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Abstract—Cell-free Massive MIMO systems consist of a large
number of geographically distributed access points (APs) that
serve users by coherent joint transmission. Downlink power
allocation is important in these systems, to determine which
APs should transmit to which users and with what power. If the
system is implemented correctly, it can deliver a more uniform
user performance than conventional cellular networks. To this
end, previous works have shown how to perform system-wide
max-min fairness power allocation when using maximum ratio
precoding. In this paper, we first generalize this method to
arbitrary precoding, and then train a neural network to perform
approximately the same power allocation but with reduced
computational complexity. Finally, we train one neural network
per AP to mimic system-wide max-min fairness power allocation,
but using only local information. By learning the structure of
the local propagation environment, this method outperforms the
state-of-the-art distributed power allocation method from the
Cell-free Massive MIMO literature.

Index Terms—Cell-free Massive MIMO, Power allocation,
Max-min fairness, Deep learning, Scalability.

I. INTRODUCTION

Coordinated distributed wireless systems liberate the con-

ventional co-located multiple-input multiple-output (MIMO)

from its shackles of inherent form-factor constraint [1]. If

an arbitrarily large number of collaborative access points

(APs) jointly serve the users in a wide area, it constitutes

a dense large network without any cell boundaries. This type

of systems is gaining popularity with the name of Cell-free

massive MIMO (mMIMO) systems [2]–[4]. It reaps many

of the advantages of two cornerstone technologies: mMIMO

(e.g., favorable propagation) and Network MIMO (e.g., more

uniform user performance) by exploiting coherent signal co-

processing among multiple distributed APs.

The main challenge in bringing such a network to reality

is scalability, in terms of computational complexity for signal

processing and resource allocation, fronthaul requirements,

etc. General guidelines for Network MIMO were provided

in [5] and later particularized for Cell-free mMIMO in [6],

[7]. Existing algorithms in Network MIMO, or coordinated

multipoint (CoMP), are mainly limited by three factors [6]:

1) Dependency on the availability of full channel state in-

formation (CSI) in the network, or at least partial CSI

that is shared between neighboring APs. In future ultra
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dense networks, where the number of APs grows large,

significant communication overhead will be incurred in

acquiring and disseminating CSI to all of the cooperative

APs or to an edge cloud computer.

2) An enormous amount of information regarding the payload

data (e.g., coding/modulation scheme, decoding errors)

must be monitored to guarantee user satisfaction. Immense

buffer sizes and fronthaul signaling capacity are required to

store and share such global information over the network.

3) The time delay and complexity incurred during channel

estimation, precoding/combining, and fronthaul signaling

increase at least linearly with the number of APs.

Most of these issues were overlooked in the early works

on Cell-free mMIMO [2], [4]. However, the recent works

[6], [7] have indicated that a scalable implementation might

be realizable in practice. This paper focuses on the scalable

implementation of downlink power allocation algorithms.

Network-wide downlink power allocation algorithms for

Cell-free mMIMO systems were developed in [4], [8] for the

purpose of achieving max-min fairness; that is, all user equip-

ments (UEs) get the same spectral efficiency (SE) and that

common value is maximized. The results apply to maximum

ratio (MR) precoding with long-term power constraints, which

are undesirable assumptions since the use of regularized zero-

forcing (RZF) precoding at every AP gives higher SE [6] and

real systems are subject to short-term power constraints [9].

Even in the case when these algorithms are applicable, the

deployment feasibility is limited since global CSI must be

available at a central processing unit (CPU) and the compu-

tational complexity grows polynomially with the number of

APs and UEs. The first of these issues can be addressed by

utilizing the dynamic cooperation cluster (DCC) concept [5],

[6], in which each user is assumed to be served by a user-

centrically selected subset of the APs with the best channel

conditions. In this paper, we first develop an optimal power

allocation algorithm for max-min fairness in DCC-based Cell-

free mMIMO systems, but the complexity is unscalable. We

then utilize the learn to optimize framework [10], [11] for

offline training of deep neural networks (DNNs) that perform

approximated max-min fairness power allocation.

More precisely, we train one DNN to perform centralized

power allocation with reduced computational complexity. We

also train one DNN per AP to perform distributed power

allocation using only locally available information as input,
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but training it using the globally optimal max-min fairness

solution. Hence, different from the heuristic power allocation

method that was recently proposed in [7], each AP is utilizing

a unique algorithm that can take the actual network structure

and propagation environment into account.

