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ABSTRACT

This paper studies analog beamforming in active sensing ap-

plications, such as millimeter-wave radar or ultrasound imag-

ing. Analog beamforming architectures employ a single RF-

IF chain connected to all array elements via inexpensive phase

shifters. This can drastically lower costs compared to fully-

digital beamformers having a dedicated RF-IF chain for each

sensor. However, controlling only the element phases may

lead to elevated side-lobe levels and degraded image quality.

We address this issue by image addition, which synthesizes a

high resolution image by adding together several lower reso-

lution component images. Image addition also facilitates the

use of sparse arrays, which can further reduce array costs. To

limit the image acquisition time, we formulate an optimiza-

tion problem for minimizing the number of component im-

ages, subject to achieving a desired point spread function. We

propose a gradient descent algorithm for finding a locally op-

timal solution to this problem. We also derive an upper bound

on the number of component images needed for achieving the

traditional fully-digital beamformer solution.

1. INTRODUCTION

The use of high frequencies enables small array form factors

by packing many elements into a small physical area. For ex-

ample, 3D ultrasound imaging typically uses hundreds of sen-

sors, each with a dedicated transceiver chain. Although the

resulting large electrical aperture improves the array’s resolu-

tion, the hardware cost, number of cables, power consump-

tion, and computational load of the array may become pro-

hibitively large. These issues are especially pronounced for

fully-digital arrays, where each array element is connected

to a separate RF-IF front-end and analog-to-digital converter

(ADC) or digital-to-analog converter (DAC).

Sparse arrays can significantly reduce the number of el-

ements compared to uniform arrays of equivalent aperture,

without sacrificing the array’s ability to resolve scatterers [1–

3]. Such arrays utilize the virtual co-array structure consist-

ing of the pairwise vector sums or differences of the physical

array element positions. For instance, the sum co-array deter-

mines the achievable set of point spread functions (PSFs) of

an active far field imaging array that uses linear processing at

the transmitter and receiver [1]. A desired PSF may be syn-

thesized using the image addition technique [1,4], which adds

together several component images corresponding to different

transmit-receive element weight pairs. The number of com-

ponent images should be kept as low as possible, to minimize

the image acquisition time when transmitters operate coher-

ently, as in a phased array.

Hybrid beamforming is another approach for reducing

the array costs [5]. Hybrid architectures reduce the number

of RF-IF chains by pre-processing the antenna signals by a

network of inexpensive low power phase shifters connecting

every antenna to each front-end. Hybrid beamformer design

has been extensively studied for millimeter-wave communica-

tions, where linear processing is used to precode and decode

multiple data streams sent over a multiple-input multiple-

output channel [6–12], and hybrid beamformers are designed

to maximize the channel capacity [13]. In contrast, this

paper considers active imaging applications, where synthe-

sizing a desirable PSF is of main interest [1]. Furthermore,

we focus on the extreme case of fully-analog beamforming,

where all the array elements are connected to a single RF-IF-

ADC/DAC chain by phase shifters with continuous phases.1

We utilize image addition to synthesize PSFs that are com-

monly achieved only by fully-digital arrays. Image addition

also facilitates the use of sparse transmitting and receiving

arrays, which further reduce the required number of array

elements thereby reducing the hardware costs.

The contributions of the paper are threefold. First, we

formulate an optimization problem, where we design the ana-

log transmit and receive beamforming weights achieving a de-

sired PSF using as few component images as possible. Sec-

ond, we develop a gradient descent algorithm for finding a

local minimum of this non-convex problem. Third, we derive

an upper bound on the number of component images, and give

the beamformer weights achieving this bound in closed-form.

2. SIGNAL MODEL AND DEFINITIONS

Consider a sensor array with Nt transmit (Tx) and Nr receive

(Rx) elements. As shown in Fig. 1, each array element is con-

1We address the more general case of hybrid beamforming with quantized

phase shifts in the longer journal version of this paper [14].
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Fig. 1. Fully-analog beamforming architecture. The RF-IF front-end of the transmitter/receiver is connected to each array

element via a phase shifter with continuous phase.

nected to a single RF-IF front-end and DAC or ADC via a

phase shifter. This is referred to as a fully-analog beamform-

ing architecture, in contrast to the fully-digital architecture,

where each sensor has a dedicated front-end and DAC/ADC.

