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Abstract—This paper proposes a new linear precoding scheme
for downlink transmission in MIMOME channels, referred to as
secure regularized zero forcing. The scheme modifies regularized
zero forcing precoding, such that the beamformers further sup-
press the information leakage towards the eavesdroppers. The
proposed scheme is characterized in the large-system limit, and
a closed-form expression for the achievable ergodic secrecy rate
per user is derived. Numerical investigations demonstrate high
robustness against the quality of eavesdroppers’ channel.

Index Terms—MIMOME channels, linear precoding, physical
layer security, large-system analysis.

I. INTRODUCTION

Conventional precoding schemes in multiple-input multiple-

output multiple-eavesdropper (MIMOME) channels [1] are of-

ten linear and independent of eavesdroppers’ channel state in-

formation (CSI) [2]–[4]. The linearity constraint is mainly im-

posed for computational tractability. The independency from

eavesdroppers’ CSI further follows the fact that even simple

beamforming towards the legitimate receivers suppresses the

signal at the eavesdroppers effectively when the density of

these malicious terminals in the network is low. In the asymp-

totic regime, this latter behavior is referred to as secrecy-for-

free [5], [6] indicating that in massive multiple-input multiple-

output (MIMO) wiretap settings [7] with a fixed number of

eavesdroppers, the information leakage vanishes as the num-

ber of antennas grows large, by using simple linear precoders.

Despite the above justifications, taking eavesdroppers’ CSI

into account at the precoder can result in significant perfor-

mance enhancement, specially when 1) the density of mali-

cious and legitimate terminals in the network is moderate or

high, and 2) the quality of signals received by eavesdroppers

is comparable to that of legitimate users. Such scenarios are

likely to occur in current and next generations of mobile net-

works, due to the high number of mobile devices.

A. Contributions

In this paper, we propose a new linear precoding scheme for

downlink transmission in MIMOME channels. The precoder
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follows the least-squares based approach, developed in [8]–

[10], and extends the regularized zero forcing (RZF) precod-

ing scheme [11] to MIMO systems with multiple eavesdrop-

pers. To study the performance of the proposed scheme, we

derive a closed-form expression for the achievable secrecy rate

per user in the system when the number of transmit antennas,

legitimate receivers and eavesdroppers grow large with fixed

ratios. Our large-system analysis extends the earlier results in

[2], [12] to the larger scope, and depicts tight consistency with

simulations. Numerical investigations show that in contrast to

RZF precoding, the proposed scheme is more robust against

the quality of eavesdroppers’ channel and report a significant

performance gain when the quality of the channel to the eaves-

droppers is better that that of legitimate users.

B. Notations

Throughout the paper, scalars, vectors, and matrices are rep-

resented by non-bold, bold lower case, and bold upper case

letters, respectively. The real axis and complex plane are

shown by R and C, respectively. HH, H∗, and HT are the

conjugate transpose, conjugate, and transpose of H, respec-

tively. ‖H‖F further denotes the Frobenius norm of H. log (·)
is the binary logarithm, and [x]+ := max{0, x}. Expectation

is denoted by E {.}, and CN (η, σ2) represents the complex

Gaussian distribution with mean η and variance σ2. For

brevity, the set {1, . . . , N} is abbreviated by [N ].

II. PROBLEM FORMULATION

We consider a Gaussian multiuser MIMO wiretap channel

with a base station (BS), K legitimate receivers and J eaves-

droppers. The BS is equipped with a transmit array of size M ,

and the receiving terminals, i.e., the legitimate receivers and

the eavesdroppers, are single-antenna. The system is assumed

to perform in time-division duplexing (TDD) mode, and hence

the uplink and downlink channels are reciprocal. The CSI is

estimated in uplink training mode and is known at the BS, as

well as the receiving terminals.

A. System Model

The BS intends to transmit messages mk ∈
[

2NRk

]

, for k ∈
[K], confidentially to legitimate receivers k. To this end, mk

is first encoded into a codeword of length N , i.e. [sk (1) , . . . ,
sk (N)], and then transmitted within N transmission intervals
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over the channel as follows: At time instant n, the BS maps the

encoded vector s (n) = [s1 (n) , . . . , sK (n)]
T

to the transmit

vector x (n) ∈ C
M via the precoder Prc{·} : CK 7→ C

M , i.e.

x (n) = Prc{s (n)}, and transmits it via the antenna array.

