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Abstract—In-band full-duplex systems allow for more efficient
use of temporal and spectral resources by transmitting and re-
ceiving information at the same time and on the same frequency.
However, this creates a strong self-interference signal at the
receiver, making the use of self-interference cancellation critical.
Recently, neural networks have been used to perform digital
self-interference with lower computational complexity compared
to a traditional polynomial model. In this paper, we examine
the use of advanced neural networks, such as recurrent and
complex-valued neural networks, and we perform an in-depth
network architecture exploration. Our neural network architec-
ture exploration reveals that complex-valued neural networks can
significantly reduce both the number of floating-point operations
and parameters compared to a polynomial model, whereas the
real-valued networks only reduce the number of floating-point
operations. For example, at a digital self-interference cancellation
of 44.51dB, a complex-valued neural network requires 33.7%

fewer floating-point operations and 26.9% fewer parameters
compared to the polynomial model.

I. INTRODUCTION

For beyond-5G communication systems to reach orders-of-

magnitude better performance than current systems, a com-

bination of new techniques are required. One such technique

is in-band full-duplex (FD), where information is transmitted

and received simultaneously and on the same frequency band.

While FD systems have long been considered impractical due

to the strong self-interference (SI) caused by the transmitter to

its own receiver, more recent work on the topic (e.g., [1]–[4])

has demonstrated that it is possible to achieve sufficient SI

cancellation to make FD systems viable.

The SI cancellation is usually performed in multiple steps,

with the goal of reducing the SI signal to the receiver noise

floor. The SI is usually first partially removed in the analog RF

domain, applying either passive and/or active suppression to

avoid saturating the analog-to-digital converter (ADC) of the

receiver. However, analog cancellation is generally expensive

due to the additional analog circuitry and a residual SI signal

typically still remains at the receiver, which is canceled in the

digital domain. This requires modeling the non-linear effects

of the different stages of the transceiver, such as digital-

to-analog converter (DAC) and ADC non-linearities [5], IQ

imbalance [5], [6], phase-noise [7], [8], and power amplifier

(PA) non-linearities [4]–[6], [9]. Traditionally, this has been

done using polynomial models, which have been shown to

work well in practice. However, the polynomial models have
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Fig. 1: Simplified wireless FD transceiver block diagram [11].

a high implementation complexity as the number of estimated

parameters grows rapidly with the maximum considered non-

linearity order. As an alternative to polynomial models, neural

networks (NNs) have recently been proposed for SI cancel-

lation [10], [11] where it was shown that NNs can achieve

similar SI cancellation performance with a polynomial model

with significantly lower computational complexity.

Contribution: In this work, we revisit and extend the work

of [10]. More specifically, in addition to real-valued (feed-

forward) NNs (RVNNs), we also consider recurrent neural net-

works (RNNs) and complex-valued neural networks (CVNNs).

Moreover, we perform an in-depth network architecture explo-

ration to evaluate the performance of the different NNs as a

function of the number of floating-point operations (FLOPs)

and the number of NN parameters. This exploration shows

that the CVNNs consistently require fewer parameters than

their real-valued counterparts for the same SI cancellation

performance, indicating that the complex-valued represen-

tation is more powerful for the SI cancellation problem.

Moreover, we also show that the CVNNs can reduce both the

number of FLOPs and parameters compared to a polynomial

model, whereas the various real-valued networks (RVNNs)

typically only reduce the number of floating-point operations

and increase the number of parameters. For example, at an

SI cancellation of 44.45dB, a CVNN requires 33.7% fewer

FLOPs and 26.9% fewer parameters than the polynomial

model, while an RVNN (specifically, a real-valued RNN)

requires 30.5% fewer FLOPs but 69.2% more parameters.

II. BACKGROUND

In this section, we first describe the main task of digital SI

cancellation. Then, we provide an overview of the existing

methods for digital SI cancellation and we provide some

background on RNNs and CVNNs.

http://arxiv.org/abs/1912.06818v1
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Fig. 2: Example of an FFNN for the reconstruction of the

non-linear component of the SI signal [10]. The network is

composed of input- ( ), hidden- ( ), and output-nodes ( ).