We consider a phased array imaging system that sequen-

tially scans a scattering scene by transmitting and receiving

focused beams of narrowband signals. Such systems are typ-

ically used in, e.g., medical ultrasound imaging or radar. On

the transmitter side, beamforming is achieved by combining

the Tx array element outputs with weights wt = ctft ∈ CNt ,

where ct ∈ C is a digital transmit gain, and ft ∈ CNt is a

vector of transmitter phase shifts. Similarly, on the receiver

side, the Rx element inputs are combined using the weights

wr = crfr ∈ CNr , where cr ∈ C is a digital receive gain, and

fr ∈ C
Nr is a vector of receiver phase shifts. The received

signal after beamforming and matched filtering is modeled as

y = w
T
r Hwt +w

T
r n, (1)

where H ∈ CNr×Nt is the channel matrix, n ∈ CNr is the

receiver noise vector, and (·)T denotes transposition.

The point spread function (PSF) is an important prop-

erty characterizing an imaging system. The PSF is defined as

the system’s response to a unit-reflectivity, line-of-sight point

scatterer. Specifically, for a scatterer located at v ∈ R3 and

the array focused at u ∈ R3, the PSF is defined as ψ(u,v) =
w

T
r (u)ar(v)a

T
t (v)wt(u) ∈ C, where ax is the steering vector,

and subscript x ∈ {t, r} is used to denote both the transmitter

and receiver. If the scatterer is in the far field of linear Tx and

Rx arrays, v and u simplify to angles in [−π/2, π/2]. We

henceforth omit the explicit dependence of u and v for nota-

tional convenience. The PSF may also be expressed using the

Kronecker product⊗ as:

ψ = (at ⊗ ar)
Tvec(wrw

T
t ). (2)

To form an image, we steer the Tx and Rx arrays over a

discrete set of directions {ui}
U
i=1 and measure reflectivities

in (1) at each image pixel. However, a single Tx-Rx weight

pair wt,wr, as in (2), may not always suffice to achieve a

desired PSF. In this case, the image quality may be improved

by image addition [1]. Image addition synthesizes a high-

resolution composite image by summing together several

component images of lower resolution, which are formed

using different Tx-Rx weight pairs. With image addition, the

rank-1 matrix wrw
T
t in (2) is replaced by the co-array weight

matrix W ∈ CNr×Nt defined [4]:

W =

Q
∑

q=1

wr,qw
T
t,q. (3)

Each outer product wr,qw
T
t,q in (3) corresponds to a transmis-

sion and reception with a different pair of effective Rx and Tx

weight vectors wr,q and wt,q . These vectors may be retrieved

from the SVD of matrix W in the case of fully-digital beam-

forming [4]. The smaller the number of component images Q
is, the shorter the image acquisition time, as fewer transmis-

sions/receptions are required to form an image. In the case of

analog beamforming, (3) can be decomposed as

W =

Q
∑

q=1

cr,qct,qfr,qf
T
t,q = Frdiag(c)FT

t , (4)

where c = ct ◦ cr ∈ CQ is the Hadamard product of the

digital transmit and receive weights cx = [cx,1, . . . , cx,Q]
T.

Matrix Fx = [fx,1, . . . , fx,Q] ∈ Fx contains the phase shift

vectors of the component images, and

Fx =
{
F = exp(jΦ) | Φ ∈ [0, 2π)Nx×Q

}
(5)

denotes the set of such phase shift matrices. If we know c, we

may set ct = 1Q and cr = c, where 1Q is a Q-dimensional

vector of ones. This simple choice also maximizes the trans-

mit power under the constraint |ct,q| ≤ 1, q = 1, 2, . . . , Q.

3. BOUNDS ON NO. OF COMPONENT IMAGES Q

Next, we derive an upper and lower bound on the number

of component images Q required by an analog beamformer

for factorizing any co-array matrix W ∈ CNr×Nt as in (4).