Notations: x, x, X denote a scalar, vector, and matrix,

respectively. (·)T, (·)H, | · |, ‖ · ‖, IX stand for transpose,

Hermitian transpose, absolute value, the L2 vector norm, and

X×X identity matrix, respectively. The multivariate circular

symmetric complex Gaussian distribution with correlation

matrix R is denoted NC(0,R).

II. SYSTEM MODEL

We consider a Cell-free mMIMO system with K single-

antenna UEs and L APs, each equipped with N antennas. We

assume a block fading channel model where the channels are

static within time-frequency coherence blocks with τc channel

uses, and independent random channel realizations appear in

each block. The channel between the kth UE and the lth AP

is denoted as hkl ∈ C
N×1 and is modeled by correlated

Rayleigh fading hkl ∼ NC(0,Rkl), where Rkl ∈ C
N×N

is the spatial correlation matrix. The normalized trace βkl =
1/N tr(Rkl) accounts for the average channel gain from an

antenna at AP l to UE k.

The APs are connected to a CPU via fronthaul connections,

which are used to convey uplink and downlink data between

the APs and the CPU. The connections are assumed to be

error-free but the capacity is limited, thus each UE can only

be served by a subset of the APs. No instantaneous CSI is

conveyed over the fronthaul.

A. Channel Estimation

We consider a time division duplex (TDD) protocol having

a pilot transmission phase for channel estimation and a data

transmission phase. Following the standard TDD protocol [1],

the coherence block is divided in three parts: τp for uplink

pilot transmission, τu for uplink data transmission, and τd for

downlink data. It thus follows that τc = τp + τu + τd.

In the uplink pilot phase, a set of τp mutually orthogonal τp-

length pilots are utilized. Each UE is assigned to one of these

pilots. Let us denote the subset of UEs that are assigned to

pilot t as Pt ⊂ {1, . . . ,K}. The received signal y
p
tl ∈ C

N×1

at AP l when the UEs in Pt transmit is defined as

y
p

tl =
∑

i∈Pt

√
τppihil + ntl (1)

where pi is the transmit power from the ith UE and ntl ∼
NC(0, σ

2IN ) is the additive white Gaussian noise (AWGN)

with variance σ2. By utilizing the standard minimum mean

square error (MMSE) estimator at the lth AP, the estimate of

the channel hkl from UE k ∈ Pt is [3]

ĥkl =
√
τppkRkl

(

∑

i∈Pt

τppiRil + σ2IN

)−1

y
p

tl

∼ NC

(

0, τppkRklΦ
−1
kl Rkl

)

(2)

where Φkl = E{yp
tl (y

p
tl)

H} =
∑

i∈Pt
τppiRil + σ2IN

denotes the correlation matrix of the pilot signal.

B. DCC Framework Based Cell-free mMIMO

We assume that each AP serves a subset of the UEs and

we use the DCC framework [5], [6]. We let Dl ⊂ {1, . . . ,K}
denote the UEs served by the lth AP. In accordance to [5],

we then define the matrices Dkl ∈ C
N×N , for l = 1, . . . , L

and k = 1, . . . ,K, as

Dkl =

{

IN for k ∈ Dl,

0N for k /∈ Dl.
(3)

Notice that this matrix is IN if the kth UE is served by the

lth AP and 0N otherwise. The received downlink signal at

the kth UE reads as

ydlk =
L
∑

l=1

h
H

kl

∑

i∈Dl

√
ρilwilsi + nk (4)

=

L
∑

l=1

h
H

kl

K
∑

i=1

√
ρilDilwilsi + nk (5)

where ρil is the downlink power allocated to UE i by AP l
and wil ∈ C

N×1 is the corresponding normalized precoding

vector with ‖wil‖2 = 1. Moreover, si denotes the signal

transmitted to UE i and nk ∼ NC(0, σ
2) is the receiver noise.

The benefit of using the matrix notation in (5), instead of

the set notation in (4), is that sizes of all matrices and vectors

become independent of which APs serve which UEs. This will

be convenient in Section III. The original Cell-free mMIMO

model in [2], [4] is obtained by setting Dl = {1, . . . ,K} and

thus Dkl = IN for all l and k. Practical methods to select the

sets D1, . . . ,DL are found in [5], [6].

C. Downlink SE

The downlink SE of Cell-free mMIMO was characterized

for MR precoding with long-term power constraints in [2], [4].

This enabled the development of max-min power allocation

optimization. The SE with arbitrary precoding schemes was

considered in [6], but the expression was not amendable for

power optimization. The following lemma provides a new

simplified expression for the general case, which will enable

the power optimization in Section III.

