

Delft University of Technology

Convolutional Graph Neural Networks

Gama, Fernando; Marques, Antonio G.; Leus, Geert; Ribeiro, Alejandro

DOI
10.1109/IEEECONF44664.2019.9048767
Publication date
2019
Document Version
Final published version
Published in
Conference Record - 53rd Asilomar Conference on Circuits, Systems and Computers, ACSSC 2019

Citation (APA)
Gama, F., Marques, A. G., Leus, G., & Ribeiro, A. (2019). Convolutional Graph Neural Networks. In M. B.
Matthews (Ed.), Conference Record - 53rd Asilomar Conference on Circuits, Systems and Computers,
ACSSC 2019 (pp. 452-456). Article 9048767 (Conference Record - Asilomar Conference on Signals,
Systems and Computers; Vol. 2019-November). IEEE.
https://doi.org/10.1109/IEEECONF44664.2019.9048767
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IEEECONF44664.2019.9048767
https://doi.org/10.1109/IEEECONF44664.2019.9048767

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Convolutional Graph Neural Networks
Fernando Gama

Dept. of Electrical and Systems Eng.
University of Pennsylvania

Philadelphia, USA
fgama@seas.upenn.edu

Antonio G. Marques
Dept. of Signal Theory and Comms.

King Juan Carlos Univ.
Madrid, Spain

antonio.garcia.marques@urjc.es

Geert Leus
Circuits and Systems Group

Delft Univ. of Technology
Delft, the Netherlands

g.j.t.leus@tudelft.nl

Alejandro Ribeiro
Dept. of Electrical and Systems Eng.

University of Pennsylvania
Philadelphia, USA

aribeiro@seas.upenn.edu

Abstract—Convolutional neural networks (CNNs) restrict the,
otherwise arbitrary, linear operation of neural networks to be
a convolution with a bank of learned filters. This makes them
suitable for learning tasks based on data that exhibit the regular
structure of time signals and images. The use of convolutions,
however, makes them unsuitable for processing data that do not
exhibit such a regular structure. Graph signal processing (GSP)
has emerged as a powerful alternative to process signals whose
irregular structure can be described by a graph. Central to GSP
is the notion of graph convolutional filters which can be used
to define convolutional graph neural networks (GNNs). In this
paper, we show that the graph convolution can be interpreted
as either a diffusion or aggregation operation. When combined
with nonlinear processing, these different interpretations lead to
different generalizations which we term selection and aggregation
GNNs. The selection GNN relies on linear combinations of signal
diffusions at different resolutions combined with node-wise non-
linearities. The aggregation GNN relies on linear combinations
of neighborhood averages of different depth. Instead of node-
wise nonlinearities, the nonlinearity in aggregation GNNs is
pointwise on the different aggregation levels. Both of these models
particularize to regular CNNs when applied to time signals
but are different when applied to arbitrary graphs. Numerical
evaluations show different levels of performance for selection and
aggregation GNNs.

Index Terms—graph neural networks, graph convolutions,
graph signal processing, network data

I. INTRODUCTION

Neural networks are information processing architectures
consisting of a cascade of operational layers, each one ap-
plying a linear projection followed by an activation function
(typically, a pointwise nonlinearity). Neural networks are used
as nonlinear parameterizations of mappings between the input
data and some desired target representation that is relevant
for the task at hand. The linear transforms are optimized to
fit some available training dataset. The chosen cost function
to minimize, not only has to be differentiable to allow for
gradient descent algorithms, but also has to yield a neural
network with good generalization properties. This means that
the output of the trained neural network on an unseen point
(not belonging to the training set), still leads to a good estimate
of the target representation (i.e. the neural network has learned
the appropriate mapping) [1, Chap. 5].

Neural networks, in this general form, exhibit inherent
scalability issues. More precisely, the fact that the number of
learnable parameters depends on the data dimension leads to
statistical, optimization and computational issues [2, Sec. 9.2].