In the case of fully-digital beamforming, SVD can be used to

decomposeW as in (3) usingQd = rank(W) ≤ min(Nr, Nt)
component images [4]. Any analog factorization in (4) must

therefore satisfy Q ≥ Qd ≥ min(Nr, Nt), where Qd is the

number of component images of the fully-digital beamformer.



An upper bound on Q may be derived based on the fact

that any wx ∈ CNx can be factorized as wx = Fxcx, where

cx ∈ C2 and Fx ∈ Fx ⊂ CNx×2 following (5) [6, Theo-

rem 1]. Consequently, given a fully-digital factorization of

W using Qd component images, we may construct a fully-

analog factorization of the same W using Q = 4Qd compo-

nent images. In particular, the phase shifts and digital weights

are given by the following theorem:

Theorem 1 (Upper bound onQ). AnyW =
∑Qd

q̃=1 wr,q̃w
T
t,q̃ ∈

CNr×Nt may be factorized as W =
∑4Qd

q=1 cr,qct,qfr,qf
T
t,q , with

cx,q ∈ C; and fx,q ∈ Fx ⊂ CNx following (5). For example,

a valid factorization is

fx,q = exp(jφx,q̃) (6)

cx,q = ‖wx,q̃‖∞/2, (7)

where φx,q̃=∡wx,q̃+(−1)ix+1 cos−1(|wx,q̃|‖wx,q̃‖
−1
∞ ); q̃ =

⌈q/4⌉; ir = ⌈(1 + (q − 1) mod 4)/2⌉; and it = 1 + (q −
1) mod 2. Here ∡, cos−1, and | · | are applied elementwise.

Proof sketch (see [14] for details). By [6, Theorem 1], any

wx =
∑2

m=1 cx,mfx,m. Consequently,wrw
T
t =

∑4
m=1 cr,ict,l

fr,if
T
t,l, where i and l are functions of the summation indexm.

As W is a sum ofQd rank-1 matrices, we haveQ = 4Qd.

The solution given by Theorem 1 is actually non-unique,

and it is possible to factorize (4) using another set of Q =
4Qd component weights. Nevertheless, the choice made in

(6) and (7) is particularly simple, and it enables us to reduce

the number of component images to Q = Qd, at the expense

of doubling the number of phase shifters connected to each

array element. This follows from the observation that any

wx ∈ C
Nx that can be factorized as wx = cxFx12, where cx ∈

C, and Fx ∈ Fx ⊂ CNx×2 following (5), can be implemented

by an analog architecture using 2Nx phase shifters [7,11,12].

However, this requires a modification to the architecture in

Fig. 1, and will therefore not be considered henceforth.

4. PROBLEM FORMULATION

The goal of the optimization problem formulated in this pa-

per is to minimize the number of component images Q, while

achieving a desired PSF. Assuming that the PSF is evalu-

ated for a set of V discrete target directions {vi}
V
i=1, we

may express the desired PSF as ψ ∈ CV and the realized

PSF as Avec(W). The ith row of measurement matrix A ∈
CV×NrNt corresponds to vector aT

t (vi) ⊗ a
T
r (vi). Since the

analog beamforming architecture imposes the constraint that

W should be factorized as (4), the vectorized W may also

be expressed using the Khatri-Rao product ⋄ as vec(W) =
(Ft ⋄Fr)c. This leads us to formulate the analog beamformer

weight optimization problem:

minimize
Fx∈Fx,c∈CQ,Q∈N+

Q

subject to ‖ψ −A(Ft ⋄ Fr)c‖2 ≤ εmax, (P1)

where εmax ∈ R+ is an error tolerance. The fact that Q is

unknown adds an extra layer of complexity to problem (P1).

Fixing Q yields the following simpler optimization problem:

minimize
Fx∈Fx,c∈CQ

‖ψ −A(Ft ⋄ Fr)c‖
2
2. (P2)

If we can solve (P2), we can easily recover the solution to (P1)

by finding the smallest Q for which the objective of (P2) does

not exceed ε2max. Note that in practice, the maximum value of

Q is determined by Theorem 1, or by a design constraint on

the minimum imaging frame rate.

