
ar
X

iv
:1

81
0.

11
72

5v
2 

 [
ee

ss
.S

P]
  2

8 
A

ug
 2

01
9

Total Power Minimization: Joint Antenna Selection

and Beamforming Design

Mostafa Medra∗ Andrew W. Eckford† Raviraj Adve∗

∗ Department of Electrical and Computer Engineering, University of Toronto, ON, Canada.
† Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada.

Abstract—In this paper, we consider the total power min-
imization problem when we have signal-to-interference-plus-
noise ratio (SINR) constraints. The consumed power in the
circuits depends on the number of active antennas, which can
be modeled using zero-norm. Due to the difficulty of dealing
with the non-convex zero-norm, we used the standard alternate
weighted one-norm approach. We addressed the total power
minimization for a narrowband system with and without per-
antenna power constraints (PAPCs). We derived iterative closed-
form expressions in both cases. Then we analysed the case when
we have multiple bands operating at the same time. Analogous
closed-form expressions are provided. Our simulation results
show that significant gains can be obtained in terms of the total
power required compared to standard methods that do not take
into account the circuit power.

I. INTRODUCTION

When several antennas are available at a base station

(BS), those antennas allow the BS to serve multiple users

simultaneously; e.g., [1]–[7]. The BS serves multiple users

through the use of beamforming techniques. Since the compu-

tational complexity is an important factor in design, typically

linear beamforming techniques are used. Among conventional

linear precoders are the maximum ratio transmission (MRT)

[8], zero-forcing (ZF) [9] and regularized ZF (RZF) [10].

Those beamformers are of low-computational complexity and

can be obtained in closed-form expressions. When the users

have single antenna each, the beamformers that minimize the

transmission power subject to certain signal-to-interference-

plus-noise ratio (SINR) constraints can be optimally found

[2], [7]. That problem can be formulated as a convex problem

that can be efficiently solved. The KKT conditions of which

also allow for an iterative closed-form expressions [7].

In practice, each antenna at the BS will be driven by its

own power amplifier, and, hence, constraints on the trans-

mitted power from each antenna should be included to the

beamforming design. When per-antenna power constraints

(PAPCs) are introduced to the power minimization problem

under SINR constraints, the problem remains convex since the

PAPCs are convex. Using the KKT conditions, iterative closed-

form solutions can be obtained [11], [12]. The PAPCs can

be directly applied when the system is a norrowband system.

Systems operating simultaneously on many bands; e.g., OFDM
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systems, would have an IFFT operation changing the power

distribution across the antennas.

The problem of power minimization under certain SINR

constraints is well-studied. However, most of the formulations

of this problem ignore the power consumed in the RF circuits,

and focus only on the transmitted power. Realistic power

consumption models that also take the hardware-consumed

power into account were studied; e.g., [13], [14]. While the

transmit power required to meet fixed SINR constraints decays

in an inverse fashion to the number of BS antennas [15],

[16], the RF circuit power is linear in this number. There is,

therefore, an optimal number of antennas that requires the least

possible total power [13], [14]. In [17], the authors showed

that the energy efficiency is is a quasi-concave function of

the number of BS antennas in the case of massive MIMO

downlink system.

Introducing circuit power minimization into the power min-

imization problem is challenging because the consumed power

depends on the number of active antennas. While the sparsity

of a signal can be determined by using the zero-norm (ℓ0
norm) of the power on each antenna, such a norm is not

convex and the associated problems are NP hard; e.g., [18],

[19]. One possible approach is to replace the zero-norm with a

weighted one-norm. We will show that we can transform the

total power minimization problem using weighted one-norm

into a convex iterative problem that can be efficiently solved.

The problem can be viewed as jointly solving the antenna

selection (e.g., [20], [21]) and beamforming design, when the

objective is power minimization. This problem was solved for

fixed beamforming directions (ZF and MRT) when the number

of antennas is large [22]. The analysis therein is based on

asymptotic results and only provides the number of antennas,

whereas our work is applicable to any number of available

antennas and is capable of determining which antennas are

on. The ℓ0 norm was used for minimizing the number of

antennas for a given rate constraints in [23]. In [24], for a

given uplink sum rate, the authors investigated the optimal

numbers of BS antennas and users for a single-cell system.

