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ABSTRACT
This paper proposes a Fast Graph Convolutional Neural

Network (FGRNN) architecture to predict sequences
with an underlying graph structure. The proposed ar-
chitecture addresses the limitations of the standard
recurrent neural network (RNN), namely, vanishing and
exploding gradients, causing numerical instabilities dur-
ing training. State-of-the-art architectures that combine
gated RNN architectures, such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) with
graph convolutions are known to improve the numerical
stability during the training phase, but at the expense
of the model size involving a large number of training
parameters. FGRNN addresses this problem by adding
a weighted residual connection with only two extra
training parameters as compared to the standard RNN.
Numerical experiments on the real 3D point cloud dataset
corroborates the proposed architecture.

Index Terms— Deep learning, Graph neural networks,
graph signal processing, recurrent neural networks.

I. INTRODUCTION

Many real-world datasets occur as structured sequences,
e.g., space-time series, or graph/network-time series. Typical
examples of such data are multichannel speech data, videos,
dynamic point clouds, timeseries data from brain networks
or social networks, where the successive frames might have
a dynamic pattern and each time frame might have a spatial
or graph structure. Developing generative models to process
such structured time-varying data for prediction or interpo-
lation is of significant interest in data analytics.

Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN) are two popular variants of neural
networks commonly used in a wide variety of engineering
and science applications. CNN comprises of a convolutional
layer and pooling layer as hidden layers and is known to
capture intricate structures in the data. Whereas, RNNs have
a memory element that captures the information about the
past and decisions are based on the gathered memory.

Architectures combining RNN and CNN have been pro-
posed to find patterns in time-varying data [1]–[3]. These
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models assume that the data is defined on a regular do-
main, and the convolutions in this case are simple 2-D
convolutions. In many cases, the data available might not
be supported on a regular domain [4], [5]. Examples of data
residing on irregular domains are data from weather mon-
itoring stations, biological networks, and social networks,
to list a few. Graphs may be used to represent the irregular
domain on which the data is defined and explain the complex
relationships in such data [6], [7]. More specifically, the data
is indexed by the nodes of the graph, and the edges encode
the pairwise relationships between the nodes. Numerous
approaches have been proposed to learn the underlying graph
structure from the available data [8], [9].

The standard RNN architecture is known to have vanish-
ing or exploding gradients, which makes it unstable during
training. A particular class of RNN that overcomes this
problem is the Long Short-Term Memory (LSTM) architec-
ture [10]. These variants of RNNs have a gated architecture
with a large number of training parameters. As the number
of trainable parameters in LSTM is large, they take more
training time, even on high-end computational machines, due
to the required memory.

Graph Convolutional Neural networks (GCNN) that gen-
eralize the CNNs to handle graph-structured data on arbitrary
graphs have been proposed in [11], [12], where the convo-
lution operator is now generalized using polynomials of the
graph Laplacian matrix. When the graph data is time-varying
(e.g., dynamic 3D point cloud data), to capture the temporal
variations of such data, LSTM combined with GCNN is
proposed in [13], where GCNNs capture the spatial structure
and LSTMs capture the temporal variations of the data.

In this paper, we propose a stable architecture of RNN
that combines GCNN with a standard RNN. To stabilize the
gradients a weighted residual connection is introduced. The
proposed architecture has a much fewer number of training
parameters as compared to architectures that combine LSTM
with GCNN. Hence the term fast in FGRNN. The proposed
architecture is inspired by [14], where they propose a stable,
scalable, and a faster variant of RNN for data defined
on regular domains. The main contributions of this paper
are as follows. We propose a stable FGRNN architecture
for efficient training and prediction of the data defined
on irregular domains. We show that the proposed FGRNN
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architecture with only 2 additional parameters as compared
to the standard RNN is stable during the training phase and
overcomes the vanishing or exploding gradients problem.
The experiments on real 3D point cloud data, where the task
is to predict the next 3D point cloud frame, demonstrate the
developed theory.