We assume that the channel experiences quasi-static fading,

such that its coherence time interval is larger than N transmis-

sion intervals. Let hk ∈ CM contain coefficients of the uplink

channel between legitimate receiver k and the BS. Due to the

channel reciprocity, the receive signal in interval n reads

yk (n) = hT

kx (n) + wk (n) (1)

where wk (n) is complex white Gaussian noise with zero mean

and variance σ2
k , i.e., wk (n) ∼ CN

(

0, σ2
k

)

. After N intervals,

the receiver recovers m̂k = φk ({yk (n)}), where {yk (n)} =
{yk (1) , . . . , yk (N)} and φk (·) denotes the decoder.

For j ∈ [J ], the j-th eavesdropper observes

zj (n) = gT

j x (n) + vj (n) (2)

by overhearing the channel. Here, gj ∈ C
M denotes the chan-

nel from the j-th eavesdropper to the BS, and vj (n) is additive

white Gaussian noise which reads vj (n) ∼ CN
(

0, ρ2j
)

.

To guarantee secure transmission, we consider the worst-

case scenario in which the eavesdroppers are cooperating. In

this case, the secrecy rate tuple (R1, . . . , RK) is said to be

achievable, if there exist a sequence of encoders and decoders,

indexed by N , such that

lim
N↑∞

max
k∈[K]

{Pr [φk ({yk (n)}) 6= mk]} = 0 (3a)

lim
N↑∞

1

N
I (S (m1, . . . ,mK) ; {z1 (n) , . . . , zJ (n)})=0 (3b)

for all S (m1, . . . ,mK) ⊆ {m1, . . . ,mK}, where S (·) is a

subset of user messages. The constraint in (3a) guarantees the

reliability of transmissions towards the legitimate receivers.

Moreover, (3b) indicates that the signals received by the eaves-

droppers leak no information about any subset of the transmit

messages.

B. Achievable Secrecy Rate with Linear Precoding

For linear precoders, the transmit vector is written as

x (n) = Ws (n) (4)

for some precoding matrix W = [w1, . . . ,wK ] satisfying the

transmit power constraint E
{

tr
{

x
H
x

}}

/M ≤ P . The vector

wk ∈ C
M , for k ∈ [K], is referred to as the precoding vector

of legitimate receiver k. Without loss of generality, we assume

that E
{

s (n) sH (n)
}

= I.

Following the discussions in [2], [13], the secrecy rates

Rk =

[

log

(

1 + SINRk

1 + ESNRk

)]+

(5)

are shown to be achievable for k ∈ [K], where

SINRk =
|hT

kwk|2

σ2
k +

K
∑

j=1,j 6=k

|hT

kwj |2
, (6a)

ESNRk = ‖KEveGwk‖
2 (6b)

G = [g1, . . . ,gJ ]
T

and KEve = diag {1/ρ1, . . . , 1/ρJ}. In

the sequel, we consider the achievable rates in (5) as the metric

to quantify the secrecy performance of the system.

The main goal of this study is to design an effective lin-

ear precoding scheme which takes into account the secrecy

restrictions imposed by eavesdroppers. We address this ob-

jective by modifying RZF precoding [11], such that the infor-

mation leakage to the eavesdroppers is efficiently suppressed

at the precoding stage. For sake of brevity, we drop the time

index, i.e. n, throughout the derivations in the remaining parts

of this paper.

III. SECURE RZF PRECODING

In RZF precoding, the precoding matrix reads

Wrzf (ζ) =

√

P

βrzf (ζ)
A (ζ) (7)

for the shaping matrix

A (ζ) = HH
(

HHH + ζ IK
)−1

(8)

tuned by the regularizer ζ and the scaling factor

βrzf (ζ) =
1

M
tr
{

A (ζ)AH (ζ)
}

(9)

which guarantees the satisfaction of the transmit power con-

straint. Here, H=[h1, . . . ,hK ]
T

denotes the vector downlink

channel. The shaping matrix in (8) performs regularized chan-

nel inversion. At ζ = 0, RZF precoding reduces to the zero-

forcing scheme. In general, ζ is tuned such that a given per-

formance metric, e.g. ergodic sum rate, is optimized.