5. GRADIENT DESCENT ALGORITHM

In this section, we present a simple gradient descent method

for solving (P2). We start by noting that the optimal value of

c in (P2) is the least-squares solution c = (A(Ft ⋄ Fr))
†ψ,

where † denotes the pseudo-inverse. We also write the analog

weight matrix Fx directly as a function of the unknown phase

matrix Φx ∈ RNx×Q, i.e., Fx(Φx) = exp(jΦx), where we

apply the exponential function elementwise. Similar to [9],

we then express (P2) in terms of variables Φr,Φt as:

minimize
Φx∈RNx×Q

‖(IV −K(Φt,Φr)K
†(Φt,Φr))ψ‖

2
2

︸ ︷︷ ︸

J(Φt,Φr)

, (P3)

where we denote the objective function as J ∈ R+, and define

K(Φt,Φr) = A(Ft(Φt) ⋄ Fr(Φr)).

Since (P3) is an unconstrained optimization problem with a

continuous and differentiable objective function, we can find

a local minimum of J using gradient descent. Straightforward

computations show that the gradient is (see Appendix A):

∇Φx
J = −2ℑ{Fx ◦matNx×Q((∂KJ)(∂Fx

K))}, (8)

where the respective complex-valued matrix derivatives are

∂KJ = vecH((KK
† − IV )ψ(K

†ψ)H) (9)

∂Fr
K = (IQ ⊗A)((IQ ⋄ Ft)⊗ INr

) (10)

∂Ft
K = (IQ ⊗A)(INtQ ⋄ (Fr ⊗ 1

T
Nt
)). (11)

Here we define ∂ZX(Z,Z∗) = ∂vec(X)
∂vecT(Z) ∈ C

AB×CD, where

X ∈ CA×B and Z ∈ CC×D [15]. Furthermore, (·)∗ de-

notes complex conjugation, (·)H conjugate transposition, and

matA×B reshapes an AB-dimensional vector into an A × B
matrix. Given a step size µ ∈ R++, we update the gradient as

Φx ← Φx−µ∇Φx
J . The update step is repeated until a max-

imum number of iterations kmax or tolerance εmax is reached

(see Algorithm 1). The solution given by Algorithm 1 de-

pends on the initialization of Fx, since (P3) is a non-convex

problem. Multiple random initializations may therefore be

useful. Nevertheless, Algorithm 1 is guaranteed to improve



Algorithm 1 Gradient descent algorithm for (P2)

1: procedure GRADDESC(A,ψ,Fr,Ft, µ, kmax, εmax)

2: {k, ε,K} ← {0,∞,A(Ft ⋄ Fr)}
3: while k < kmax ∨ ε > εmax do

4: Update derivative ∂KJ using (9)

5: for x ∈ {t, r} do

6: Update derivative ∂Fx
K using (10) or (11)

7: Update gradient∇Φx
J using (8)

8: Fx ← exp(j(∡Fx − µ∇Φx
J))

9: K← A(Ft ⋄ Fr)
10: ε← ‖(IV −KK

†)ψ‖2
11: k ← k + 1

12: {cr, ct} ← {K
†ψ,1Q}

13: return Fr,Ft, cr, ct

upon an initial solution, provided that it is not a local min-

imum, and that the step size µ is not too large. In the next

section, we will see that good results can be achieved by us-

ing only a single random initialization of Fx, and finding an

appropriate step size µ simply by trial-and-error.

6. NUMERICAL EXAMPLES

Next, we compare the PSFs of two analog beamformers with

linear array geometries (Fig. 2). In particular, we consider a

uniform linear array (ULA) with N = 11 elements, and a

minimum-redundancy array (MRA) [16, 17] with N = 7 ele-

ments [18]. Both arrays span an aperture of 10λ/2, where λ/2
is the smallest inter-element spacing. Assuming ideal, iden-

tical, and omnidirectional transceiving elements, the transmit

and receive steering vector becomes a(ϕ) = exp(jπd sinϕ),
where d denotes the normalized array element positions. For

the ULA: d = [−5,−4, . . . , 5]T, and for the MRA: d =
[−5,−4,−2, 0, 2, 4, 5]T. A Dolph-Chebyshev [19] beampat-

tern with −40 dB sidelobes is selected as the desired PSF.

