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Abstract–Conventional hybrid analog-digital architectures for
millimeter-wave massive multiple-input multiple-output (MIMO)
systems suffer from poor scalability and high implementational
costs. The former is caused by the high power loss in the analog
network, and the latter is due to the fact that classic MIMO trans-
mission techniques require power amplifiers with high back-offs.

This paper proposes a novel hybrid analog-digital architecture
which addresses both of these challenges. This architecture imple-
ments the analog front-end via a passive reflect- or transmit-array
to resolve the scalability issue. To keep the system cost-efficient,
a digital precoder is designed whose peak-to-average power ratio
(PAPR) on each active antenna is tunable. Using the approximate
message passing algorithm, this precoder is implemented with
tractable computational complexity. The proposed architecture
allows for the use of power amplifiers with low back-offs which
reduces the overall radio frequency cost of the system. Numerical
results demonstrate that for low PAPRs, significant performance
enhancements are achieved compared to the state of the art.

Index Terms—Massive MIMO, mmWave, hybrid analog-digital
precoding, regularized least-squares, reflect- and transmit-arrays,
approximate message passing.

I. INTRODUCTION

Recent studies have shown the necessity of employing mas-

sive multiple-input multiple-output (MIMO) settings and mov-

ing towards the millimeter-wave (mmWave) spectrum to meet

the data rate demands in the next generations of wireless com-

munication systems [1], [2]. This fact has drawn attention to

the concept of hybrid analog-digital (HAD) precoding [3], [4].

Conventional HAD transmitters suffer from high power loss

in their analog feed networks. As a solution to this issue, an

energy-efficient HAD architecture based on reflect-array (RA)

and transmit-array (TA) antennas has been recently proposed

in [5]. In contrast to conventional designs, this architecture is

fully scalable with respect to the number of antennas.

The initial design in [5] employs linear precoding in the dig-

ital unit. Despite the advantage of low computational complex-

ity, there is a downside to such precoders: the peak-to-average

power ratio (PAPR) at each radio frequency chain (RFC) is

not restricted. Noting that the implementation cost scales with

the dynamic range1 of the RFCs, high PAPR either increases

This work has been presented in the 2019 Asilomar Conference on Signals,
Systems, and Computers. The link to the final version in the proceedings will
be available later.

1By dynamic range, we mean the power range in which the power amplifier
of the RFC behaves linearly. This range is often quantified by the back-off of
the power amplifier.

the cost for a desired performance level or causes performance

degradation for a fixed budget.

A. Contributions

In this study, we address the problem of constraining the

PAPR of HAD architectures focusing on the recent proposal in

[5]. Invoking the generalized least square error (GLSE) scheme

introduced in [6]–[8], we design a digital precoder whose out-

put PAPR on each active antenna is tunable. The proposed

precoder is implemented via the approximate message passing

(AMP) algorithm, so that its computational complexity scales

linearly with the number of active antennas. Our results de-

monstrate that by using the proposed scheme the performance

is significantly enhanced for low PAPRs.

B. Notation

Throughout the paper, scalars, vectors, and matrices are rep-

resented by non-bold, bold lower case, and bold upper case

letters, respectively. IK is the K×K identity matrix, and H
H is

the conjugate transpose of H. ‖H‖F denotes the Frobenius

norm of H. R and C are the real axis and complex plane,

respectively.E {·} denotes mathematical expectation. For sim-

plicity, {1, . . . , N} is abbreviated by [N ].

II. PROBLEM FORMULATION

Consider downlink transmission in a multiuser MIMO sys-

tem with a base station (BS) and K single-antenna users. The

BS employs the RA/TA HAD architecture proposed in [5]. The

architecture is shown in Fig. 1 and reviewed below.

A. Transceiver Architecture

The transmitter consists of a digital signal processing unit

with N RFCs and a passive array with M antenna elements.