Supported by NSF CCF 1717120, ARO W911NF1710438, ARL DCIST
CRA W911NF-17-2-0181, ISTC-WAS and Intel DevCloud; and Spain
MINECO grants No TEC2013-41604-R and TEC2016-75361-R.

Convolutional neural networks (CNNs) overcome these issues
by regularizing the linear transform to exploit the inherent data
structure. Specifically, CNNs replace the linear operation by a
convolution with a bank of small-support linear time-invariant
filters. Convolutions are operations defined on data presenting
a regular structure (such as time series or images) that can
be computed efficiently. Moreover, by forcing the learnable
convolutional filters to be small, the number of learnable
parameters becomes independent of the size of the data. This
allows CNNs to scale and show remarkable performance in
various classification and regression tasks involving images
and time series (regular data) [3].

Regularizing the linear operation in neural networks to
exploit the inherent structure of data was the fundamental
insight that led CNNs to become the information processing
tool of choice when dealing with images and time series [3].
Data stemming from network systems, however, rarely (if ever)
exhibit such a regular structure [4]. This implies that regular
convolutional operations no longer appropriately exploit the
structure of the data, and as such, cease to be useful in
processing network data. Several attempts have been made to
regularize neural networks to exploit the topology underlying
network data, giving rise to graph neural networks (GNNs).
First, the use of an operator in the graph spectrum was pro-
posed [5], and later an approximation in terms of Chebyshev
polynomials was introduced [6], [7]. Several other models for
regularizing the linear operation have also been proposed [8]–
[10]. Additionally, non-convolutional graph neural networks
have also emerged [11]–[13].

In this paper, we define graph convolutions (Sec. II) in anal-
ogy to time convolutions and give insight into how they exploit
the underlying graph topology of network data, allowing for
a decentralized computation. We then use graph convolutions
to regularize the linear transform of neural networks giving
rise to two different GNN architectures. Selection GNNs
(Sec. III) view convolution as a diffusion operator. They
offer a framework that encompasses other GNN architectures
[5]–[9] as particular cases. Aggregation GNNs (Sec. IV)
consider the weighted aggregation of neighboring values at
each node. Then, they exploit the regular structure to process
the aggregated sequence by means of a CNN. The movie
recommendation problem is briefly overviewed to illustrate
the effect of these two types of GNNs (Sec. V).

II. GRAPH CONVOLUTIONS

Consider a datum x ∈ X belonging to some field X , and a
target representation y ∈ Y , defined over some other field

452978-1-7281-4300-2/19/$31.00 ©2019 IEEE Asilomar 2019

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2022 at 14:51:56 UTC from IEEE Xplore. Restrictions apply.

Y . Neural networks are used to parameterize the mapping
between x and y, and consist of a cascade of L layers,
where each layer ` is a concatenation of a linear operation A`

followed by an activation function σ` (typically a pointwise
nonlinearity)

x` = σ`(A`x`−1) (1)

for ` = 1, . . . , L, with x0 = x. The output of the last layer
is typically used as an estimate of the target representation
ŷ(x) = xL. Given a training set T = {(x(m),y(m))}

|T |
m=1,

we determine the set of linear transforms {A`} that fit
the training set by minimizing some cost function over it∑
T J [y(m), ŷ(x(m))]. Successful learning occurs when the

trained model (1) outputs accurate representations ŷ(x) on
unseen data x /∈ T .

The linear transform A1, which contains the learnable
parameters of the first layer, depends on the size of the
data x. This implies that neural networks (1) do not scale
to large-dimensional data due to statistical, optimization and
computational costs, such as the curse of dimensionality or
the need for an extremely large dataset. Convolutional neural
networks (CNNs) address this issue by regularizing the linear
transform, forcing A` to be a convolution with a bank of small-
support filters. The learnable parameters are now the filter taps,
whose number can be set independently of the size of the data.