Throughout this paper, we will use upper and lower case
boldface letters to denote matrices and column vectors,
respectively. diag[·] is a diagonal matrix with its argument
along the main diagonal. Xij and xi denote the (i, j)th
element and ith element of X and x, respectively.

II. PROBLEM STATEMENT
Consider a graph G = (V, E) with N vertices (nodes),

where V is the set of vertices (or nodes) and E denotes
the edge set such that (i, j) ∈ E if there is a connection
between node i and node j. The structure of the graph
with N nodes is captured by the weighted adjacency matrix
A ∈ RN×N whose (i, j)th entry denotes the weight of the
edge between node i and node j. This matrix represents
the network connectivity. We assume that the graph is
undirected with positive edge weights. The corresponding
graph Laplacian matrix is a symmetric matrix of size N ,
given by L = IN − D−1/2AD−1/2, where D ∈ RN×N
is the diagonal matrix whose diagonal entries are given by
the length N degree vector d = A1. We call the set of
graph signals {xt}Tt=1, indexed by the vertices of the graph
G, collected in the N × T matrix X = [x1,x2, ...,xT ] as
graph data. That is, xt ∈ RN is the graph signal at time t.

The goal of this paper is to learn a function for sequence
modeling, where the task is to predict the most likely feature
vector based on the previous observations. More percisely,
given the previous T observations of the data, we are
interested in predicting the most likely feature vector xt+1:

x̂t+1 = argmax
xt+1

P (xt+1|xt−T , ...,xt), (1)

where in (1) we maximize the likelihood of xt+1 given
the previous T observations. Such problems usually appear
in language modeling, image prediction, to name a few,
wherein the task is to predict the most likely feature vector
given the previous T observations. In this paper, we focus on
the case where the data at each time instance has a structure,
which is defined by the graph G.

III. GRAPH CONVOLUTIONS
As the graphs do not have a natural ordering, the standard

convolution operation cannot be generalized to arbitrary
graphs using localized filters. Hence, a spectral definition
of graph convolution is defined in [15] and is based on an
elementwise multiplication in the graph frequency domain.
Using this definition, the graph convolution of the graph
signal x is given as y = gθ ?G x = Ugθ(Λ)Ux, where
U ∈ RN×N is the matrix of eigenvectors, Λ ∈ RN×N
is the matrix of eigenvalues of the graph Laplacian matrix

L. Here, gθ(Λ) represents the responce of the graph filter
in the frequency domain and ?G is the graph convolution
operator. This method is computationally expensive, as it
involves multiplications with a dense eigenvector matrix U.
To circumvent this issue, [11] defined the graph convolution
operation by approximating gθ(Λ) with a truncated Cheby-
shev polynomial expansion of order K. Mathematically, the
graph convolution operation is given by

gθ ?G x =

K−1∑
k=0

θkTk(L̃)x, (2)

where the parameter θ = [θ0, θ1, ...θK−1]
T ∈ RK is a

vector of Chebyshev coefficients and Tk(L̃) ∈ RN×N is
the Chebyshev polynomial of order K evaluated at the
normalized Laplacian matrix defined as L̃ = 2L/λmax −
IN . The above graph convolution operation incurs linear
complexity, i.e., O(K|E|), due to the recurrence relation
Tk(x) = 2xTk−1(x)− Tk−2(x). Here, T0 = 1 and T1 = x.

A first order approximation (K = 1) of the (2) is proposed
in [12]. Using the approximation in [12], the convolution
operation simplifies to

gθ ?G x = WL̃1x, (3)

where L̃1 = IN +D−1/2AD−1/2, W ∈ RP×N is the filter
parameter and P is the hidden state dimension. While we
focus on the graph convolution framework introduced in [12]
for the analysis of the proposed architecture, we demonstrate
the effectiveness of the proposed model using both (2) and
(3).