This passive array is either an RA consisting of M passive re-

flectors or a TA with M passive re-transmitters. The array is

located at distance Rd from the RFCs; see Fig. 1.

B. HAD Precoding

Let sk be the information symbol intended for user k. The

digital unit maps s = [s1, . . . , sK ]
T

to the transmit signal

x ∈ CN using the digital precoder Πd (·) : CK 7→ C

N . Hence,

the digitally precoded signal is given by

x = Πd (s) . (1)

http://arxiv.org/abs/1912.00485v1
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Fig. 1: Block diagram of the RA/TA HAD transceiver.

The transmit signal x is then radiated via the RFCs towards

the passive array. Each element of the array either reflects or

re-transmits its receive signal after applying a phase shift. Fol-

lowing the characterization in [5], the signal transmitted by the

passive array is written as

w = DTx. (2)

In (2), the matrices T and D are defined as follows:

• T ∈ CM×N models the linear channel from the RFCs

to the passive array. In general, T depends on the array

positioning and characteristics. When all the active anten-

nas radiate with the same pattern and the passive elements

are isotropic, the (m,n) entry of T is given by [5]

[T]mn=

[

λ
√

ζG (θmn, φmn)

4πrmn

exp

{

−j2πrmn

λ

}

]

, (3)

for n ∈ [N ] and m ∈ [M ]. In (3),

– λ is the wavelength.

– ζ is the power efficiency of the passive antenna array.

– G (θ, φ) denotes the radiation pattern of the active an-

tennas where θ and φ are the elevation and azimuth an-

gles, respectively.

– (rmn, θmn, φmn) is the relative spherical coordinate of

the m-th passive element when the origin is located at

the n-th active antenna.

• D is an M ×M diagonal matrix which models the phase

shifts applied by the passive antenna elements. The diag-

onal entries of D are given by

[D]mm = exp {j2πβm} , (4)

where 0 ≤ βm ≤ 1. In practice, the passive elements ap-

ply quantized phase shifts; for example, architectures im-

plemented by transmission lines [9], [10]. Hence, βm

takes values from some set B = {B1, . . . , BQ} ⊂ [0, 1],
where Q denotes the number of quantization levels.

C. Channel Model

The signal radiated by the passive array is transmitted over

a Gaussian broadcast channel which experiences quasi-static

fading. The matrix of channel gains is denoted by H ∈ CK×M

and is known at the BS prior to signal transmission. The vector

of receive signals, i.e., y = [y1, . . . , yK ]
T

is hence given by

y = Hw + z = HDTx+ z, (5)

where z is additive white Gaussian noise with zero mean and

variance σ2, i.e., z ∼ CN
(

0, σ2
IK

)

.

D. Main Objectives

The HAD transmitter involves T, D and Πd (·), which need

to be designed:

(a) The design of T mainly requires the tuning of the antenna

characteristics and the array position.

(b) For the design of D, the optimal phase shift of each an-

tenna element should be determined.

(c) The digital precoder Πd (·), which is implemented in the

baseband domain, needs to be designed for a given set of

signal constraints, e.g. limited transmit power.

The update rates of these three blocks are not the same. D

and Πd (·) are often updated multiple times within a coherence

time interval while T is designed offline. We hence assume

that T has been tuned in advance and is kept fixed afterwards.

Existing proposals consider linear digital precoders [5], i.e.,

Πd (s) = As for some precoding matrix A. Such schemes can

result in high PAPR at the RFCs. To address this issue, in this

paper, we invoke the GLSE framework, recently introduced in

[6]–[8], and propose a PAPR-limited digital precoder based on

the regularized least-squares (RLS) method. For the sake of

tractability, we further develop an iterative algorithm based on

AMP to implement the digital precoder. The complexity of this

algorithm scales linearly with the number of active antenna

elements. This makes the proposed scheme practically feasible

for massive MIMO settings. The tuning strategy for D is fur-

ther discussed briefly in Section III-B.

