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Linköping University, 58183 Linköping, Sweden
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Abstract—We study opinion dynamics in a social network
with stubborn agents who influence their neighbors but who
themselves always stick to their initial opinion. We consider

first the well-known DeGroot model. While it is known in the
literature that this model can lead to consensus even in the
presence of a stubborn agent, we show that the same result holds
under weaker assumptions than has been previously reported.
We then consider a recent extension of the DeGroot model in
which the opinion of each agent is a random Bernoulli distributed
variable, and by leveraging on the first result we establish that
this model also leads to consensus, in the sense of convergence
in probability, in the presence of a stubborn agent. Moreover, all
agents’ opinions converge to that of the stubborn agent.

I. INTRODUCTION

The study of opinion dynamics in social networks goes back

several decades; for a review, see e.g. [1], [2]. One of the most

well-known models is the DeGroot model [3] which has been

studied extensively (for a literature survey see for instance [1,

Section 3] and [2, Section 3]). In this model an agent’s opinion

is represented by a continuous real variable, which at each time

step n ∈ {1, 2, . . .} is updated to a linear combination of the

opinions of itself and its neighbors,

x[n+ 1] = Tx[n], (1)

where x[n] represents the agents’ opinions at time n and T is a

matrix that encodes the trust between agents (this is explained

in detail in Section III-A).

A particular case in opinion dynamics is where one or

more agents are stubborn (agents whose opinions remain

unchanged independent of the others’ opinions). This scenario

was first introduced by Mobilia in 2003 [4] who established

convergence rates towards consensus under the so-called voter

model [5] with a single stubborn agent. The voter model

was again considered in [6] where the optimal placement

of stubborn agents for maximal influence on the long-term

expected opinions was investigated, among other properties. In

[7] the authors considered a model in which agents can have

a continuous degree of stubbornness, and gave bounds on the

rate of convergence to a consensus of opinions. A more recent

study [8] showed that the influence of stubborn agents under

the DeGroot model can, under suitable conditions, be used to

recover the topology of the network. Specifically the authors

derived equations for the expected opinions of the ordinary

(non-stubborn) agents that depend on the topology, and then

showed how a regression problem could be formulated which

estimated matrices with information about the topology by

observing opinions that fit the equations.

Another class of models incorporates randomness, for

example in terms of random interactions [9], [10] or as

in [11], where at each time n a randomly selected agent

communicates a random opinion to its neighbors. The latter

model also features the interesting novelty that an agent

may grow increasingly stubborn over time. A recent exten-

sion of the DeGroot model which incorporates randomness

was given in [12]. Under this setting, at every time step n

each agent k chooses a Bernoulli distributed random action

Ak[n] ∼ Bernoulli(Xk[n]), and the corresponding update

rule is

X [n+ 1] = (1− α)X [n] + αTA[n], (2)

as described further in Section III-B.1 In this model, which

we will refer to as the Random Actions model (RA model

for short), the probabilities of the actions, rather than the ac-

tions/opinions themselves, are updated as a weighted average

over the neighbors’ actions.

II. CONTRIBUTIONS

We extend the RA model by the introduction of a stubborn

agent and establish that the opinion dynamics converges in

probability to a consensus even under this restriction, and

furthermore that all agents adopt the stubborn agent’s initial

opinion. While this result is intuitively expected, the proof

entails some non-trivial mathematical techniques.

As a stepping stone towards the analysis of the afore-

mentioned model we first consider the DeGroot model with

a stubborn agent as described in [8] and show that the

convergence results from that paper can be obtained with

weakened assumptions on the model. Specifically, instead of

assuming that every ordinary agent has a non-zero trust in the

stubborn agent, it suffices to assume that at least one ordinary

agent has such a trust. We then use this conclusion in proving

the claims regarding the extended RA model.