IV. RECURRENT NEURAL NETWORKS
For tasks like sequence modeling, standard RNNs are

typically used. The standard RNN maintains a hidden state
that captures the temporal variations in the data. The hidden
state in the standard RNN at the time instance t is given
by ht = σ(Wxt + Uht−1 + b), where W ∈ RP×N ,
U ∈ RP×N , and b ∈ RP×1 are the training parameters.
Here, σ(·) is the nonlinear activation function, and typical
choices for σ(·) are such as tanh, ReLU, sigmoid.

It is well known that standard RNNs suffers from ex-
ploding and vanishing gradient issues, due to which they
are highly unstable during the training phase. A residual
connection is introduced in [14] to alleviate this numerical
instability. This fast variant of RNN in short, (FRNN) has
much fewer parameters as compared to LSTM. Mathemati-
cally, the hidden states of FRNN is given by

h̃t = σ(Wxt + Uht−1 + b)

ht = αh̃t + βht−1,
(4)

where α and β are scalar the training parameters. FRNN
updates the hidden states in a controlled manner using only 2
extra training parameters α and β. Moreover, the number of
additional computations required per time step is N , which is
usually a tiny fraction as compared to the operations in RNN



and as such it is very small compared to the computational
complexities of the gated architectures like LSTM and GRU.

V. FAST GRAPH RECURRENT NEURAL
NETWORKS

In this section, we propose a Fast Graph Convolutional
Recurrent Neural Network (FGRNN) architecture that com-
bines FRNN with GCNNfor the task of prediction. For
the task of sequence modeling for data defined on regular
domains, architectures that combine RNN and CNN are
proposed in [16]. In this architecture, LSTM is used, where
the 2D convolutions replace the multiplications with the
dense matrices. Inspired by this approach, when the data
is defined on irregular domains, we propose to replace
the multiplications by the dense matrices in FRNN with
graph convolutions. Specifically, the update equations for the
hidden state is given by

h̃t = σ(W ?G xt + U ?G ht−1 + b)

ht = αh̃t + βht−1,
(5)

where recall that ?G is the graph convolution operator defined
in (2) or (3). We focus on (3), for the sake of simplicity, for
which the hidden state at time t smiplifies to

h̃t = σ(WLxt + ULht−1 + b),

ht = αh̃t + βht−1.
(6)

Given the hidden state at any time step t, we predict
the next feature using the linear relation given by x̂t+1 =
Vht + z, where V ∈ RN×P and z ∈ RN are the training
parameters. At each time step, we define the prediction
loss function as Jt(x̂t+1,xt+1,Θ) = ‖xt+1 − x̂t+1‖22,
where Θ = {W,U,V, α, β,b, z} is the set of all training
parameters. The prediction loss function after T time steps
is given by JT =

∑T
t=1 Jt(xt+1, x̂t+1,Θ).

To update the training parameters during the training
phase using backpropagation through time (BPTT), we cal-
culate the gradient of the loss function with respect to train-
ing parameters. For simplicity, assume that Θ = {W,U,V}
are the trainig parameters. Thus, the gradients of the loss
functions JT w.r.t. parameters W, U, and V are given by

∂JT
∂W

=

T∑
t=1

∂Jt
∂hT

T∏
t=2

∂ht
∂ht−1

∂h1

∂W
,

∂JT
∂U

=

T∑
t=1

∂Jt
∂hT

T∏
t=2

∂ht
∂ht−1

∂h1

∂U
,

∂JT
∂V

=

T∑
t=1

∂Jt
∂hT

T∏
t=2

∂ht
∂ht−1

∂h1

∂V
,

(7)

where the term ∂ht

∂ht−1
= αDtUL + βIN ∈ RN×N com-

mon to all the gradients determines the numerical stability
during the training phase. This term is multiplied by itself
T − 2 times,and depending on the conditioning of U and/or

L,
∏T
t=2

∂ht

∂ht−1
may quickly become ill-conditioned with

β = 0. Here, Dt is the diagonal matrix with pointwise
nonlinearity given by Dt = diag(σ′(WLxt + ULht + b))
with σ′(·) being the gradient of σ(·). As the special case, if
the activation function is ReLU, then the matrix Dt is an
identity matrix. Notice that when α = 1 and β = 0, we have
the standard RNN architecture.