E. Performance Metric

To quantify the performance, we consider the residual sum

of squares (RSS) at the receiver side as the metric. For a given

vector of information symbols s and its corresponding digitally

precoded signal x = Πd (s), the RSS is defined as

RSS (x,D|T) = ‖HDTx− s‖2. (6)

The RSS quantifies the average distortion between the noise-

free receive signals and the information symbols2. In the ideal

case, where the end-to-end channel is inverted, the RSS is zero.

III. HAD PRECODING WITH MINIMUM RSS

For given s, T, and signal constraints, the optimal choices

of D and Πd (·) with respect to the RSS are

(Πd (s) ,D) = argmin
Π̃∈P,D̃∈D

RSS
(

Π̃ (s) , D̃|T
)

, (7)

2More generally, the RSS can be defined as the distance between the noise-
free receive signals and a scaled version of the information symbols, i.e., re-
placing s with αs for some scalar α. For sake of simplicity, we set α = 1.



where P is the set of all mappings whose output entries satisfy

the given signal constraints. For example, if the transmit signal

is restricted to have a limited peak power, P contains all func-

tions Π̃ (·) : CK 7→ C

N for which the entries of the precoded

signal x̃ = Π̃ (s) satisfy |x̃n|2 ≤ P for some P . Moreover,

set D contains all possible phase shift matrices.

In (7), T is specified by the position and characteristics of

the passive and active antenna arrays. In this respect, one can

design the system such that

T = argmin
T̃∈T

EH,s

{

RSS
(

Πd (s) ,D|T̃
)}

(8)

where T is the set of all possible channel matrices between

the active and passive arrays3. The expectation in (8) averages

the RSS over all realizations of the channel coefficients, i.e.,

H, and the information symbols.

In the sequel, we focus on the design of the digital precoder

and the passive phase shifters considering a limited PAPR as

the design constraint. To this end, we note that

• The RSS is in general a mixed function of Πd (·) and D

meaning that (7) cannot be decomposed into two decou-

pled optimization sub-problems in terms of Πd (·) and D.

• The diagonal entries of D do not take values from a con-

vex set. Hence, the global minimum of the optimization

problem in (7) is not tractable.

To address these issues, we decompose the problem in (7) into

two mutually coupled sub-problems. In the first sub-problem,

we find the optimal precoder as a function of D via the RLS

method. Then, we substitute the solution into (7) and find an

approximation of the optimal choice for matrix D, noting that

this latter task is non-deterministic polynomial-time (NP)-hard.

We discuss our approach in detail in the following sections.

A. Designing the Digital Unit

Assuming a fixed D, one can interprete the effective end-to-

end channel He = HDT as a matrix of N regressors, and s as

a vector of K regressands assumed to be linearly related to the

regressors via N regression coefficients. These coefficients are

the entries of the digitally precoded signal x. By this interpre-

tation, RSS minimization is mathematically equivalent to the

least-squares formulation of this linear regression problem4.

The standard approach to solving this equivalent regression

problem is to utilize the RLS method in which we minimize a

penalized version of the RSS. The penalty term, often referred

to as the regularization term, is proportional to the constraints

required to be satisfied by the coefficients. Considering the

particular constraint of PAPR limitation, we note the following

items:

1) The average power of the transmit signal is required to be

restricted. Such a constraint can be imposed by penalizing

the RSS with a term proportional to ‖x‖2.

2) The power of the entries of x, i.e., xn for n ∈ [N ], should

be bounded from above. Such a constraint is enforced by

3Note that in (8), the digital precoder and the matrix of phase shifts in the

objective function are given by (7) which are also functions of T̃.
4See [8] for more details on this representation.

adding a barrier function to the RSS which tends to infin-

ity as |xn|2 > P for some peak power P . Alternatively,

we can restrict the support of the entries of x, over which

we minimize the RSS, to

X =
{

x ∈ C : |x|2 ≤ P
}

. (9)

Considering the above discussion, the RLS-based digital pre-

coder with limited PAPR is given by

Πd (s|D,T,H) = argmin
v∈XN

‖HDTv − s‖2 + µrls‖v‖2 (10)

with X given in (9) and some scalar µrls. We refer to µrls as

the regularizer. The arguments D, T, and H further indicate

the dependency of Πd (·) on the realizations of the channel co-

efficients and analog modules.