III. MODELS AND DEFINITIONS

In both models described in this section, we will consider a

directed, weighted, single-component network with K nodes,

1We use uppercase letters for random variables, e.g., X[n]. They are
distinguishable from matrices (which are deterministic), e.g., T ,Q, since the
matrices are not time dependent.
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where the nodes are interpreted as agents. Before giving the

details of the models, let us at this point remind the reader of

some definitions. A sub-(row)-stochastic matrix is a square,

non-negative matrix such that the row sums are less than

or equal to 1. The word “row” will be omitted and implied

from hereon. There are two special cases of these matrices: A

stochastic matrix is a sub-stochastic matrix where all rows sum

to 1, and a strictly sub-stochastic matrix is a sub-stochastic

matrix whose row sums are all strictly less than 1.

A. The DeGroot Model with a Stubborn Agent

In the DeGroot model [3], at every time step n ∈ {0, 1, . . .},

each agent k ∈ {1, 2, . . . ,K} observes the opinions of its

neighbors, and updates its opinion to a linear combination of

its own opinion and those of its neighbors. The update rule is

given by Equation (1) where x[0] ∈ R
K is a column vector

representing the initial opinions of the K agents and T is

a K × K stochastic matrix representing the trusts between

agents. If T n converges to a limit T∞ as n → ∞, then

consensus is reached and is given by

lim
n→∞

x[n] = lim
n→∞

T nx[0] = T∞x[0]. (3)

If the agents are viewed as nodes in a network, then T is

interpreted as an adjacency matrix with elements tij , and we

use the convention that tij > 0 represents an edge from j to

i whose weight is equal to the trust that i puts in j.

A special case is when one agent is stubborn, that is,

an agent who never updates its opinion, corresponding to

a node with only outgoing edges. Let the agents’ opinions

be partitioned into two sets of opinions, x1[n] and y[n] =
(x2[n], x3[n], . . . , xK [n])T , held respectively by a stubborn

agent and K − 1 ordinary agents. Then we write

x[n] =

(

x1[n]
y[n]

)

. (4)

In this case the trust matrix T has the structure

T =

[

1 0
r Q

]

, (5)

where the scalar 1 represents the stubborn agent, the vector r

with dimensions (K−1)×1 represents the links from stubborn

to ordinary agent, and the matrix Q represents the edges

between ordinary agents. We will assume that all ordinary

agents are strongly connected, so that Q is irreducible.

B. The RA Model with a Stubborn Agent

In the RA model [12], at every time step each agent

k ∈ {1, 2, . . . ,K} chooses one of two actions, 0 or 1, and

these actions are generated by a Bernoulli random variable

Ak[n] with probability Xk[n]. The update of these proba-

bilities is governed by Equation (2), where α ∈ (0, 1), T
is a trust matrix (as defined in Section III-A), and A[n] =
(A1[n], A2[n], . . . , AK [n])T are the actions with correspond-

ing probabilities X[n] = (X1[n], X2[n], . . . , XK [n])T ∈
[0, 1]K , which themselves are stochastic for n > 0.

In the case with a stubborn agent we can assume w.l.o.g.

that this agent always chooses action 0 with probability 1.

Analogously to equations (4) and (5), we have

X[n] =

(

0
Y [n]

)

, T =

[

1 0
r Q

]

, A[n] =

(

A1[n]
B[n]

)

(6)

where r has dimension (K − 1) × 1 and B[n] =
(A2[n], A3[n], . . . , AK [n])T . Then A1[n] = 0 with probability

1 for all n ≥ 0 and the other agents will update as in the

original RA model. Again we assume that Q is irreducible.

IV. RESULTS

The first proposition establishes the conditions for conver-

gence of the model in Section III-A with trust matrix T as

defined in (5).

Proposition 1. If at least one ordinary agent puts a non-zero

trust in the stubborn agent, that is, ti1 > 0 for some i > 1,

then the limit T n, n→ ∞, exists and has the structure

T∞ =

[

1 0

(I − Q)−1
r 0

]

.

For the proof of Proposition 1 we need the following lemma.

Lemma 1. Let A be an M ×M irreducible sub-stochastic

matrix with at least one row sum being strictly less than 1, and

let ρ(A) be the spectral radius of A. It holds that ρ(A) < 1.

The proofs of all lemmas in this article are given in the

appendix. Note that for a strictly sub-stochastic matrix A, we

can remove the assumption of irreducibility since it follows

directly from Theorem 8.1.22 in [13] that ρ(A) < 1.