To analyze the problem of the vanishing and exploding
gradients in the standard RNN combined with the graph
convolution operation, let us assume that all the training
parameters are scalars and the activation function is ReLU.
Then the term

∏T
t=2

∂ht

∂ht−1
simplifies to

T∏
t=2

∂ht
∂ht−1

= (uL)T−2. (8)

The stability of the gradient depends on the largest eigen-
value of (8). If its value is sufficiently small, i.e., < 1 the
gradient will shrink exponentially. Moreover, if its value is
large, the gradient will explode. For L̃, the eigenvalues in
the range [0, 2], thus gradient for the standard RNN, will be
an exponential in T . This implies that, relative to the largest
eigenvalue, the gradient may explode or vanish exponen-
tially, leading to numerical instabilities during training.

In order to stabilize the gradients, we add a weighted
residual connection, with two trainable parameters α and
β as in (6) for which (8) now becomes

∏T
t=2

∂ht

∂ht−1
=

(αUL+ βIN )T−2. By appropriately choosing α and β, the
gradients may be stabilized. More generally, the condition
number of

∏T
t=2

∂ht

∂ht−1
, which is bounded as

M ≤
(1 + α

β maxt ‖DtUL‖2F )T−2

(1− α
β maxt ‖DtU.L‖2F )T−2

(9)

This determines the stability of the gradient. In contrast
to the standard RNN, if β = 1 and α = 0, then the
condition number of M is bounded 1. Thus leading to stable
gradients during training, but completely ignores the training
data. So, we allow the parameters α and β to be trained
such that FGRNN updates the hidden states in a controlled
manner. In other words, the parameters α and β limit the
extent to which the current feature vector xt updates the
hidden states ht. For instance, if β ≈ T maxt ‖DtUL‖2F and
α ≈ 1− β, then M = O(1). Also, the FGRNN controls the
condition number of the gradient using only two additional
parameters as compared to the standard RNN. Furthermore,
the existing unitary RNN methods for the data defined on
a regular domain are motivated by a similar observation,
where they control the stability of the gradients by restricting
U to a unitary matrix. However, while dealing with graph
data, DtUL might still become ill-conditioned even with an
unitary U. Thus they might still have the vanishing gradient
problem. The proposed method allows the residual weights
α and β to be trained such that the condition number M is



(a) (b) (c) (d) (e)

Fig. 1: Dynamic 3D point cloud dataset. The colored dot indicates a node of the 3D point cloud data. Each image shows the predicted 3D point cloud
frame using different architectures. (a). Ground truth (b). Proposed model (filter based on [11]) (c). Proposed model (filter based on [12]) (d). LSTM with
graph regularizer (e). LSTM with GCN [13].
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Fig. 2: Test loss of the 3D point cloud dataset: Left: Test loss of the various architectures trained on the 3D point cloud dataset. Right: Variations of the
training parameters α and β with time T .

restricted and thus prevents the numerical instabilities due
to vanishing and exploding gradients.

VI. NUMERICAL ANALYSIS

In this section, we test the proposed FGRNN architecture
and compare its performance with the traditional architec-
tures that combine GCNs with a stable variant of RNN,
namely, LSTM. We compare the proposed method with (1).
the baseline method that combines GCN with LSTM [13],
(2). LSTM with a graph regularizer in the loss function, (3).
proposed method, i.e., FGRNN with different convolution
operators, i.e., Chebyshev polynomial (2) and its first order
approximation (3).

We use the dynamic 3D point cloud dataset of a human
pose. Each human pose is captured using 1502 3D data
points and there are 573 such frames. This corresponds to
a graph data, where the data points correspond to the 3D
displacement of the nodes of the underlying graph. Each
data frame at time instance t is given by Xt ∈ RN×3 where
N = 1502 is the number of nodes. We use 80% of the
frames for training the network and the remaining 20% of
the time frames to test the performance.