Equally important, the use of convolutions provides a linear
operation that exploits the (regular) structure of data since it
relates data elements that are spatially (images) or temporally
(time signals) nearby, irrespective of their absolute location.
For instance, let x = [x1, . . . , xN] ∈ RN be a discrete-time
signal and let h = [h0, . . . , hK−1] ∈ RK be a set of K filter
taps. Then, the output at time instant n of the convolution is

[x ∗ h]n =

K∑
k=0

hkxn−k (2)

which is a linear combination of K consecutive time instants.
The use of linear operations that exploit the underlying struc-
ture of the data to regularize neural networks is the key aspect
that contributed to the remarkable success of CNNs.

In this paper, we are interested in network data, and there-
fore we want to determine a linear operation that takes into
account the underlying network topology that describes this
type of data. Let G = (V, E ,W) be a graph with a set of
N nodes V = {1, . . . , N}, a set of edges E ⊆ V × V and
an edge weighing function W : E → R. Network data x is
described by associating a vector to each of the nodes of this
graph x : V → RF . We denote x = {xf}Nf=1 as a collection
of F graph signals xf ∈ RN , where each element [xf]i = xfi
represents the value of feature f at node i.

Graph G determines the pairwise relationship between data
elements imposed by the network. To make this dependence
more explicit, we associate a graph shift operator (GSO) S
to graph G. A GSO is a matrix S ∈ RN×N that respects
the sparsity of the graph, i.e., [S]ij = sij can be nonzero if
and only if (j, i) ∈ E or i = j. Examples of GSOs found
in the literature [4] include the adjacency matrix, the graph
Laplacian, and several normalized versions of these graph

operators [6], [7]. The GSO can then be used to define a
linear operation Sxf whose output, due to the sparsity of S,
is computed by means of local exchanges only,

[Sxf]i =
∑
j∈Ni

sijx
f
j (3)

where Ni is the set of neighboring nodes of node i. This
operation shifts the value of the signal around the graph to its
one-hop neighbors, that perform a weighted sum following
the weights in the GSO S. This operation can be applied
repeatedly Skx = S(Sk−1x) and implemented locally by k
repeated exchanges of information with the one-hop neighbors.
The output of Skx gathers, at each node, a summary of the
information located up to the k-hop neighborhood.

In analogy to time convolutions (2), we define a graph
convolution as a linear combination of shifted versions of the
signal

h ∗S xf =

K−1∑
k=0

hk Skxf (4)

where h = [h0, . . . , hK−1] ∈ RK is the set of K filter taps.
The graph convolution (4) thus computes a linear combination
of the values contained in consecutive neighborhoods up to
the K-hop one. We note that (4) boils down to (2) when S
represents the adjacency matrix of a directed-cycle (the support
of discrete-time signals).

Graph convolutions (4) can be analyzed in terms of the
spectrum of the GSO, also known as the graph frequency
domain [4]. Let the GSO admit an eigendecomposition in
terms of an orthonormal basis of eigenvectors S = VΛVH.
The graph Fourier transform (GFT) of a graph signal is then
defined as the projection of the signal onto the eigenvector
basis of the GSO, x̃f = VHxf . Noting that the output of the
graph convolution (4) is another graph signal yf = h ∗S xf

we can compute the GFT of the output as

ỹf = VHyf =

K−1∑
k=0

hkΛkx̃f = diag(h̃)x̃f = h̃ ◦ x̃f (5)

where ◦ denotes elementwise multiplication (Hadamard prod-
uct). We observe that graph convolutions (4) can be computed
as multiplications in the graph frequency domain (5), in
analogy to the convolution theorem. Note that the GFT of the
filter taps h̃ is computed by means of a polynomial function
of the eigenvalues [h̃]i =

∑K−1
k=0 hkλ

k
i , whereas the GFT of a

graph signal depends on the eigenvectors of the GSO.