The precoder in (10) describes a state-dependent GLSE pre-

coder [8] whose output is calculated in polynomial time via

convex optimization techniques. However, one can further re-

duce the computational complexity via AMP. In [11], a class

of iterative algorithms based on AMP has been developed for

generic GLSE precoding schemes. Invoking the formulation in

[11], the precoding scheme in (10) is implemented iteratively,

such that its complexity grows linearly with N . For the sake of

brevity, we skip the derivations for the AMP-based algorithm

and refer interested readers to [11] for more details.

B. Designing the Phase Shifters

The digital precoder in (10) is designed as a function of D.

The phase shifts for the passive antenna elements are hence

optimally set by minimizing the RSS with respect to D. In

other words, D is optimally tuned by solving

D = argmin
D̃∈D

RSS
(

Πd

(

s|D̃,T,H
)

, D̃|T
)

. (11)

D can be written as D = diag {d} for some vector d ∈ DM ,

where5

D = {exp {j2πB1} , . . . , exp {j2πBQ}} (12)

with 0 ≤ Bq ≤ 1 for q ∈ [Q]. As a result, the optimal choice

for D is written as D = diag {d⋆} where

d
⋆ = argmin

d∈DM

f (d) (13)

with

f (d) = RSS (Πd (s|diag {d} ,T,H) , diag {d} |T) . (14)

The direct approach to solving (13) is not tractable for the

following reasons:

1) Since the precoded signal is a function of D, f (d) does

not have a simple analytical form.

2) Even for convex forms of f (d), the optimization problem

in (13) reduces to the problem of integer programming,

and hence is an NP-hard problem6.

5In the limiting case of Q → ∞, D converges to the unit circle.
6Note that the problem remains NP-hard, even when Q → ∞.



Algorithm 1 Iterative HAD Precoding

Initiate Set x0 and D0 to some feasible initial values. Choose

threshold DTh and maximum number of iteration Tmax.

while ‖Dt+1 −Dt‖F ≥ DTh and t ≤ Tmax

◮ Update the precoded signal as

xt+1 = Πd (s|Dt,T,H)

with Πd (·) given in (10).

◮ Update the phase shifts as

Dt+1 = Alg (xt+1,H,T)

where Alg (·) is an algorithm approximating the solution

of (13) for

f (d) = RSS (xt+1, diag {d} |T) .

◮ Update t← t+ 1.

end while

Output: xT and DT , where T is index of the final iteration.

We hence develop a suboptimal approach which approximates

the solution of (13). This approach finds D and its correspond-

ing precoded signal iteratively. In each iteration,

• the precoded signal x is first determined for a fixed D

from (10);

• D is then updated by (13) treating x as a constant vector.

Note that for a constant x, f (d) has a quadratic form.

These steps are then repeated with the updated version of D.

The algorithm continues iterating until it either fulfills a stop

criterion or exceeds the maximum number of iterations. Op-

timization problem (13) is solved in each iteration via a sub-

optimal computationally tractable algorithm. We refer to this

algorithm as Alg (·); an example of Alg (·) can be derived via

the iterative gradient projection technique [12] or manifold

optimization [13]. For more examples of such algorithms; see

[5], [14], [15], and the references therein.

The proposed approach with an exemplary stop criterion is

summarized in Algorithm 1.

IV. NUMERICAL RESULTS

To investigate the performance of the proposed scheme, we

study a scenario with K = 8 users, N = 4 RFCs, and M = 64
passive elements. Throughout the simulations, the wavelength

is set to λ = 5 mm.