A. Self-Interference Cancellation

A basic block diagram of an FD transceiver is shown in

Fig. 1. If a signal-of-interest from a remote node is not present

and assuming that some form of analog SI cancellation is

performed, the received signal y[n] is the SI signal that needs

to be canceled in the digital domain. The goal of the digital

SI cancellation is to reconstruct an estimate of the SI signal

y[n], denoted ŷ[n], which is a non-linear function of the

transmitted baseband samples. The estimated SI signal ŷ[n]
is then subtracted from y[n] so that the residual SI signal

is e[n] = y[n] − ŷ[n]. Then, the amount of SI cancellation

for a window of length N , expressed in dB, is given by

CdB = 10 log10

(∑
N−1

n=0
|y[n]|2

∑
N−1

n=0
|e[n]|2

)

.

1) Non-Linear Polynomial SI Cancellation: For the poly-

nomial SI canceller, the dominant non-idealities to consider

are the IQ-mixer and the power amplifier (PA) in the trans-

mitter [4], [9], while the remaining transceiver components are

assumed to be ideal. With these assumptions, a state-of-the-art

polynomial SI cancellation model is given as [4]

y[n] =

P
∑

p=1,
p odd

p
∑

q=0

L−1
∑

l=0

hp,q[l]x[n− l]qx∗[n− l]p−q, (1)

where x[n] is the transmitted digital baseband signal, L

corresponds to the overall memory of the system, and P is the

non-linearity order. The ĥp,q parameters contain the combined

effects from the IQ-mixer, the PA, and the SI channel and they

can be obtained using least-squares estimation.

2) Feed-Forward Neural Network SI Cancellation: As

shown in Fig. 2, a feed-forward NN (FFNN) has three types of

nodes: input nodes, hidden nodes, and output nodes. The input

to each node of a given layer is a weighted sum of the outputs

of the nodes in the previous layer, and the output of each node

is obtained by applying a non-linear activation function to this

weighted sum. The SI signal can be conceptually decomposed

as y[n] = ylin[n]+ynl[n], where ylin[n] represents the linear part

and ynl[n] the non-linear part. The linear part can be estimated

using standard linear cancellation, while the remaining part,

ynl, is estimated using the NNs and the two terms are added

to re-generate the SI cancellation signal ŷ[n] = ŷlin[n]+ ŷnl[n].
Since the baseband samples are complex-valued, the real and

imaginary parts are split and provided as separate inputs to all

the RVNNs as shown in Fig. 2.

TABLE I: CVNN activation functions.

Amp-Phase [15] f(z) = tanh(|z|) exp(iθz)

Cardioid [16] f(z) = 1

2
(1 + cos(θz))z

modReLU [17] f(z) = max(0, |z|+ b) exp(iθz)

CReLU [18] f(z) = ReLU(ℜ(z)) + iReLU(ℑ(z))

zReLU [15] f(z) =

{

z θz ∈ [0, π/2]

0

B. Advanced Neural Networks

1) Recurrent Neural Networks: The transceiver chain

shown in Fig. 1 have memory, motivating the use of recurrent

neural networks (RNNs), a different type of NN architecture

more suitable for learning from sequential data. For a fully-

connected RNN with a single recurrent layer and one output

layer, the computation for each time-step is given by

h[n] = σ (Whx[n] +Uhh[n− 1] + bh) , (2)

y[n] = Wyh[n] + by, (3)

where h[n] is the RNN state at time n with input x[n] and y[n]
is the RNN output. The activation function in the recurrent

layer is typically a hyperbolic tangent, σ(x) = e2x−1
e2x+1 . For the

RNN, L time-steps of inputs are used to generate the final

state h[L− 1], which is then provided to the output layer.