III. SELECTION GNNS

Graph convolutions defined as in (4) are linear operations
that exploit the structure of data, so we use them to regularize
the linear transform in neural networks (1), to obtain a graph
neural network (GNN)

xf
` = σ`

F`−1∑
g=1

hfg
` ∗S xg

`−1

 = σ`

F`−1∑
g=1

K`−1∑
k=0

hfg`k Skxg
`−1

(6)

for ` = 1, . . . , L, with xf
0 = xf as input. For each

layer, there is a set of filter banks {hfg
` }, f = 1, . . . , F`,

453

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2022 at 14:51:56 UTC from IEEE Xplore. Restrictions apply.

S S S

+ + + +

xg
`−1 Sxg

`−1 S2xg
`−1 S3xg

`−1

hfg`0 hfg`1 hfg`2 hfg`3

+
hfg
` ∗S xg

`−1
σ`

F`−1∑
g=1

hfg` ∗ xg
`−1

xf
`

Figure 1: Selection GNNs (6). Every node takes its data value xg
`−1 and weighs it by hfg

`0 (first graph). Then, all the nodes exchange
information with their one-hop neighbors to build Sxg

`−1, and weigh the result by hfg
`1 (second graph). Next, they exchange their values

of Sxg
`−1 again to build S2xg

`−1 and weigh it by hfg
`2 (third graph). This procedure continues for K steps until all hfg

`kS
kxg

`−1 have been
computed for k = 0, . . . ,K − 1, and added up to obtain the output of the graph convolution operation (4), namely hfg

` ∗S xg
`−1. Then this

output is added up with the outputs of the other F`−1 filters in the bank (red sum; not shown to avoid cluttering) and the nonlinearity σ`

applied to compute xf
` . To avoid cluttering, this operation is illustrated on only 5 nodes. In each case, the corresponding neighbors accessed

by successive relays of information are indicated by the colored disks.

g = 1, . . . , F`−1 relating features at different layers, which
contain the K`F`F`−1 learnable parameters {hfg`k }, a number
independent of the size of the graph N . This straightforward
implementation of the graph convolution (4) to regularize
the linear transform in (1) is termed selection GNN, and is
depicted in Fig. 1.

Selection GNNs (6) can be implemented efficiently in a
decentralized fashion since the graph convolutions are local
and the nonlinearities are pointwise. The effect of implement-
ing the GNN as in (6) is to diffuse, or percolate, the signal
through the graph. The graph convolution then amounts to
rescaling each diffusion step (containing information from the
k-hop neighborhood) by a different weight. Every node needs
to collect the value of the diffusion at each step, weigh it by
the corresponding filter tap, and then add it up together. We
observe that, since the graph convolution (4) boils down to a
time convolution (2) on a directed cycle graph (the support of
discrete-time signals), then the selection GNN (6) boils down
to a traditional CNN on this support.

Architecture (6) serves as a general model for many of
the existing GNNs in the literature [5]–[9]. We note that [5]
uses the frequency representation (5) of graph convolutions to
design the linear operations (we note that any analytic function
h̃ of the eigenvalues on a finite graph can be written as a
polynomial with at most K = N coefficients, thus leading to
(6)). The model in [8] sets F1 = NF0 in (6) and uses filters
with a single coefficient [hfg

1]k, so that each filter in the bank
gathers information from exactly the k-hop neighborhood. In
[6], [7], GNNs (6) are considered only for specific choices
of normalized GSOs, and consist of Chebyshev polynomials
which are particular computational implementations of (4).
Finally, [9] considers GNN (6) that gathers information up to
the one-hop neighborhood K = 2 and also shares the weights
between the two coefficients [hfg

`]0 = [hfg
`]1. Other weight-

sharing schemes can be found in [13], [14]. The generalization

potential of graph convolutions as in (4) was noted in [10].