A. Settings for the Passive and Active Arrays

The passive array contains 64 antenna elements installed on

an aperture of size 4λ × 4λ. The active antennas are further

arranged on a ring with radius Rr = λ parallel to the passive

array. The center of the ring and the passive array coincide on

the horizontal plane and are separated by Rd = 4λ/
√
π.

The active antennas on the RFCs radiate with the same pat-

tern which is horizontally omnidirectional and vertically uni-

form over [π/6, 5π/6]. This means that7

G (θ, φ) =

{

1 θ ∈ [π/6, 5π/6] and φ ∈ [0, 2π]

0 otherwise
. (15)

B. Channel, Information Symbols, and Transform T

The entries of H, as well as the information symbols, are

generated independently, where [H]km ∼ CN (0, 1/M) and

sk ∼ CN (0, 1) for k ∈ [K] and m ∈ [M ]. T is first calculated

from (3), and then normalized, such that all the entries lie on

the unit circle.

C. Numerical Simulations

Since our focus is on PAPR restriction at the digital unit, we

set D to a fixed matrix and do not iterate further to optimize D.

The phase shifts at the passive array can be further optimized

by setting Alg (·) in Algorithm 1 to the gradient projection

scheme given in [12, Algorithm 1].

The simulations are given for J = 104 independent realiza-

tions. The precoder in (10) is further implemented via AMP

following the derivations in [11]. To quantify the performance

of the proposed scheme, we define two parameters:

1) The per-antenna PAPR which for active antenna n reads

PAPRn =





1

J

J
∑

j=1

|xn (j)|2




−1

max
j∈[J]

|xn (j)|2 , (16)

where x (j) is the j-th realization of the transmit vector.

The PAPR is determined by averaging PAPRn over n.

2) The average RSS is defined as

RSS =
1

K

J
∑

j=1

RSS (x (j) ,D,T) . (17)

Fig. 2 shows RSS versus PAPR for the proposed scheme

when the peak power is set to P = 1. The simulation points

are found by sweeping the regularizer µrls, and the dashed line

is obtained by interpolating the simulation points. From Fig. 2,

it is observed that as PAPR grows, RSS decreases.

For sake of comparison, we further plot the curve for the

regularized zero forcing (RZF) scheme. With RZF, the digital

precoder reads

x̃ = H
H

e

(

HeH
H

e + µrzfIK

)−1
s (18)

with He = HDT for some scalar µrzf . To restrict the peak

power, the RZF signal is clipped prior to transmission, i.e.,

xn =







x̃n |x̃n|2 < P√
Px̃n

|x̃n|
|x̃n|2 > P

, (19)

where xn denotes the entry transmitted by the n-th RFC.

7This radiation pattern is assumed for sake of simplicity. In practice, pat-
terns with high directivity towards the passive array can be used in order to
avoid unwanted power loss in the system.
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Fig. 2: Average RSS versus average PAPR.

As the figure reveals, at low PAPRs, the proposed scheme

significantly outperforms RZF precoding. This is due to the

fact that in this regime, the RZF signal is significantly distorted

by clipping. For high PAPR, both precoders perform similarly.

This observation agrees with the fact that PAPR-limited GLSE

precoding reduces to RZF as PAPR→∞; see [8].

V. CONCLUSIONS AND FINAL REMARKS

The HAD structure proposed in [5] combined with GLSE

precoding [8] results in a cost-efficient transmitter for massive

MIMO systems. Utilizing AMP, the preprocessing complexity

grows linearly with the number active transmit antennas which

is computationally tractable.

The framework presented in this paper is also applicable for

other constraints on the transmit signal. Moreover, investiga-

tions under realistic millimeter wave channel models further

enlighten the efficiency of the proposed scheme. The work in

these directions is currently ongoing.
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