Lemma 1. An achievable downlink SE for UE k is

SEdl
k =

τd
τc

log2

(

1 + SINRdl
k

)

(6)

where

SINRdl
k =

∣

∣

∣

∣

L
∑

l=1

√
ρklE{hH

klDklwkl}
∣

∣

∣

∣

2

L
∑

l=1

K
∑

i=1

ρilE
{

|hH

klDilwil|2
}

−
L
∑

l=1

ρkl |E{hH

klDklwkl}|2+σ2

(7)

is the effective signal-to-interference-and-noise ratio (SINR).



The SE expression in Lemma 1 can be utilized along with

any precoding scheme and correlated Rayleigh fading model.1

We consider precoding vectors {wil} satisfying short-term

power constraints, which means that ‖wil‖2 = 1 must be

satisfied in every coherence block and not on average (i.e.,

E{‖wil‖2} = 1) as in [2], [4]. This is the conventional

approach to precoding normalization [5]. We notice that

the relaxed long-term average power constraints are popular

in Massive MIMO because they lead to closed-form SINR

expressions. The relaxation is rather tight in Massive MIMO

since the channel hardening makes ‖wil‖2 ≈ E{‖wil‖2}.

However, the same relaxation should not be used in Cell-free

mMIMO since the channel between an AP with few antennas

and a UE does not harden (although the joint channel from

all APs might harden in some cases).

An arbitrary normalized precoding vector is defined as

wkl = w̄kl/‖w̄kl‖ where w̄kl can be arbitrarily selected.

In this paper, we consider MR and RZF precoding, which are

defined as

w̄kl =











ĥkl for MR,
(

∑

i∈Dl

piĥilĥ
H

il + σ2IN

)−1

pkĥkl for RZF.
(8)

III. DOWNLINK MAX-MIN POWER ALLOCATION

In this section, we generalize the max-min fairness algo-

rithm from [2], [4] to general precoding schemes and corre-

lated Rayleigh fading. Hence, the goal is to find the optimal

power allocation coefficients {ρkl : ∀k, l} that maximize the

lowest SE among all UEs in the network. Hence, we select

the coefficients to give all UEs the same effective SINR and

this value is to be maximized, under the constraint that each

AP has the same maximum power P dl
max. This means that the

power constraint at AP l is
∑K

k=1 ρkl ≤ P dl
max.

Before formulating the max-min fairness optimization

problem, we first rewrite (7) as

SINRdl
k =

∣

∣

∣

∣

L
∑

l=1

µklakl

∣

∣

∣

∣

2

L
∑

l=1

K
∑

i=1

µ2
ilbkil + σ2

(9)

by introducing the new variables µkl =
√
ρkl and

akl = E{hH

klDklwkl} (10)

bkil = E

{

|hH

klDilwil|2
}

−
{

0 for i 6= k,

|akl|2 for i = k.
(11)

The max-min fairness optimization problem is then expressed

in epi-graph form as

maximize
{µkl:∀k,l},s

s (12)

subject to SINRdl
k ≥ s, k = 1, . . . ,K,

K
∑

i=1

µ2
il ≤ P dl

max, l = 1, . . . , L.

1Actually, it holds for any arbitrary independent fading distribution.

The first constraint in (12) can be rewritten as

1

s

∣

∣

∣

∣

∣

L
∑

l=1

µklakl

∣

∣

∣

∣

∣

2

≥
L
∑

l=1

K
∑

i=1

µ2
ilbkil + σ2. (13)

After taking the square root on both sides and noting that one

can always rotate the phase of precoders to make alk ≥ 0,

(13) is rewritten as

√

1

s

L
∑

l=1

µkl|akl| ≥

√

√

√

√

L
∑

l=1

K
∑

i=1

µ2
ilbkil + σ2 (14)

and, equivalently, in vector form as
√

1

s
cT

kµk ≥
∥

∥

∥

∥

Bk

[

µ

σ

]
∥

∥

∥

∥

(15)

where ck = [|ak1| . . . |akL|]T ∈ C
L×1, and µk =

[µk1 . . . µkL]
T ∈ C

L×1. Bk = diag
(√

bk11 . . .
√
bkKL 1

)

∈
C

(KL+1)×(KL+1) and µ = [µT

1 . . . µT

K ]
T ∈ C

KL×1.

Hence, (12) can be equivalently written as

maximize
{µkl:∀k,l},s

s (16)

subject to

√

1

s
cT

kµk ≥
∥

∥

∥

∥

Bk

[

µ√
σ2

]∥

∥

∥

∥

, k = 1, . . . ,K,

K
∑

i=1

µ2
il ≤ P dl

max, l = 1, . . . , L.