A. Alternative Formulation of RZF Precoding

RZF precoding is alternatively observed as the regularized

least-squares (RLS) solution to the following linear regression

problem: Find matrix W, such that the linear expansion Hx

with x = Ws approximates an scaled version of s, i.e. ψs for

some ψ, with minimum least squared error (LSE), subject to

E

{

‖x‖2
}

≤ P . Following the method of RLS, the solution

to this problem is given by minimizing

RSS (W) := Es

{

‖HWs− ψs‖2
}

, (10)

known as the residual sum of squares (RSS), penalized by the

power constraint. In other words, W is found by

W = argmin
X∈CM×K

RSS (X) + ζ Es

{

‖Xs‖2
}

(11a)

= argmin
X∈CM×K

tr
{

XH
(

HHH+ ζIM
)

X− 2ψℜ{HX}
}

= ψ A (ζ) (11b)

where ζ is a Lagrange multiplier. By considering the transmit

power constraint, (11b) reduces to (7). Extension of this RLS

based approach to other constraints leads to generalized least

squared error (GLSE) precoding which has been proposed and

studied in [8]–[10].



B. RLS-Based Precoding with Security Constraints

Following the RLS interpretation of RZF precoding, the se-

crecy constraint can be further imposed at the transmit side

by penalizing the RSS term. To illustrate this point, let

fEve (W) : CM×K 7→ R
+
0 (12)

quantify the information leakage when the linear precoder W

is employed. Let fEve (·) be proportional to the information

leakage meaning that fEve (W1) ≤ fEve (W2) indicates that

s is estimated from the overheard signals in z1 = GW1s+v

with higher error probability compared to z2 = GW2s+ v.

Given fEve (·), a secrecy constraint can be imposed on the

system by restricting the precoding matrix W to satisfy

fEve (W) ≤ L (13)

for some information leakage L. The RLS formulation in this

case can be modified by penalizing the RSS term with both the

power and secrecy constraints. That means W is set to

W= argmin
X∈CM×K

RSS (X) + λ Es

{

‖Xs‖2
}

+ θfEve (X) (14)

for some tunable factors λ and θ. The optimization in (14) si-

multaneously reduces the LSE at the legitimate terminals and

the leakage towards the eavesdroppers.

Deriving a function which analytically characterizes the in-

formation leakage is not a tractable task. Nevertheless, one

can consider an alternative metric which is proportional to the

capability of the eavesdroppers in decoding the information.

To find such a metric, we note that in the ideal case with sig-

nificantly narrow beamforming, we desire to have

|gT

j wk| = 0, (15)

for j ∈ [J ] and k ∈ [K]. This indicates that a natural choice

for fEve (·) is

fEve (W) =

J
∑

j=1

K
∑

k=1

|gT

j wk|
2 (16a)

= ‖GW‖2F = tr
{

WHGHGW
}

(16b)

By substituting (16b), (14) reduces to a convex optimization

problem whose solution is W = ψA (λ, θ) where

A (λ, θ) =
(

HHH+ θ GHG+ λ IM
)−1

HH. (17)

By restricting the transmit power to P , the secure RZF (SRZF)

precoder is concluded as

Wsrzf (λ, θ) =

√

P

βsrzf (λ, θ)
A (λ, θ) (18)

with

βsrzf (λ, θ) =
1

M
tr
{

A (λ, θ)AH (λ, θ)
}

. (19)

Note that Wsrzf (ζ, 0) = Wrzf (ζ). In fact, the SRZF scheme

utilizes the CSI of the malicious terminals and modifies RZF

beamformers, such that leakage to the eavesdroppers is further

suppressed. In general, θ and λ are tuned such that a given

performance metric, e.g. ergodic sum rate, is optimized.

IV. LARGE-SYSTEM ANALYSIS

In this section, the large-system performance of the pro-

posed precoding scheme is characterized. To this end, we con-

sider a scenario in which the number of transmit antennas M ,

number of legitimate receivers K and number of eavesdrop-

pers J are significantly large; however, the ratios

αl =
K

M
(20a)

αo =
J

M
(20b)

are constant. We refer to αl as the legitimate channel load, and

to αo as the overhearing channel load. For sake of brevity,

we further assume that

• For k ∈ [K] and j ∈ [J ], hk and gj are are independent

and identically distributed (i.i.d.) Gaussian vectors with

zero mean and variance 1/M .