2) Complex-Valued Neural Networks: While complex-

valued signals can be represented by considering the real

and imaginary parts separately, this representation generally

does not respect the phase information that is captured by

complex algebra. This motivates the use of complex-valued

neural networks (CVNNs), where both the network parameters

and operations are complex-valued. However, a real-valued

scalar loss function of complex variables is not complex-

analytic and therefore not complex-differentiable, thus raising

the question of how a CVNN can be trained. One solution is

to use Wirtinger calculus [12] (or CR calculus [13]) to obtain

the complex-valued gradients required to train a CVNN.

Let z ∈ C and f(z) ∈ R. The direction of steepest ascent

for f is then given as the derivative with respect to z∗, i.e.,
∂f(z)
∂z∗

[14]. Using Wirtinger calculus, the derivative
∂f(z)
∂z∗

can

be calculated by re-writing f(z) as a bi-variate function of

z and z∗, f(z, z∗), and then treat z∗ as the variable and z

a constant. Alternatively, C can be regarded as R2, and the

complex derivatives can be obtained by considering the partial

derivatives with respect to the real and imaginary parts

∂f

∂z
,

1

2

(

∂f

∂x
− j

∂f

∂y

)

and
∂f

∂z∗
,

1

2

(

∂f

∂x
+ j

∂f

∂y

)

(4)

Numerous activation functions have been proposed in the

literature for CVNNs. Table I shows the different activation

functions considered in this work.

III. NETWORK ARCHITECTURE EXPLORATION

METHODOLOGY

In this section, we briefly describe the data set and our

methodology for the NN architecture exploration.



TABLE II: Mean non-linear cancellation on the test set ±1

standard deviation for the activation functions using a CVNN

with 1 hidden layer of 10 units.

Amp-Phase Cardioid modReLU CReLU zReLU

7.0± 0.3 7.8± 0.1 3.1± 0.3 7.5± 0.2 1.8± 0.4

A. Data Set

The data set consists of QPSK-modulated OFDM signals

with a pass-band bandwidth of 10MHz and Nc = 1024
carriers, sampled at 20MHz. Each transmitted OFDM frame

consists of ∼20 000 baseband samples, with 90% used for

training and the remaining 10% used for testing. An average

transmit power of 10 dBm is used and the employed two-

antenna setup provides a passive analog suppression of 53 dB.

Active analog cancellation is not used as the achieved passive

suppression is sufficient for this work. The test-bed and

the data set are described in more detail in [5] and [10],

respectively.

B. Experimental Setup

For the NN experiments, the various NNs are considered

for different widths and depths to determine their performance

as a function of their computational complexity and memory

complexity. We use W to denote the width (i.e., the number

of neurons) of a layer. The notation W−W−W is used to

indicate an NN with 3 hidden layers and W neurons in each

layer. All NNs also have an output layer, with the RVNNs

having 2 outputs for the real and imaginary parts and the

CVNNs having only 1 complex-valued output. For the FFNNs

and RNNs, we consider shallow networks of widths W =
2, 4, . . . , 20, and for the deep FFNNs and RNNs we consider

the widths W−W−W = 2−2−2, 4−4−4, . . . , 20−20−20.

For the CVNNs, we consider the sizes W = 1, 2, . . . , 10, and

for the deep CVNNs we consider the sizes W−W−W =
1−1−1, 2−2−2, . . . , 10−10−10. The polynomial model

in (1) is considered for powers P = 3, 5, 7, 9. For all NNs

and the polynomial models, we use L = 13 as in the previous

work on NNs for SI cancellation with the same data-set [10].

For each of the considered NNs, a hyperparameter search

is performed using a grid-search for each NN to select the

best values of the learning rate and the batch size. A total

of 20 points are sampled from the hyperparameter space,

and 5-fold cross-validation is used on the training set for the

hyperparameter search with 5 random weight initializations

per fold. For the learning-rate, we sample from a continuous

uniform distribution unif(10−6, 0.05) and for the batch-size,

we sample from a discrete uniform distribution unif(4, 64).
The NNs are then trained on the entire training set with the best

hyperparameters and with 20 different random initializations to

see observe the effect of the initialization on the performance.