Proof of Proposition 1. The nth power of T is

T n =

[

1 0
(I +Q+Q2 + · · ·+Qn−1)r Qn

]

, (7)

where Q is sub-stochastic with at least one row having sum

strictly less than 1. This is due to the assumption that ti1 > 0
for some i > 1, and since T is stochastic, the ith row of

Q must have sum less than 1. Finally, since Q is irreducible,

Lemma 1 applies, and we have ρ(Q) < 1. By Theorem 5.6.12

in [13], this implies that

lim
n→∞

Qn = 0. (8)

Now, consider

(I −Q)

n−1
∑

k=0

Qk =

n−1
∑

k=0

(

Qk −Qk+1
)

= I −Qn. (9)

By Equation (8), the right hand side of (9) tends to I in the

limit as n → ∞, and since ρ(Q) < 1 the matrix I − Q is

invertible.2 It follows that

lim
n→∞

n−1
∑

k=0

Qk = (I −Q)−1. (10)

2To see this, suppose I −Q is not invertible. Then there exists a non-zero
vector v such that (I − Q)v = 0, or equivalently Qv = v, which shows
that 1 is an eigenvalue of Q. But this is impossible since ρ(Q) < 1.



With the previously discussed decomposition of x[n] into

stubborn and ordinary agents in (4), the opinions of ordinary

agents converge as n→ ∞:

lim
n→∞

y[n] = (I −Q)−1rx1[0]. (11)

The second proposition concerns the RA model in Section

III-B with a stubborn agent.

Proposition 2. The opinion dynamics of (2) under the re-

strictions imposed by (6) leads to herding in the sense of

convergence in probability, i.e., for every ε > 0,

lim
n→∞

P(Xk[n] < 1− ε) = 0, for all k ∈ {1, 2, . . . ,K}.

The first part of the proof of Proposition 2 treats the con-

vergence of opinions towards a consensus in the subnetwork

induced by the ordinary agents and follows partly the proof

of Theorem 1 in [12], but with some modifications due to the

presence of the stubborn agent. The second part shows that

the consensus opinion must be equal to that of the stubborn

agent. In this part we deviate from [12] in that we show

convergence in probability, as opposed to the claimed proof of

almost sure convergence therein, which we have been unable

to verify. A detailed discussion of the differences will be

provided elsewhere. We need the following facts for the main

proof.

Lemma 2. If {W [n]}∞n=0 is a sequence of random variables

such that W [n] ∈ [0, 1] for all n ≥ 0, and

lim
n→∞

E[W [n]2(1−W [n])2] = 0,

then for all ε > 0,

lim
n→∞

P(W [n] ≤ ε ∪ W [n] ≥ 1− ε) = 1.

Lemma 3. Consider the update rule in (2) with X[n] =
(X1[n], X2[n], . . . , XK [n])T . Suppose agent i puts trust in

agent j (so that tij > 0). If Xj[n]
P
−→ 0 and

lim
n→∞

E[Xi[n]
2(1−Xi[n])

2] = 0,

then Xi[n]
P
−→ 0.

Proof of Proposition 2. Let Y [n], B[n], r and Q be defined

as in (6). Since the vector r has at least one positive element,

Q is sub-stochastic with at least one row sum strictly less than

one, so by Lemma 1 it has a largest eigenvalue λ ∈ (0, 1)
with corresponding left eigenvector ψ, ψTQ = λψT . Let

S[n] = ψT
Y [n]. The proof will proceed as follows: First we

show that S[n] is a strict super-martingale that converges in the

limit as n→ ∞ to a random variable S[∞]. Then we show that

the conditional variance of the martingale difference sequence

S[n]− S[n− 1] converges to zero in the mean square sense.

We conclude that all elements in Y [n] converge in probability

to the value of the stubborn agent, X1[0] = 0.

We will now show that S[n] is a strict super-martingale

w.r.t. Y [n], that is, E[S[n+1] | Y [n]] < S[n]. First, note that

by the update rule in Equation (2),

X[n+ 1] =

[

0
Y [n+ 1]

]

= (1− α)

[

0
Y [n]

]

+ αT

[

0
B[n]

]

.