• ρ2j = ρ2 for j ∈ [J ], and σ2
k = σ2 for k ∈ [K].

To start the derivations, let us define

Q = HHH+ θ GHG+ λ IM . (21)

Hence, the k-th beamformer of the SRZF precoder reads

wk =

√

P

βsrzf (λ, θ)
Q−1h∗

k . (22)

As a result, the signal to interference plus noise ratio (SINR)

at legitimate receiver k reads

SINRk =
µlUk

βsrzf (λ, θ) + µlIk
. (23)

where µl := P/σ2 is the receive signal to noise ratio (SNR)

at the legitimate terminals, and

Uk = |hT

kQ
−1h∗

k|
2, (24)

Ik =

K
∑

j=1,j 6=k

|hT

kQ
−1h∗

j |
2. (25)

Using the Sherman-Morrison lemma, it is shown that

Uk =

(

hT

kQ
−1
k h∗

k

1 + hT

kQ
−1
k h∗

k

)2

(26a)

Ik =

K
∑

j=1,j 6=k

|hT

kQ
−1
k,jh

∗
j |

2

(

1 + hT

kQ
−1
k h∗

k

)2
(

1 + hT
j Q

−1
k,jh

∗
j

)2 (26b)

where Qk := Q−h∗
kh

T

k and Qk,j := Q−h∗
kh

T

k −h∗
jh

T

j . For

scaling factor βsrzf (λ, θ), we further can write

βsrzf (λ, θ) =
1

M
tr
{

A (λ, θ)AH (λ, θ)
}

(27a)

=
1

M
tr
{

HQ−2HH
}

(27b)

=
1

M

K
∑

k=1

hT

kQ
−2h∗

k (27c)

⋆
=

1

M

K
∑

k=1

hT

kQ
−2
k h∗

k
(

1 + hT

kQ
−1
k h∗

k

)2 (27d)



where ⋆ follows from the Sherman-Morrison lemma.

For ESNRk, we can similarly write

ESNRk =
1

ρ2
‖Gwk‖

2 =
µoLk

βsrzf (λ, θ)
(28)

where µo := P/ρ2 is the receive SNR at the eavesdroppers,

and

Lk = hT

kQ
−1GHGQ−1h∗

k (29a)

=
hT

kQ
−1
k GHGQ−1

k h∗
k

(

1 + hT

kQ
−1
k h∗

k

)2 (29b)

=
1

(

1 + hT

kQ
−1
k h∗

k

)2 tr
{

GQ−1
k h∗

kh
T

kQ
−1
k GH

}

(29c)

=
1

(

1 + hT

kQ
−1
k h∗

k

)2

J
∑

j=1

|gjQ
−1
k h∗

k|
2 (29d)

=
1

(

1 + hT

kQ
−1
k h∗

k

)2

J
∑

j=1

|gjΓ
−1
k,jh

∗
k|

2

(

1 + θ gjΓ
−1
k,jg

∗
j

)2 . (29e)

Here, we define Γk,j := Q− h∗
kh

T

k − θ g∗
jg

T

j .

A. Asymptotics via Free Probability

To determine the asymptotic limits, we note that

1) Any two independent Hermitian random matrices, which

are unitarily invariant, are asymptotically free [14]. This

result indicates that

• h∗
kh

T

k and Q−1
k are asymptotically free for k ∈ [K].

• h∗
kh

T

k and Q−1
k,j are asymptotically free for k, j ∈ [K].

• h∗
kh

T

k and Γ−1
k,j are asymptotically free for k ∈ [K].

• g∗
jg

T

j and Γ−1
k,j are asymptotically free for j ∈ [J ].

2) Qk, Qk,j , and Γk,j are single-rank perturbations of Q.

As a result, the asymptotic distribution of their eigenval-

ues is similar to that of Q.

3) Defining the matrix T := HHH+ θ GHG, we have

Q = T+ λ IM . (30)

Let us denote the asymptotic distribution of the eigenval-

ues of T with pT (t). The eigenvalues of Q are shifted

versions of the eigenvalues of T and are asymptotically

distributed by pT (t− λ).

