at that user. For free space propagation and ideal
beamforming at both ends, we have

SNRedge =
NMGtGr

L100mσ2
Ptot, (16)

where L100m is the free space path loss incurred at 100 m
away from the base station, M is the number of elements
in the mobile’s array, σ2 is the noise variance in the mobile
(which is identical in all mobiles), and Gt and Gr are the



transmit and receive element gain, respectively.

Precoding Efficiency: Fig. 3 (a) shows the 5th percentile of the
minimum SINR across different channel realization, namely
SINRmin, versus the power budget represented in SNRedge.
That is, SINRmin is defined such that P(min(SINR) ≤
SINRmin) = 5%.

Assuming no interference between the users, if the base
station power budget is allocated equally between K edge
users, then each user would attain an SINR of SNRedge/K.
Using this as the benchmark against which we compare
the minimum SINR attained by our precoding scheme, the
precoding efficiency η is defined as

η =
SINRmin

SNRedge/K
. (17)

As shown in Fig. 3 (b), the efficiency can exceed 100% at low
load factor β, since the base station can transfer power from
nearby users to edge users to enhance the minimum SINR,
and the noise enhancement due to interference suppression on
the virtual uplink is small. As the load factor increases, the
loss in SINR due to interference suppression becomes more
significant, and efficiency drops below 100%.

Feasibility of Target SINR: We evaluate this using the
same system settings as in our prior work on uplink design
[1]: M = 16, Gt = Gr = 3 dBi, L100m = 115 dB
and σ2 = −70 dBm. For a given SNRedge, the
resulting link budget requires a total transmitted power
of Ptot = SNRedge(dB) + 3 dBm. The required emitted
power for the power amplifier (PA) driving each antenna
is a factor of N smaller, or 24 dB smaller for N = 256,
and is therefore given by PPA = SNRedge(dB) − 21 dBm.
The required SNRedge corresponding to attaining the target
SINR of 9.8 dB with 5% outage is obtained by simulations
and shown in Fig. 3 (b). For β = 1/2, SNRedge = 37 dB,
corresponding to Ptot = 40 dBm and PPA = 16 dBm. Such
a PA specification is difficult to obtain with low-cost CMOS
technologies (CMOS PA designs of up to 11 dBm have been
reported in [13]), and may require more expensive alternatives
such as InP technology [14]. On the other hand, if we reduce
the load factor to β = 1/4, we obtain Ptot = 30 dBm and
PPA = 6 dBm, which can be comfortably attained in CMOS.

Complexity and Performance: Table I lists the computational
complexity, in terms of number of multiplication and addition
operations, of the computationally expensive steps, labeled by
Roman numerals, in algorithms 1 and 2. The table clearly
brings out the big savings in complexity due to the proposed
beamspace algorithm. Of course, the proposed algorithm incurs
the additional cost of going to beamspace (steps I and II).
However, these steps are required only once per channel
realization, whereas the other steps (III, IV, V) are invoked
on every iteration. Furthermore, as noted earlier, we may be
able to fold steps I and II into channel estimation algorithms
operating in beamspace.

Fig. 4 (a) depicts, for different load factors, the multipli-
cation operations count for both the conventional and the
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Figure 3: (a) The solution to the optimization problem (5) for
different power budgets and system load factors. (b) The power
budget required to achieve minimum SINR of ∼ 10 dB along
with the precoding efficiency at various system load factors.

Table I: The approximate number of multiplications and ad-
ditions in the conventional [7] and the proposed beamspace
algorithm to find nearly-optimal values of Lagrange multipliers
λk. W and J denote the window size and the number of
iterations.

Step # Multiplications # Additions
Conventional Beamspace Conventional Beamspace

I 0 KN
2 (log2(N)− 1) 0 KNlog2(N)

II 0 KN 0 2KN

III KN2J KW 2J KN2J KW 2J

IV N3

2 J KW3

2 J N3

2 J KW3

2 J

V KN2J KW 2J KN2J KW 2J

proposed algorithm to achieve the same performance versus the
number of elements in the base station array. It is evident that
the difference in complexity is at least one order of magnitude,
even for a relatively small N = 16.

Fig. 4 (b) illustrates the performance gap between the
conventional and the proposed algorithm if the computational
budget is limited to that of a single iteration of the conventional
algorithm. As shown, the beamspace algorithm achieves higher
SINR (by 6 dB) while using only one-fifth of hardware
resources.

V. CONCLUSION

We have demonstrated the drastic complexity reduction
in computing optimal downlink linear precoding weights via
beamspace techniques exploiting spatial channel sparsity. Con-
ventional iterative techniques, which are required for general
channel models, require a complexity per iteration which
is cubic in the number of antennas, while the proposed
beamspace algorithm requires linear complexity per iteration.
Coupled with our prior work [2] showing the efficacy of
beamspace techniques for uplink multiuser detection, it is clear
that beamspace techniques are a powerful tool for supporting
truly massive MIMO in the mmWave and THz bands, since
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Figure 4: (a) Comparison of the number of multiplication
operations in the conventional and the beamspace algorithm
as the number of elements in base station increases. (b) The
beamspace algorithm needs less than one-fourth of the budget
power to achieve the same minimum SINR.

they are naturally matched to the channel sparsity characteristic
of these bands. Another conclusion from this work and [2], as
well as from related work on hardware-constrained design [1],
[3], is that operating at lower load factors provides significant
advantages as we scale up the number of antennas. Ongoing
work focuses on developing a comprehensive system design
and signal processing framework around these concepts.
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