(12)

Then we have

S[n+1] = ψTY [n+1] = ψT
(

(1−α)Y [n]+αQB[n]
)

, (13)

and by taking expectations of both sides conditioned on Y [n]
we obtain

E[S[n+ 1]|Y [n]] = (1− α)ψTY [n] + αλψTY [n]

= (1− α(1− λ))S[n] < S[n],
(14)

since (1 − λ) ∈ (0, 1) and α ∈ (0, 1). Thus S[n] is a strict

super-martingale, and since S[n] ≥ 0 for all n it follows from

the Martingale Convergence Theorem [14, Theorem 4.2.12]

that

S[n]
a.s.
−−→ S[∞], (15)

for some random variable S[∞] as n→ ∞.

Consider now the martingale difference sequence ∆S[n] =
S[n] − S[n − 1] for n > 1. First note that the almost sure

convergence of S[n] in Equation (15) implies

∆S[n]
a.s.
−−→ 0, n→ ∞. (16)

Furthermore, Q is irreducible and non-negative, so by the

Perron-Frobenius Theorem [13, Theorem 8.4.4] all elements of

ψ are positive. Let ψ be normalized so that 1Tψ = 1, where

1T = (1, 1, . . . , 1). Since Yk[n] ∈ [0, 1], k = 1, 2, . . . ,K − 1,

for all n ≥ 0 we then have S[n] ≤ 1 and |∆S[n]| =
|ψT (Y [n] − Y [n − 1])| ≤ 1. Therefore, by the Dominated

Convergence Theorem [14, Theorem 1.5.8] together with the

almost sure convergence in (16), ∆S[n] converges to 0 in mth

mean, i.e.,

lim
n→∞

E[|∆S[n]|m] = 0, for all m ≥ 1. (17)

We will now show that the variance of ∆S[n+1] conditioned

on Y [n] converges to zero in the mean square sense as n →
∞, and then conclude that the elements of Y [n] converge in

probability to all 0s or all 1s. We have:

Var(∆S[n+ 1] | Y [n])

= E
[(

∆S[n+ 1]− E[∆S[n+ 1] | Y [n]]
)2

| Y [n]
]

= E
[(

ψT (Y [n+ 1]− Y [n])−

ψT
E[Y [n+ 1]− Y [n] | Y [n]]

)2
| Y [n]

]

= E
[(

ψTY [n+ 1]− ψT
E[Y [n+ 1] | Y [n]]

)2
| Y [n]

]

= E
[(

ψT ((1− α)Y [n] + αQB[n])

−ψT ((1− α)Y [n] + αQY [n])
)2

| Y [n]
]

= E
[(

αψTQ(B[n]− Y [n])
)2

| Y [n]
]

= α2λ2ψT
E
[

(B[n]− Y [n])(B[n]− Y [n])T | Y [n]
]

ψ,
(18)



where in the last step we used that ψ is a left eigenvector to

Q with eigenvalue λ. The actions B[n] ∼ Bernoulli(Y [n])
are statistically independent conditioned on Y [n], so only the

diagonal elements of the covariance matrix E
[

(B[n]−Y [n]) ·
(B[n]−Y [n])T | Y [n]

]

are non-zero. They can be expressed

explicitly as

E
[

B2
k[n] | Y [n]

]

−
(

E
[

Bk[n] | Y [n]
])2

= Yk[n]− Yk[n]
2

= Yk[n](1− Yk[n]), for all k = 1, 2, . . . ,K − 1.

(19)

Therefore,

Var(∆S[n+ 1] | Y [n])

= α2λ2
K−1
∑

k=1

ψ2
kYk[n](1− Yk[n]).