Considering the above findings, we can write

lim
M↑∞

hT

kQ
−1
k h∗

k

M
= lim

M↑∞

tr
{

Q−1
k h∗

kh
T

k

}

M
(31a)

†
= lim

M↑∞

tr
{

Q−1
k

}

M
× lim

M↑∞

tr
{

h∗
kh

T

k

}

M
(31b)

where † follows the fact that h∗
kh

T

k and Q−1
k are asymptoti-

cally free. Noting that

lim
M↑∞

tr
{

h∗
kh

T

k

}

= lim
M↑∞

‖hk‖
2 = 1, (32)

we have

lim
M↑∞

hT

kQ
−1
k h∗

k = lim
M↑∞

1

M
tr
{

Q−1
k

}

(33a)

= ET

{

1

T + λ

}

= GT (−λ) (33b)

for some T ∼ pT with Stieltjes transform GT (·) defined as

GT (s) =

∫

pT (t) dt

t− s
. (34)

Clearly, the limit does not depend on k. As a result,

Uk =

(

GT (−λ)

1 +GT (−λ)

)2

(35)

for k ∈ [K]. By same lines of derivations, we have

Ik = αl

(

1 + ET

{

1

T + λ

})−4

ET

{

1

(T + λ)
2

}

(36a)

=
αlG

′
T
(−λ)

(1 +GT (−λ))4
, (36b)

and

βsrzf (λ, θ) =
αlG

′
T
(−λ)

(1 +GT (−λ))2
(37a)

Lk =
αoG

′
T
(−λ)

(1 +GT (−λ))2 (1 + θGT (−λ))2
. (37b)

Consequently, SINRk in the large-system limit converges to

SINRasy =
µlG

2
T
(−λ) (1 +GT (−λ))2

αlG
′
T
(−λ)

[

µl + (1 +GT (−λ))2
] (38)

and the asymptotic limit of ESNRk is

ESNRasy =
µoαo

αl (1 + θGT (−λ))2
. (39)

To determine this limit for particular scenarios, we further

need to determine the Stieltjes transform GT (·).

Remark 1: Note that throughout the derivations, we did not

utilize the Gaussianity of the channel matrices. In fact, the

results in (38) and (39) are valid for any unitarily invariant H

and G whose row vectors are jointly independent.

B. Stieltjes Transform of T

To find the Stieltjes Transform of T, we rewrite T as

T = H̃HDH̃ (40)

where H̃ is defined as

H̃ := [h1, . . . ,hK ,g1, . . . ,gJ ]
T, (41)

and D ∈ R(K+J)×(K+J) is a diagonal matrix whose first K
diagonal entries are one and the rest are θ. Noting that H̃

fulfills the conditions for the deformed quarter circle law, one

can invoke the Silverstein-Bai result [15], [16] and write

GT (s) =
1

−s+ (αl + αo)

∫

ypD (y) dy

1 + yGT (s)

(42)
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where pD (·) denotes the distributions of the diagonal entries

of D and reads

pD (y) =
αl

αl + αo
δ (y − 1) +

αo

αl + αo
δ (y − θ) . (43)

Substituting into (42), we finally conclude

1 + sGT (s) = αl
GT (s)

1 +GT (s)
+ αo

θGT (s)

1 + θGT (s)
(44)

By taking derivative from the both sides of this equation, we

further conclude

G′
T
(s) =

GT (s)

−s+
αl

(1 +GT (s))2
+

θαo

(1 + θGT (s))2

. (45)

As a result, GT (−λ) is found as the positive solution of

λ+
αl

1 + x
+

θαo

1 + θx
=

1

x
(46)

and G′
T
(−λ) is calculated by

G′
T
(−λ) =

x

λ+
αl

(1 + x)
2 +

θαo

(1 + θx)
2

. (47)

By standard lines of derivations, one can show that the results

recover the earlier derivations in [2], [12].

V. NUMERICAL INVESTIGATIONS

To investigate the performance of the proposed precoding

scheme and validate the analytic derivations, we study sample

scenarios via numerical simulations. As an overall measure of

performance, we define the average ergodic secrecy rate as

R̄ =
1

K

K
∑

k=1

E {Rk} . (48)
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Fig. 2: Optimized average ergodic secrecy rate vs. the overhearing
channel load. The simulations are given for M = 128. The results
are sketched for log µl = log µo = 0 dB and αl = 0.0625.