Remark 1 (Pooling). When operating on images, CNNs
usually add a pooling operation to keep the dimension of the
data at each layer under control. Pooling basically consists
in reducing the size of the image by computing summaries
(typically, max- or average-) of increasingly bigger regions
of the image. In this way, at each layer, the image to be
processed is smaller. Therefore, even though more features are
computed at each layer, the total number of data elements (the
product of the number of features and the size of the images) is
overall decreasing (trading off spatial information -image size-
for feature information). When dealing with network data,
pooling does not seem to be so crucial since the operations are
carried out independently at each node, naturally offloading
the computational cost (which is not the case for images,
where pixels represent units of information, but do not have
computational capabilities). Nonetheless, pooling operations
for GNNs have been developed, including graph coarsening
[6] and zero-padding [15].

IV. AGGREGATION GNNS

Graph convolution (4) also allows for a different interpreta-
tion. Instead of understanding it as a weighted diffusion of the
signal values through the graph (hkSk)xf , we can think of it
as a weighted aggregation of values at a given node hk(Skxf).
More specifically, consider some node i ∈ V , and build the
sequence of aggregated values at that node

zfi = zi(x
f) =

[
[xf]i, [Sxf]i, [S

2xf]i, . . . , [S
K−1xf]i

]
. (7)

Then, the output of the graph convolution (4) at that node,
can be computed as [h ∗S xf]i = hTzfi . Likewise, the
output of the GNN (6) at node i can be computed as
[xf

`]i = σ`(
∑G

g=1(h
fg
`)Tzi(x

g
`−1)). So, essentially, we have

just reformulated the graph convolution, focusing on the node

454

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2022 at 14:51:56 UTC from IEEE Xplore. Restrictions apply.

(a) xf
0 = xf (b) xf

1 = Sxf (c) xf
2 = Sxf

1 = S2xf (d) xf
3 = Sxf

2 = S3xf

CNN
zfi zi,L

(e) Processing at the i-th node

Figure 2: Aggregation GNN (9). For a graph with GSO S, perform successive local exchanges between nodes and their neighbors. For each
k-hop neighborhood, record local components of the signal xf

k = Skxf . This process builds a sequence of signals zfi that aggregate the
information of neighborhoods of subsequent depth, cf. (7). The signals accumulated at each node are such that they can be processed with
a local convolutional neural network (CNN) to produce output zi,L.

collecting all the relevant information from its neighbors, and
then linearly combining it.

The vector zfi (7) collected at each node, however, offers a
key insight into the structure of this sequence of aggregated
values: it has a regular time-like structure. Vector zfi exhibits
a regular structure in the sense that consecutive elements in
the vector represent values collected from immediate neighbor-
hoods. In this way, zi(x

f) has transformed the graph signal xf

into a regular-structure signal, while still taking into account
the underlying, irregular graph support. Now, if we have a
signal zfi with regular structure, then we can apply regular
convolutions (2)

[h ∗ zfi]n =

K−1∑
k=0

hk[z
f
i]n−k =

K−1∑
k=0

hk[S
n−k−1xf]i (8)

which, we see, amounts to a linear combination of neighboring
values of the signal, akin to (4). If a regular convolution
can be successfully applied to the aggregated sequence zfi ,
then a CNN can be used on zfi as well. We thus define the
aggregation GNN architecture as collecting the aggregated
sequences zfi at every node i and processing them by a CNN,

zfi,` = σ`

F`−1∑
g=1

hfg
` ∗ zgi,`−1

 (9)

for ` = 1, . . . , L, where we set zfi,0 = zi(x
f). The output of

the aggregation GNN ŷ(x) is collected at all nodes ŷ(x) =
{zfi,L}f,i. See Fig. 2 for an illustration of aggregation GNNs.

Aggregation GNNs exchange information with their neigh-
bors K times, and then do the bulk of the processing internally,
to output a feature zfi,L. Therefore, aggregation GNNs rely
heavily on the very efficient computation of regular convolu-
tions, as well as in the computational power available at each
node. Interestingly, processing on all nodes of the network
might not be necessary. In one extreme case, we can select a
single node i ∈ V and, if we set K = N , then this single node
gathers all the information available in the graph signal, since,
under some mild conditions, there is a one-to-one mapping

between zfi and xf [16]. In other words, if we are allowed
to do K = N exchanges of information, then a single node
is capable of collecting the exact same information than in
the original graph signal. Thus, a single node can do all the
processing and compute the output. In any case, we note
that, if not all nodes are used, then the performance of the
aggregation GNN is contingent on the selected nodes.