(20)

To see that the left hand side of (20) converges to zero in the

mean square sense, consider its square:

(Var(∆S[n+ 1] | Y [n]))2

=
(

E[(∆S[n+ 1])2 | Y [n]]− (E[∆S[n+ 1] | Y [n]])2
)2

=
(

E[(∆S[n+ 1])2 | Y [n]]
)2

+
(

E[∆S[n+ 1] | Y [n]]
)4

− 2E[(∆S[n+ 1])2 | Y [n]]
(

E[∆S[n+ 1] | Y [n]]
)2

≤
(

E[(∆S[n+ 1])2 | Y [n]]
)2

+
(

E[∆S[n+ 1] | Y [n]]
)4

≤ E[(∆S[n+ 1])4 | Y [n]] + E[(∆S[n+ 1])4 | Y [n]]

= 2E[(∆S[n+ 1])4 | Y [n]],
(21)

where the first inequality holds since (∆S[n + 1])2 is non-

negative, and the second inequality is due to Jensen’s inequal-

ity [14, Theorem 1.6.2]. By taking expectations on both sides

of (21) and using the result of convergence in mth mean in

(17), we obtain

lim
n→∞

E[(Var(∆S[n+ 1] | Y [n]))2]

≤ 2 lim
n→∞

E
[

E[(∆S[n+ 1])4 | Y [n]]
]

= 2 lim
n→∞

E[(∆S[n+ 1])4] = 0.

(22)

As already noted, all elements of ψ are positive which, in view

of Equation (20) together with the mean square convergence

just proved, means that

lim
n→∞

E[(Yk[n](1−Yk[n]))
2] = 0, for all k = 1, 2, . . . ,K−1.

(23)

By Lemma 2 this implies that for all Yk[n], k = 1, 2, . . . ,K−1
and for all ε > 0, we have

lim
n→∞

P(Yk[n] < ε ∪ Yk[n] > 1− ε) = 1. (24)

Let the set of ordinary agents be denoted by O, and define

V0 as the subset of ordinary agents who put a trust in the

stubborn agent, i.e., V0 = {i ∈ O | ti1 > 0} ⊆ O; let V1 ⊆
O \ V0 denote the set of ordinary agents who put a trust in

at least one of the agents in V0, and so on. Then by Lemma

3 together with (24) it follows that the elements in {Yk[n] |
k ∈ V0} must converge in probability to 0. Consequently, the

elements in {Yk[n] | k ∈ V1} must again converge to 0. Since

Q is irreducible there is some index P such that the union of

the disjoint sets V1, V2, . . . , VP makes up the set of ordinary

agents, i.e.,
P
⋃

p=1

Vp = O. (25)

By continuing in this fashion it therefore follows that all

elements in {Yk[n] | k ∈ O} must converge in probability

to the value of the stubborn agent, X1[n] = 0.

APPENDIX

Proof of Lemma 1. Let 1 = (1, 1, . . . , 1)T and for any

m, 1 ≤ m ≤ M, let r
(n)
m = [An1]m be the m-th row

sum of An = {a
(n)
ij }. Since A is sub-stochastic we have that

0 ≤ r
(1)
m ≤ 1 for all m, and further that for any n ≥ 1,

r(n+1)
m =

M
∑

j=1

a
(n+1)
mj =

M
∑

j=1

(

M
∑

k=1

a
(n)
mkakj

)

=

M
∑

k=1



a
(n)
mk

M
∑

j=1

akj



 =

M
∑

k=1

a
(n)
mkr

(1)
k .

(26)

Therefore

r(n+1)
m ≤

M
∑

k=1

a
(n)
mk = r(n)m , (27)

so the row sums are non-increasing with powers of A. By

assumption at least one row sum is strictly less than 1, so

w.l.o.g. we can assume that the rows of A are ordered such

that this applies to the first row sum, i.e., r
(1)
1 < 1. By the

irreducibility of A, for any m there is a positive integer lm
such that a

(lm)
m1 > 0 (since the induced network is strongly

connected). In fact, if m 6= 1 we have lm < M (take the

shortest path from node m to node 1). By using (26) we

therefore obtain, for any row m,

r(lm+1)
m =

M
∑

j=1

a
(lm)
mj r

(1)
j =

M
∑

j=2

a
(lm)
mj r

(1)
j + a

(lm)
m1 r

(1)
1

≤

M
∑

j=2

a
(lm)
mj + a

(lm)
m1 r

(1)
1 <

M
∑

j=1

a
(lm)
mj = r(lm)

m ,

(28)

which together with (27) shows that every row sum of An is

strictly less than 1 for all n ≥M . By Theorem 8.1.22 in [13],

the spectral radius of a non-negative matrix is bounded from

above by the maximum row sum. This means that ρ(AM ) < 1,

and since ρ(AM ) = ρ(A)M , we therefore obtain ρ(A) <
1.