Following the asymptotic analysis, as M grows large, Rk →
E {Rk} and E {Rk} → R̄ for k ∈ [K]. Thus,

lim
M↑∞

R̄ =

[

log

(

1 + SINRasy

1 + ESNRasy

)]+

. (49)

To validate the large-system results, we sketch in Fig. 1 the

average ergodic secrecy rate against the overhearing channel

load αo for two scenarios; namely, a scenario with high user

density, i.e. αl = 0.5, and a scenario with low user density,

i.e. αl = 0.0625. In both scenarios, the SNR at all receive

terminals is set to one, i.e. logµl = logµo = 0 dB. For

sake of comparison, the results are given for both the SRZF

and RZF schemes, where in the SRZF precoder λ = θ = 1,

and in RZF ζ = 1. The entries of H and G are generated

i.i.d. with CN (0, 1/M). The figure shows the simulations for

M = 128 transmit antennas, as well as the results given via

asymptotic analyses. It is seen that the analytic derivations are

tightly consistent with the simulation results. From the figure,

it is further observed that for the given setting the proposed

scheme is constantly outperforming RZF. This observation

however needs further investigations, as in this setting the

tunable parameters, i.e. λ and θ, are kept fixed.

A. Optimal Tuning of SRZF Precoding

Following the tight consistency of analytical results, seen in

Fig. 1, we tune the SRZF precoder by optimizing the asymp-

totic limit of the average ergodic secrecy rate. In other words,

for a given setting, we find λ and θ such that the limiting value

of R̄, given in (49), is maximized. We denote this maximum

value with R̄Opt.

Fig. 2 shows R̄Opt versus the overhearing channel load for

the low user density scenario in Fig. 1. The optimal choice of

λ and θ, as well as the optimal RZF regularizer, is found at

each point by maximizing the asymptotic limit in (49). The
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Fig. 3: Optimized average ergodic secrecy rate vs. the receive SNR
at the eavesdroppers. The simulations are given for M = 128 and
log µl = 0 dB.

simulation points are then calculated by simulating the system

with optimally tuned parameters for M = 128.

Considering Fig. 2, two findings are demonstrated: 1) For

non-zero overhearing channel loads, the SRZF scheme con-

stantly outperforms RZF. This finding is intuitive, since for

αo 6= 0, the so-called secrecy-for-free property, reported in

[6], does not hold anymore, and hence, further suppression

of leakage by SRZF enhances the performance. 2) The gap

between the secrecy rates achieved by SRZF and RZF increase

as αo grows. This observation comes from the fact that as in

networks with high density of eavesdroppers, beamforming

based on the legitimate channel information results in high

information leakage, and hence modification of the beamform-

ers based on the eavesdropper channel improves the secrecy

performance considerably.

B. Robustness of SRZF Precoding

To study the further gains proposed by the SRZF scheme,

we plot the optimized average ergodic secrecy rate against

the receive SNR at the eavesdroppers, i.e. µo, for the two

scenarios, considered in Fig. 1, when αo = αl/2. In this

figure, logµl = 0 dB, and logµo is swept between −8 and 8
dB. The figure depicts that the average secrecy rate achieved

by the RZF scheme drops significantly, as the receive SNR

at the eavesdroppers increases. The SRZF scheme however is

very robust. This phenomena demonstrates the efficiency of

beamforming modification proposed by SRZF and indicates

its robustness against the quality of eavesdroppers’ channels.

VI. CONCLUSIONS

A novel linear precoding scheme has been proposed for

downlink transmission in MIMOME channels. A closed-form

expression for the asymptotic achievable secrecy rate per user

has been derived for this precoder. The large-system results

depict tight consistency with simulations, and hence can be

employed to tune the precoder. Numerical investigations have

demonstrated high performance enhancements achieved by the

proposed scheme. Specifically, the precoder has shown to be

highly robust against the change in the channel quality and

outperform significantly the well-known RZF scheme when

the eavesdroppers experience better channel quality compared

to the legitimate receivers.
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