V. NUMERICAL EXPERIMENTS

To illustrate the performance of both selection and aggre-
gation GNNs, we consider the problem of movie recommen-
dation [17], [18]. We use the MovieLens-100k dataset [19],
which has a list of 100, 000 ratings given by 943 users to some
of the 1, 582 movies available. The problem we are interested
in is that of estimating the rating a user might give to some
specific movie that they have not watched yet.

We consider a movie-based graph to support the data. Each
movie is a node in the graph and we compute a similarity score
between movies by taking into account the correlation among
ratings given to each pair of movies by the same set of users,
see [18, eq. (6)] for details. We use this score as edge weights,
and we build a graph consisting of the 40-nearest neighbors.
To build the training and test sets, we consider all users that
have rated the specific movie we are interested in, and we
split them 90% for training and 10% for testing1. Then, each
user represents a graph signal, where the value at each node
is the rating given to that movie. Movies not rated are given
a value of 0. The value of the rating of the specific movie we
are interested in is extracted as a label, and zeroed out in the
graph signal. The objective is to use the ratings given by the
user to other movies (nonzero elements in the graph signal)
to estimate the rating they would give to the specific movie
of interest.

The map between the graph signal (ratings for some of
the movies) and the target (rating for the specific movie) is
parameterized by a GNN. In particular, we consider 1- and 2-
layer selection GNNs and 1- and 2-layer aggregation GNNs.

1No samples from the test set were used to build the graph support.

455

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2022 at 14:51:56 UTC from IEEE Xplore. Restrictions apply.

Architecture RMSE
Selection 1 layer 1.0486(±0.1079)
Selection 2 layers 0.9870(±0.1536)
Aggregation 1 layer 0.9274(±0.1561)
Aggregation 2 layers 0.9274(±0.1561)
Graph Filter [18] 1.1388(±0.1600)

Table I: Root mean squared error (RMSE) for predicting the rating
given to the movie “Toy Story”. Computed over the test set. Averaged
over 10 different data splits.

We note that the aggregation GNN is computed at a single
node i ∈ V with the highest experimentally designed sampling
(EDS) coefficient [20] taking into account K = 10 neighbor
exchanges. In all cases, we set F1 = 64 and F2 = 32 and
use filters of K1 = K2 = 5 taps. The chosen activation
function is a ReLU. We follow with a fully-connected layer
mapping the output features of the GNN to a 5-dimensional
vector, followed by a sigmoid, to represent the probability
of each of the 5 possible ratings (integer values between
1 and 5). We benchmark the prediction performance with
that of linear graph filters, whose application to the problem
of recommender systems was proposed in [18], where the
obtained performance is compared with that of traditional
collaborative filtering methods.

We train these models using an ADAM optimizer [21]
with learning rate 0.005, and decaying factors β1 = 0.9 and
β2 = 0.999. We train for 40 epochs with batch sizes of 5
samples. We evaluate the models computing the RMSE on
the test set, to take into account the difference in ratings
(i.e. how different our predicted rating is from the true one
is important). Results when the movie of interest is “Toy
Story”2 are shown in Table I. The first observation is that the
best performing architecture is the Aggregation GNN (19%
improvement over graph filters). We also observe that there
is no gain from including one extra layer. We then observe
that the selection GNN also improves the performance over
the graph filter (8% for 1-layer, 13% for the 2-layer), which
accounts for the importance of the nonlinearity.