The number of active antennas was also considered in a point-

to-point large-scale MIMO channel in [25]. The minimum BS

power consumption for a given sum rate in a large scale MIMO

system is addressed in [26].

In this paper, we will first review the quality-of-service

(QoS) problem for a given set of SINR targets and the closed-
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form expressions for that problem. We will also review the

required modifications for the PAPCs case. Then, we will

show how the circuit power minimization can be introduced

using the weighted one-norm approach. We will formulate

the problem as a convex problem, and we will show that by

analysing the KKT, we can obtain closed-form expressions for

the optimal beamformers. We will then introduce the PAPCs,

and show how to modify the closed-form expressions to ac-

commodate for the extra constraints. For the multi-band case,

we will show that convex formulations that allow for closed-

form expressions are still possible. In the simulation section,

we will show the trade-off between the number of antennas

and the total consumed power. We show that significant gains

can be obtains by turning many antennas off for the single

narrow band case even when PAPCs are on. We also show

that gains can be obtained even when many narrow bands are

on.

II. SYSTEM MODEL

We consider a multiple-input single-output (MISO) down-

link system where K users, each with a single antenna, are

served by a base station (BS) with Nt antennas. We assume

that the BS is provided with perfect channel state information

of the users. We let hk ∈ CNt denote the channel between the

BS and user k, and let sk denote the intended normalized data

symbol for that user. We design the precoding vector wk for

transmission from the BS to user k. When the BS transmits
∑K

k=1
wksk, we can write the received signal at user k as:

yk = hH
k wksk +

∑

i6=k h
H
k wisi + nk, (1)

in which nk is zero-mean circular Gaussian noise of variance

σ2
k. We will express each user’s QoS constraint by an SINR

constraint: SINRk ≥ γk. This SINR constraint can be written

as

SINRk =
hH
k wkw

H
k hk

hH
k (
∑

i6=k wiw
H
i )hk + σ2

k

≥ γk, (2)

or equivalently hH
k Qkhk − σ2

k ≥ 0, where

Qk = wkw
H
k /γk −

∑

i6=k

wiw
H
i . (3)

When we deal with many narrow bands, we will use the

superscript j to indicate the narrow band index, and Nb as the

number of narrow bands. For single bands systems, the index

j will be dropped to simplify the notations.

If we denote the signal transmitted from antenna i by xi,

then the average transmitted power from the BS can be written

as
∑Nt

i=1
E|xi|

2. In the case of zero-mean independent data

symbols of normalized power, this becomes
∑K

k=1
wH

k wk,

and the average transmitted power from the ith antenna is
[

∑K

k=1
wkw

H
k

]

i,i
. The BS has to minimize the consumed

power while satisfying the SINR constraints.

The conventional problem of minimizing the transmitted

beamforming power under SINR constraints can, therefore,

be written as

min
wk

∑

k

wH
k wk (4a)

s.t. hH
k Qkhk − σ2

k ≥ 0, ∀k. (4b)

This formulation is not convex. However, since the SINR

expression does not change with the phase of wk, we can

express the SINR constraint as

wH
k hk

√

1 + 1/γk ≥

√

∑

i

|wH
i hk|2 + σ2

k.

This equivalent formulation is a convex conic constraint that

can be efficiently solved; e.g., using CVX tool [27] accessible

from MATLAB. The KKT conditions of this problem allow

for closed-form expressions for the optimal beamformers as

well [2], [3].

When PAPCs are introduced, the power minimization prob-

lem can be written as

min
wk

∑

k

wH
k wk (5a)

s.t. hH
k Qkhk − σ2

k ≥ 0, ∀k. (5b)

pa ≥

[

∑

k

wkw
H
k

]

i,i

, ∀i, (5c)

where pa is the PAPC. Closed-form iterative solutions are

available as well [11], [12].