All models are implemented using Tensorflow, which has built-

in support for complex-valued operations. All models use the

Adam optimizer [19], with the default values for all parameters

except for the batch-size and learning-rate, which are selected

during the hyperparameter search.

IV. RESULTS

In this section, we present the results of the network

architecture exploration. Specifically, we first briefly discuss

the results of training CVNNs with different activation func-

tions, we then consider the training behavior of the FFNNs,

RNNs, and CVNNs and, finally, we present the SI cancellation

performance of the different NNs as a function of the number

of FLOPs and parameters.

A. Complex-Valued Activation Functions

Table II shows the results of training the same CVNN with

1 hidden layer of W = 10 neurons for the different activation

functions given in Table I. The best performance is obtained

with the cardioid and CReLU activation functions. However,

the cardioid function is only marginally better than the CReLU

function, while being more expensive to compute. The mod-

ReLU and zReLU functions have the worst performance,

similarly to [18] where the CReLU function in all cases

performed significantly better than the modReLU and zReLU

functions. The Amp-Phase activation function also achieves

a relatively high performance level, however, we observed

during training that the convergence to a good performance

level is much slower than the cardioid and CReLU functions.

The cardioid and CReLU functions reach 6 dB of non-linear

cancellation within the first 5 epochs, with the Amp-Phase

function requiring 10 epochs. Therefore, in the remainder of

this section, we use the CReLU function for all CVNNs.

B. Training

In principle, the NNs could learn to provide the full (i.e.,

linear and non-linear) cancellation, but, as we show in this

section, this is difficult in practice. Fig. 4 shows the results of

training some shallow and deep FFNNs and CVNNs without

first applying a linear SI canceler. The SI linear canceler

alone achieves 37.9dB cancellation and the NNs are unable

to achieve a performance much higher than this, even when

using deeper networks. Essentially, ynl is significantly weaker

than ylin, so the noise in the gradient computation hides the

non-linear structure from the learning algorithm.

Fig. 3 shows the performance for the NNs when the linear

cancellation ylin is performed separately from the NNs, and

the NNs instead learn to cancel only ynl. In this case, the total

cancellation achieved is much higher than what is possible

when the NNs have to learn to perform the full cancellation.

This shows that for the problem of SI cancellation, the

inclusion of expert knowledge is essential. We observe that

the FFNNs in Fig. 3a and the CVNNs in Fig. 3b achieve their

peak performance after a small number of epochs and remain

relatively stable, whereas the RNNs in Fig. 3c require more

epochs to converge and show a much higher variation, both

across different initializations and from one epoch to the next.

C. Complexity vs Cancellation Performance

In Fig. 5, we present the test set performance of the

different NNs trained with the hyperparameters selected from

the search. Fig. 5a and Fig. 5b show the total (i.e., linear and
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Fig. 3: Mean cancellation on the non-linear test set for 20 different random network initializations ±1 standard deviation.
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Fig. 4: Mean cancellation on the test set without linear

cancellation for 20 different random network initializations ±1
standard deviation.

non-linear) SI cancellation performance with respect to the

number of real-valued FLOPs and the number of real-valued

parameters, respectively. The number of real-valued FLOPs

and the number of real-valued parameters are a proxy for the

computational complexity and the memory requirement of the

various SI cancelers, respectively. The number of FLOPs is the

sum of the number of equivalent real-valued additions, multi-

plications, and applications of activation functions. Complex-

valued additions and multiplications are converted to real-

valued operations assuming that one complex multiplication

can be implemented using 3 real multiplications and 5 real

additions and one complex addition can be implemented using

2 real additions. For the NN-based cancelers, the number of

FLOPs and parameters include the linear canceler. Moreover,

to perform a best-case complexity analysis for the polynomial

canceler, it is assumed that the calculation of the polynomial

basis functions in (1) comes at no computational cost. Finally,

we only count the use of an activation function, as the specifics

of how exactly an activation function is computed is an

implementation detail that is difficult to abstract otherwise.