VI. CONCLUSIONS

We addressed the problem of regularizing neural networks
to make them suitable for processing network data. We in-
troduced graph convolutions by analogy to time convolutions
(linear combination of shifted versions of the signal) and
used it as a proper regularization that takes into account the
underlying network structure of the data. We introduced two
different GNN architectures stemming from different interpre-
tations of the graph convolution. Namely, selection GNNs by
understanding the graph convolution as a diffusion process,
and aggregation GNNs by implementing the graph convolution
as an aggregation sequence on the node. We illustrated the
proposed architectures in the movie recommendation problem.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Infor-
mation Science and Statistics. New York, NY: Springer, 2006.

2This movie was selected because it was rated 452 times, the largest number
of ratings available, making possible to build larger datasets.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ser. The
Adaptive Computation and Machine Learning Series. Cambridge, MA:
The MIT Press, 2016.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 85–117, 2015.

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges and appli-
cations,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and deep locally connected networks on graphs,” in Int. Conf. Learning
Representations 2014. Banff, AB: Assoc. Comput. Linguistics, 14-16
Apr. 2014, pp. 1–14.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Annu.
Conf. Neural Inform. Process. Syst. 2016. Barcelona, Spain: NIPS
Foundation, 5-10 Dec. 2016, pp. 3844–3858.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Int. Conf. Learning Representations 2017.
Toulon, France: Assoc. Comput. Linguistics, 24-26 Apr. 2017, pp. 1–14.

[8] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in 30th Annu. Conf. Neural Inform. Process. Syst. Barcelona, Spain:
NIPS Foundation, 5-10 Dec. 2016.

[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Int. Conf. Learning Representations 2019. New
Orleans, LA: Assoc. Comput. Linguistics, 6-9 May 2019.

[10] J. Du, J. Shi, S. Kar, and J. M. F. Moura, “On graph convolution for
graph cnns,” in 2018 IEEE Data Sci. Workshop. Lausanne, Switzerland:
IEEE, 4-6 June 2018, pp. 239–243.

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in Int. Conf. Learning Representations
2018. Vancouver, BC: Assoc. Comput. Linguistics, 30 Apr.-3 May
2018, pp. 1–12.

[12] F. Gama, G. Leus, A. G. Marques, and A. Ribeiro, “Convolutional
neural networks via node-varying graph filters,” in 2018 IEEE Data Sci.
Workshop. Lausanne, Switzerland: IEEE, 4-6 June 2018, pp. 220–224.

[13] E. Isufi, F. Gama, and A. Ribeiro, “Generalizing graph
convolutional neural networks with edge-variant recursions on graphs,”
arXiv:1903.01298v1 [cs.LG], 4 March 2019. [Online]. Available:
http://arxiv.org/abs/1903.01298

[14] F. Gama, A. G. Marques, A. Ribeiro, and G. Leus, “MIMO graph filters
for convolutional networks,” in 19th IEEE Int. Workshop Signal Process.
Advances in Wireless Commun. Kalamata, Greece: IEEE, 25-28 June
2018, pp. 1–5.

[15] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” IEEE Trans.
Signal Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.

[16] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph
signals with successive local aggregations,” IEEE Trans. Signal Process.,
vol. 64, no. 7, pp. 1832–1843, Apr. 2016.

[17] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-
preserving localized activation functions for graph neural networks,”
arXiv:1903.12575v1 [eess.SP], 29 March 2019. [Online]. Available:
http://arxiv.org/abs/1903.12575

[18] W. Huang, A. G. Marques, and A. Ribeiro, “Rating prediction via graph
signal processing,” IEEE Trans. Signal Process., vol. 66, no. 19, pp.
5066–5081, Oct. 2018.

[19] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and
context,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4, pp. 19:(1–
19), Jan. 2016.

[20] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

[21] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic optimiza-
tion,” in Int. Conf. Learning Representations 2015. San Diego, CA:
Assoc. Comput. Linguistics, 7-9 May 2015, pp. 1–15.

456

Authorized licensed use limited to: TU Delft Library. Downloaded on February 01,2022 at 14:51:56 UTC from IEEE Xplore. Restrictions apply.