III. NARROWBAND TOTAL POWER MINIMIZATION

As we can see, the problem in (4) does not take into account

the power consumed in the circuits driving the antennas.

Such a number depends on how many antennas are active.

Accordingly, the number of active antennas is then
∑

i ‖Pi‖0,

where Pi is the power emitted from the ith antenna. If we

assume that the the power consumed per antenna is denoted

by c1 and c2 models the amplifier efficiency, then the more

general problem of minimizing the total consumed power

while satisfying the SINR constraints can be written as

min
wk,Pi

c1
∑

i

‖Pi‖0 + c2
∑

k

wH
k wk (6a)

s.t. hH
k Qkhk − σ2

k ≥ 0, ∀k. (6b)

Pi ≥

[

∑

k

wkw
H
k

]

i,i

, ∀i. (6c)

Since ℓ0 norm is not convex and hard to deal with, we will

use the standard weighted one-norm approach. Using that

approach, (6) can be written as

min
wk,Pi

c1
∑

i

siPi + c2
∑

k

wH
k wk (7a)

s.t. hH
k Qkhk − σ2

k ≥ 0, ∀k. (7b)

Pi ≥

[

∑

k

wkw
H
k

]

i,i

, ∀i. (7c)



The weighted one-norm updates the weights si iteratively as

si = 1/(Pi + δ), where δ is a regularization constant.

If we let νk and λi denote the dual variable of the kth

constraint in (7b), and the ith constraint in (7c), respectively,

then we can write the Lagrangian of (7) as

L(wk, Pi, νk, λi) = c1
∑

i

siPi + c2
∑

k

wH
k wk

−
∑

k

νk(h
H
k Qkhk −σ2

k)−
∑

i

λi

(

Pi−

[

∑

k

wkw
H
k

]

i,i

)

.

From the KKT conditions, we have that c1si = λi. If we let

Λ denote a diagonal matrix whose (i, i)th element is λi then

the beamforming vector should satisfy the KKT condition

c2wk =

(

νk
γk

hkh
H
k −

∑

j 6=k

νjhjh
H
j − Λ

)

wk, (8)

which can be rearranged, similar to [2], to show that the dual

variables {νk} should satisfy the fixed-point equations

ν−1

k = hH
k

(

c2I+
∑

j νjhjh
H
j + Λ

)−1

hk

(

1 + 1

γk

)

. (9)

Once we obtain νk, we can solve (8) as an eigen equation

to obtain the directions. The power loading; ‖wk‖, can be

obtained from solving the K SINR constraints satisfied by

equality at optimality. If this is not the case for constraint k,

then we can decrease wk, which will still satisfy all the con-

straints, and provide a lower objective, which contradicts the

presumed optimality. These steps are summarized in Alg. 1.

Detailed complexity analysis and implementation issues are

addressed for a similarly structured problem in [28].

Algorithm 1 Narrowband total power minimization

1: Initialize sk = 1 and obtain the corresponding Λ.

2: for A certain number of iterations do

3: Solve the fixed-point equations in (9) to obtain νk.

4: Solve the eigen equation in (8) to find the direction of

wk.

5: Solve the K linear equations arrising from (7b) hold-

ing with equality at optimality to obtain the power loading;

‖wk‖.

6: Update the weights si = 1/(Pi + δ) and Λ.

7: end for

IV. NARROWBAND TOTAL POWER MINIMIZATION UNDER

PER-ANTENNA POWER CONSTRAINTS

The previous section focused on the case of minimizing

the total power with no individual antenna power constraints.

However, in practice, each antenna is driven by its own power

amplifier, and the addition of PAPCs is inevitable. In this

section, we will show how the previous analysis and algorithm

can be tailored to address the PAPCs case as well.