Proof of Lemma 2. Let µ > 0, and set γ = µε2(1 − ε)2. We

know that

lim
n→∞

E[W [n]2(1 −W [n])2]

= lim
n→∞

∫ 1

0

w2(1− w)2fW [n](w)dw = 0,
(29)



where fW [n](w) is the probability density function of W [n].
Thus there exists N > 0 such that A+B+C < γ for n ≥ N ,

where

A =

∫ ε

0

w2(1− w)2fW [n](w)dw,

B =

∫ 1−ε

ε

w2(1− w)2fW [n](w)dw,

C =

∫ 1

1−ε

w2(1− w)2fW [n](w)dw.

(30)

But A > 0 and C > 0, so B < γ for all n ≥ N , and

γ > B ≥ ε2(1− ε)2
∫ 1−ε

ε

fW [n](w)dw, (31)

which implies

∫ 1−ε

ε

fW [n](w)dw ≤
γ

ε2(1− ε)2
= µ. (32)

Since (32) holds for all µ > 0 and ε > 0, we have

lim
n→∞

P(ε < W [n] < 1− ε) = 0, (33)

or equivalently,

lim
n→∞

P(W [n] ≤ ε ∪ W [n] ≥ 1− ε) = 1. (34)

Proof of Lemma 3. We know from Lemma 2 that for all ε > 0
and δ > 0 there exists N1 > 0 such that for all n ≥ N1,

P(ε < Xi[n+ 1] < 1− ε) <
δ

2
. (35)

The assumption that Xj [n]
P
−→ 0 as n→ ∞, together with the

uniform integrability of Xj [n] (it is bounded by the interval

[0, 1]) implies that the expected value of Xj[n] also converges

to 0. (This is a standard result in probability theory. See, e.g.,

[14, Theorem 5.5.2].) Thus, for all δ > 0 there exists N2 > 0
such that for all n ≥ N2,

E[Xj [n]] <
δ

2
. (36)

We want to show that Xi[n]
P
−→ 0 as n → ∞. To this end,

recall that α ∈ (0, 1) and that tij > 0 since we assume that i

puts a trust in j. Let 0 < ε < αtij and δ > 0. Then for all

n > max{N1, N2}, we have

P(Xi[n+ 1] > ε)

= P(Xi[n+ 1] ≥ 1− ε) + P(ε < Xi[n+ 1] < 1− ε)

< P(Xi[n+ 1] ≥ 1− ε) +
δ

2

=

∫

x

P(Xi[n+ 1] ≥ 1− ε |X[n] = x)fX[n](x)dx+
δ

2

=

∫

x

P
(

(1− α)xi + α

K
∑

k=1

tikAk[n] ≥ 1− ε |X [n] = x
)

· fX[n](x)dx+
δ

2

≤

∫

x

P(1− α+ α(1 − tij(1 −Aj [n])) ≥ 1− ε |X[n] = x)

· fX[n](x)dx+
δ

2

=

∫

x

P(αtij(1−Aj [n]) ≤ ε | X[n] = x)fX[n](x)dx+
δ

2

=

∫

x

P(1−Aj [n] ≤
ε

αtij
|X[n] = x)fX[n](x)dx+

δ

2

≤

∫

x

xjfX[n](x)dx+
δ

2

= E[Xj [n]] +
δ

2
<
δ

2
+
δ

2
= δ,

(37)

where the first inequality follows from (35), the second

inequality follows from the facts that
∑K

k=1 tikAk[n] ≤
∑K

k=1,k 6=j tik + tijAj [n] = 1− tij + tijAj [n] and Xi[n] ≤ 1,

and the last inequality follows from (36). We have also

used the fact that Aj [n] ∼ Bernoulli(Xj [n]) conditioned on

Xj [n].
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