We initialize Algorithm 1 using uniformly distributed ran-

dom phases, i.e., Fx = exp(jΦ), where Φnq ∼ Uni(0, 2π).
Furthermore, we set the step size to µ = 10−3, the maxi-

mum number of iterations to kmax = 104, and the tolerance

to εmax = 10−4‖ψ‖2. We sample the measurement matrix

A uniformly at V = 99 azimuth angles between −π/2 and

π/2. After finding the beamforming weights, we evaluate the

realized PSF at 200 different angles in the same interval.

Fig. 3 (a) shows the desired and realized PSF of the ULA.

Algorithm 1 yields a good approximation of the desired PSF

using only a single component image. This approximation

gets progressively better as Q is increased. Fig. 3 (b) shows

that the MRA requires at least Q = 2 component images

to achieve an acceptable PSF. We note that the fully-digital

ULA achieves the desired PSF using one component image,

whereas the fully-digital MRA requires two components.2

2Using an alternating minimization algorithm [14] with tolerance εmax.

Fig. 2. Uniform and sparse array configurations.

(a) ULA (b) MRA

Fig. 3. PSFs of analog beamformers. The (a) uniform array

approximately achieves the desired PSF using one component

image, whereas the (b) sparse array requires two.

By Theorem 1, the fully-analog beamformers then exactly

achieve the fully-digital PSFs using Q = 4 (ULA), respec-

tively Q = 8 (MRA) component images. Although the

analog/digital MRA and ULA can achieve the same PSF, the

MRA incurs a loss in array gain due to having fewer elements.

7. CONCLUSIONS

This paper considered active imaging using phased arrays

with an analog beamforming architecture consisting of con-

tinuous phase shifters. We proposed a gradient descent al-

gorithm for jointly finding the transmit and receive element

weights that achieve a desired PSF using as few transmissions

as possible. Moreover, we derived a bound on the maximum

number of transmissions required by such an array. We

also demonstrated that combining analog beamforming with

sparse arrays allows for significant reductions in the number

of elements and RF-IF front-ends, without compromising

main lobe width or side-lobe levels.

A. DERIVATION OF GRADIENT

In this appendix, we derive the gradient in (8). We are inter-

ested in ∂Φx
J ∈ R1×NxQ, which by the chain rule is [15]

∂Φx
J = (∂KJ)(∂Φx

K) + (∂K∗J)(∂Φx
K

∗). (12)

Applying the chain rule again to (12) yields

∂Φx
K = (∂Fx

K)(∂Φx
Fx) + (∂F∗

x
K)(∂Φx

F
∗
x ) (13)

∂Φx
K

∗ = (∂Fx
K

∗)(∂Φx
Fx) + (∂F∗

x
K

∗)(∂Φx
F

∗
x). (14)

Noting that K only depends on Fx, we have ∂F∗

x
K =

∂Fx
K

∗ = 0. Substituting (13) and (14) into (12) then yields

∂Φx
J=(∂KJ)(∂Fx

K)(∂Φx
Fx)+(∂K∗J)(∂F∗

x
K

∗)(∂Φx
F

∗
x).



Combining ∂K∗J derived in [9, Lemma 1], with the fact that

∂KJ = (∂K∗J)∗ yields (9). Equations (10) and (11) follow

from identities vec(K) = (IQ⊗A)vec(Ft ⋄Fr) and vec(Ft ⋄
Fr) = ((IQ ⋄Ft)⊗ INr

)vec(Fr) = (INtQ ⋄ (Fr⊗1
T
Nt
)vec(Ft)

[20, Proposition 3.1.2]. Furthermore, we find that

∂Φx
Fx = jdiag(vec(Fx)). (15)

Confirming that ∂Φx
F

∗
x = (∂Φx

Fx)
∗ and ∂F∗

x
K

∗ = (∂Fx
K)∗

allows us to simplify ∂Φx
J using (15) as

∂Φx
J = 2ℜ{(∂KJ)(∂Fx

K)(∂Φx
Fx)}

= 2ℜ{j(∂KJ)(∂Fx
K)diag(vec(Fx))}

= −2ℑ{(∂KJ)(∂Fx
K) ◦ vecT(Fx)}. (16)

Finally, we obtain (8) by reshaping (16) into a Nx×Qmatrix.
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