The problem in (7) can be modified to include PAPCs as

follows

min
wk,Pi

c1
∑

i

siPi + c2
∑

k

wH
k wk (10a)

s.t. hH
k Qkhk − σ2

k ≥ 0, ∀k. (10b)

Pi ≥

[

∑

k

wkw
H
k

]

i,i

, ∀i. (10c)

pa ≥

[

∑

k

wkw
H
k

]

i,i

, ∀i. (10d)

Following a similar KKT analysis, if we let qi denote the dual

variable for the PAPC, Q̂ denote a diagonal matrix whose

(i, i)th element is qi, then the Lagrangian of the problem in

(10) can be written as

L(wk, Pi, νk, λi, qi) = c1
∑

i

siPi + c2
∑

k

wH
k wk

−
∑

k

νk(h
H
k Qkhk − σ2

k)−
∑

i

λi

(

Pi −

[

∑

k

wkw
H
k

]

i,i

)

−
∑

i

qi

(

pa −

[

∑

k

wkw
H
k

]

i,i

)

. (11)

Similar to the previous case, we can observe from the KKT

conditions that c1si = λi. Also the beamforming vector should

satisfy the KKT condition

c2wk =

(

νk
γk

hkh
H
k −

∑

j 6=k

νjhjh
H
j − Λ− Q̂

)

wk, (12)

which can be similarly rearranged to show that the dual

variables {νk}, in the PAPC case, should satisfy the fixed-

point equations

ν−1

k = hH
k

(

c2I+
∑

j νjhjh
H
j +Λ+Q̂

)−1

hk

(

1+ 1

γk

)

. (13)

And once the beamforming directions are obtained, the power

loading can be calculated assuming that the SINR constraints

hold with equality at optimality.

The above derivations are based on the values of the dual

variable qi, which are not known in advance. However, we can

use efficient subgradient algorithms to obtain these values in

an iterative way. Subgradient algorithms and their convergence

analysis were proposed in [11], and parameter selection and

convergence speed were enhanced in [12]. The basic idea

of such algorithm is to solve the KKT conditions for an

initial value of qi, then check the PAPCs. If they are met, the

algorithm terminates, other wise, the values of qi are updated.

We update qi (or Q̂) such that [12]

qn+1

i = max
(

qni + tn

(

[

∑

k

wkw
H
k

]

i,i

− pa

)

, 0
)

, (14)

where tn is the step size, and n is the iteration index. The

maximum operator guarantees that when the PAPC is not



active, then the corresponding qi is zero. We can summarize

the proposed algorithm as shown in Alg. 2. The complexity

analysis in each iteration is the same as that of Alg. 1.

Algorithm 2 Power minimization under PAPCs

1: Initialize qi = 0, sk = 1 and obtain the corresponding Λ.

2: for A certain number of iterations do

3: while pa <
[
∑

k wkw
H
k

]

i,i
for any i do

4: Solve (13) to obtain νk.

5: Solve (12) to find the direction of wk.

6: Solve the K linear equations arrising from (10b)

holding with equality at optimality to obtain the power

loading; ‖wk‖.

7: Update Q̂n+1 using (14).

8: end while

9: Update the weights si = 1/(Pi + δ) and Λ.

10: end for

V. MULTI-BAND CASE

The previous sections dealt with the single-band case.

However, to turn an antenna off in the multi-band case, that

antenna should have no power over all the beamformers of the

different bands. Accordingly, if we let Pi denote the power

over all the Nb narrow bands, instead of only one band, then

we can use the weighted one-norm approach to solving (6) as

follows

min
w

j

k
,Pi

c1
∑

i

siPi + c2
∑

k,j

(wj
k)

Hw
j
k (15a)

s.t. (hj
k)

HQ
j
kh

j
k − (σj

k)
2 ≥ 0, ∀k, j. (15b)

Pi ≥





∑

k,j

w
j
k(w

j
k)

H





i,i

, ∀i. (15c)

Similar to the narrowband case, from the KKT conditions,

we have that c1si = λi and the beamforming vector satisfies

c2w
j
k =

(

νjk
γj
k

h
j
k(h

j
k)

H −
∑

i6=k

νji h
j
i (h

j
i )

H − Λ

)

w
j
k, (16)

where the dual variables {νjk} satisfy

(νjk)
−1 = (hj

k)
H
(

c2I+
∑

i ν
j
i h

j
i (h

j
i )

H + Λ
)−1

h
j
k

(

1 + 1

γ
j

k

)

.