For the performance as a function of the number of FLOPs,

we observe that all the models cluster closely together at

an SI cancellation around 44 dB. However, it is clear the

CVNNs require much fewer parameters than the other models

for the same performance. Finally, the RNNs do not provide

significant performance improvements compared to the other

models and there is no clear benefit of using deeper NNs.

The polynomial model performance peaks around 44.8dB
for P = 9, but this requires a very large number of FLOPs

that puts it outside the figure. For the sake of comparing a

specific performance point, we consider the polynomial model

for P = 5 that achieves an SI cancellation of 44.45dB, and

then we take the closest NNs which are either equal to or better

than the polynomial model in performance. The improvement

of the various NN-based cancelers over the polynomial-based

canceler is shown in Table III. We observe that the FFNNs

reduce the number of FLOPs, but increase the number of

parameters significantly. Moreover, the CVNNs are the only

NNs capable of reducing both the number of FLOPs and the

number of parameters. In general, we can observe from Fig. 5

that for SI cancellation higher than 43.5 dB only the CVNNs

remain better than the polynomial model for both the number

of FLOPs and the number of parameters, whereas the other

NNs generally use more parameters than the polynomial model

and only reduce the number of FLOPs.

D. Maximum Cancellation Performance

In Fig. 5, we observe that the CVNNs achieve the highest

cancellation performance of all the considered SI cancellers.

This indicates that for the problem of SI cancellation, the

CVNNs seem to have more representational power. However,

the RVNNs still achieve a maximum performance close to that

of the CVNNs. As shown earlier, one of the best activation

functions for the CVNNs is the CReLU function, which

applies the ReLU separately to the real and imaginary parts.

It is expected that this type of activation function works well

for problems where some symmetry or a special meaning

on the real and imaginary parts is required [15]. It is also

implied in [15] that a network processing n-dimensional

information with activation functions similar to CReLU, has

neural dynamics similar to that of an RVNN processing
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Fig. 5: Test set performance for all models as a function of

their computational and memory complexity.

2n-dimensional real-valued information, where the real and

imaginary parts are dealt with separately and independently.

This may provide a more intuitive explanation as to why the

maximum performance of the CVNNs and RVNNs is similar.

V. CONCLUSION

In this paper, we provided an investigation into the trade-

offs of applying different NNs at different performance goals

for SI cancellation in FD radios. We showed that CVNNs

consistently require much fewer parameters than their real-

valued equivalents for the same SI cancellation performance,

indicating that the complex-valued representation is more

powerful for this problem. Moreover, we showed that only

CVNNs can reduce both the number of parameters and FLOPs

compared to the polynomial SI canceller. The use of the

CReLU activation function for the CVNNs also indicates that

the neural dynamics of the CVNNs may resemble that of

the RVNNs, providing an intuitive explanation as to why the

difference in maximum performance is relatively close for

the CVNN and RVNNs. Overall, when performing a careful

NN architecture exploration combined with hyperparameter

tuning, the results are somewhat less favorable (while still

being very good in certain cases) than our initial results

reported in [10], where we only considered a single NN

architecture with fixed hyperparameters and a single SI can-

cellation performance point. This highlights the importance of

a rigorous comparison that is unfortunately often overlooked

in the literature that applies NNs to communications problems.

TABLE III: Reduction of # FLOPs and # parameters relative

to the polynomial model at an SI cancellation of 44.45dB.

The polynomial model has 1556 FLOPs and 312 parameters.

Cancellation # FLOPs # Parameters

FFNN (18) 44.48 dB −27.5% +76.3%
Deep FFNN (10-10-10) 44.61 dB −29.8% +72.4%
CVNN (7) 44.69 dB −27.9% −23.7%
Deep CVNN (4-4-4) 44.51 dB −33.7% −26.9%
RNN (20) 44.57 dB −30.5% +69.2%
Deep RNN (16-16-16) 44.49 dB +82.4% +355.1%
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