For this dataset, we are interested in predicting the most
likely next 3D point frame (here the next human pose)

given the previous T frames of data as in (1), where
P (Xt+1|Xt−T , ...,Xt) models the probability of the frame
Xt+1 given the past T observations. As the task we are
interested in is the prediction, we define the loss occured for
predicting the next data frame at time t as ‖Xt+1−X̂t+1‖2F ,
where each Xt+1 is a 3D data point. All the architectures
(except LSTM with a graph regularizer) are trained by
minimizing the aforementioned loss function using BPTT.
For LSTM with a graph regularizer architecture, we define
the loss function as ‖Xt+1 − X̂t+1‖2F + λtr(XT

t+1LXt+1),
where λ is a positive regularizer chosen based on a grid
search that leads to the best test loss. We construct the
Laplacian matrix L from the training data using K-nearest-
neighbor such that each node has a degree of 6. All the
architectures are trained using ADAM optimizer with a
learning rate of 10−2 and a decay rate of 0.9. All the models
are implemented in Tensorflow: r1.15 and each model is run
for 10 epochs and their test loss is shown in Fig. 2a.

For a fair comparison with [16], all the experimental
models are implemented with the model defined in (5),
which is the same as replacing the 2D convolutions by graph
convolutions. Fig. 2 shows the performance of the various
models implemented, and we observe that all the models
converge before 10 epochs. These results show the ability



# parameters point cloud
Standard FRNN 3N2 + 2N + 2 6771018
Proposed (filter based on [11]) 3K + 2N + 2 3015
Proposed (filter based on [12]) 3P 2 + 2N + 2 3033
LSTM without GCN 8N2 + 4N 18054040
LSTM with GCN [13] 4N + 8K 6032

Table I: Comparison between the models in terms of number
of trainable parameters.

of the proposed method to capture the structure in the graph
time-series. We can observe from Fig. 2a that FGCNNs
implemented with graph filter based on [12] and [11] offer
better performance than regular LSTMs with a graph regular-
izer and architecture that combines GCN with LSTM [16]. In
Fig. 1, we illustrate the 3D point cloud frames of the ground
truth, and the estimated frames from various architectures
we have considered. We see that the predicted 3D point
cloud frame by the proposed method is more consistent with
the ground truth than the frame estimated by LSTM with a
graph regularizer. Moreover, the predicted feature is visually
the same as the baseline methods (namely, LSTMs with a
graph convolutions). This demonstrates that the problem of
vanishing and exploding gradients can be overcome by the
addition of a simple weighted residual connection to the
standard RNN, which means that the proposed FGRNN is
stable and can be trained efficiently.

Table I shows the computational complexity in terms of
the number of training parameters for the different con-
sidered methods. We can see that the proposed method is
computationally efficient than any other baseline methods
as the number of trainable parameters in the proposed
architecture is the least. This demonstrates that the proposed
FGRNN models are accurate and faster to train as compared
to the baseline models. Finally, Fig. 2b shows the learnt α
and β on the datasets with T time steps. It is clear from
the figure that the learned β is a decreasing function of T .
Moreover, α can be seen close to 1 − β for large T , while
corroborates the FGRNNs theoretical analysis.

VII. CONCLUSIONS

This paper proposes a Fast Graph Recurrent Neural Net-
work (FGRNN) architecture for efficient training and predic-
tion of data defined on irregular (non-euclidean) domains.
The sandard RNN architecture is known to be unstable
during training due to vanishing and exploding gradients.
Hence, gated architectures, namely, LSTMs and GRUs,
are proposed to alleviate this issue at the cost of the
computational complexity. FGRNN architecture is obtained
by incorporating a weighted residual connection with only
two scalar parameters into the standard RNN architecture.
FGRNN model has a fewer number of training parameters,
lesser training times, and is more stable than the standard
RNN. These architectures can match the state-of-the-art

gated RNN architectures with a significantly lower number
of training parameters and computational cost.
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