The power loading for the beamformers of the jth narrowband

is then obtained from solving the K SINR constraints of that

band satisfied by equality at optimality.

VI. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed

approaches in solving the total power minimization problem.

We consider a system consisting of a BS with Nt antennas,

serving K = 4 users per band. Fading is modelled using the

standard Rayleigh model. We assume an SINR target of γ =
3dB for all users and that each user has normalized noise

power; σ2
k = 1. We set c1 = 0.3 W/antenna and the amplifier
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Fig. 1. The average total power versus the number of BS antennas for K = 4

users, γ=3dB, and σ2=1.
TABLE 1

AVERAGE NUMBER OF ACTIVE ANTENNAS

Nt 8 12 16 20 24 28 32

Alg. 1 7.41 8.82 9.22 9.32 9.33 9.27 9.30

Alg. 2 7.47 8.83 9.22 9.32 9.33 9.27 9.30

[29] 7.80 9.91 9.87 9.71 9.36 9.12 9.01

efficiency to 30%; i.e., c2 = 1/0.3. For the PAPCs, Pa = 0.4.

For the weighted one-norm, we used a regularization factor of

δ = 10−4, and 6 iterations.

In Fig. 1, we plot the total power versus the number of

BS antennas. As we can see for (4), the reduction in the

transmitted power is significant when the number of antennas

is low, then the circuit power dominates which causes the

total power to grow almost linearly. We observe that Alg. 1

and Alg. 2 are not able to reduce the power by turning off

antennas when the number of antennas is low, however, as the

number of antennas increases, they provide significant gains

compared to the naive approach in (4). As a benchmark, we

also compare with the algorithm that uses antenna selection as

descriped in [29], then solves the beamforming problem using

(4). The antenna selection in [29] is based on finding the most

correlated rows of the channel matrix then deleting the row of

lower power. We keep deleting rows and calculating the power

required using (4) till the minimum power is obtained. Since

this method deletes one row at a time, it takes more iterations

than our proposed methods that work with a fixed number

of iterations. In addition, our methods provide lower average

power and is easily extendable to the case of PAPCs or multi-

band. In table 1, we list the average number of active antennas

versus the total number of antennas. Note that our closed-form

expressions provide the same results obtained by solving (7)

or (10) using CVX tool [27]. We note that the problem with

PAPCs can be infeasible. Using higher number of antennas

can lower the transmitted power to avoid infeasibility.

In Fig. 2, we plot the total power versus the number of

operating bands for K = 4 users per band, and an Nt = 32
antennas. We can see that up to a few bands, the algorithm is

still able to obtain gains by turning antennas off. In table 2,

we list the average number of active antennas versus the total

number of active bands. While the power gains are smaller for



1 2 3 4 5 6 7 8 9 10

Number of Active Bands

5

10

15

20

A
ve

ra
ge

 P
ow

er

(4)
(15)

Fig. 2. The average power versus the number of active bands for K = 4

users per band, and an Nt = 32 antennas BS.

TABLE 2
AVERAGE NUMBER OF ACTIVE ANTENNAS

Nb 1 2 3 4 5 6 7 8 9 10

(15) 11 17 21 25 27 29 30 31 31 32

higher number of active bands, the smaller number of active

antennas means that the computations would be easier and less

power consuming.

VII. CONCLUSION

In this paper, we formulated the power minimization SINR-

constrained problem such that it includes the power dissipated

in the RF circuits powering the antennas. The number of

active antennas can be modeled using the zero-norm of the

antenna’s power. We used the standard weighted one-norm

approach to replace the zero-norm. We provided iterative

closed-form expressions for our proposed algorithm. We then

extended the algorithm to the case where we have per-antenna

power constraints (PAPCs) and derived iterative closed-form

expressions as well. Then we examined the case where many

bands are on, and provided analogous closed-form expressions.

Our simulations show that we can obtain significant power

gains compared to the conventional naive approach that only

minimizes the transmit power.
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