This is still a non-convex problem but we notice that if s is

constant, the SINR constraint in (15) becomes a second-order

cone (SOC) constraint. Hence, for a given s, the problem in

(16) becomes a second-order cone program (SOCP), which

can be solved through the bisection method [5] by considering

a sequence of s that converges to the global optimum. In each

subproblem, the following problem must be solved:

maximize
{µkl:∀k,l},c

c (17)

subject to

√

1

S
cT

kµk ≥
∥

∥

∥

∥

Bk

[

µ√
σ2

]
∥

∥

∥

∥

, k = 1, . . . ,K

K
∑

i=1

µ2
il ≤ cP dl

max, l = 1, . . . , L

and verified to be feasible and have c ≤ 1 at the solution. Note

that the power scaling variable c is introduced to improve the

algorithm convergence, as suggested in [5]. If not included,

the bisection algorithm requires an extremely high number of

iterations (accuracy) to find the max-min solution.

IV. NEURAL NETWORK BASED POWER ALLOCATION

The central goal of this paper is to demonstrate that large-

scale fading information is sufficient for computing the opti-

mal powers. This is in contrast to the traditional optimization

approach for solving (17) that requires knowledge of {akl}
and {bkil}. We advocate using the UEs’ large-scale fading

coefficients {βkl} to perform power allocation because they

already capture the main feature of propagation channels and
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Fig. 1: In the numerical evaluation, L = 9 APs with fixed locations are
considered as shown in this figure. In every user drop, K = 5 UEs are
dropped randomly in the area.

interference in the network, and can be easily measured in

practice based on the received signal strength. Therefore, for

a given location of APs, the problem is to learn the unknown

mapping between {βkl} and the optimal square-roots of the

transmit powers {µ∗
kl}. This is achieved by leveraging that

DNNs are universal function approximators [10], [12].

We use a fully connected feed-forward DNN with N hidden

layers. The output layer provides an estimate {µ̂kl} of {µ∗
kl}.

The problem is thus to train effectively the weights and

biases of the DNN so that it can learn {µ∗
kl}. We consider

two different DNNs with both MR and RZF precoding.

The first is the so-called centralized DNN that receives as

input the entire large-scale fading coefficients {βkl : ∀k, l}
and provides as output the network-wide square-roots of the

powers {µ̂kl : ∀k, l}. The second DNN is called decentralized

because it operates on a per-AP basis. Specifically, the DNN

of AP l receives as input only the locally available coefficients

{βkl : ∀k} and aims to learn the local estimate {µ̂kl : ∀k}
of optimal powers. The advantage of the decentralized DNN

is that no exchange of large-scale fading coefficients among

APs is required, which is important for a scalable network

operation [6]. Moreover, the number of trainable parameters

per AP largely reduces. We stress that each AP has a unique

DNN that captures features of the local propagation environ-

ment and where the AP is located compared to other APs.

The complexity of the approach above is mainly the gener-

ation of the training dataset. Suppose each layer of a DNN has

Ni neurons. The number of multiplications and addition for

each layer is NiNi−1 and 2Ni, i = 1, . . . , N , respectively.

Each layer needs to evaluate Ni activation functions. Once

trained, the DNN allocates the transmit power very rapidly

without actually solving (17). In practice, such decisions need

to be made when the large-scale fading coefficients change

due to large-scale movements, the addition of new UEs, or

when UEs go from active to inactive mode.

V. NUMERICAL EVALUATION

To demonstrate the ability to learn how to perform power

allocation based on only large-scale fading coefficients, we

TABLE I: Simulation parameters of the Cell-free mMIMO network

Cell area (wrap around) 150 m2

Bandwidth 20 MHz
Number of APs L = 9

Number of UEs K = 5

Number of antennas per AP M = 2

Pathloss exponent (α) α = 3.76

Maximum downlink transmit power per AP Pdl
max = 1 W

UL noise power −94 dBm
UL transmit power pi = 100 mW

Length of coherence block τc = 200

TABLE II: Layout of centralized DNN for whole network with L = 9 and
K = 5. Number of trainable parameters: 241965.

Size Parameters Activation Function

Input KL -
Layer 1 (Dense) 128 5888 elu
Layer 2 (Dense) 512 66048 elu
Layer 3 (Dense) 256 131328 sigmoid
Layer 4 (Dense) 128 32896 sigmoid
Layer 5 (Dense) KL 5805 relu

TABLE III: Layout of decentralized DNN for an AP with L = 9 and K = 5.
Number of trainable parameters: 3877.

Size Parameters Activation Function

Input K -
Layer 1 (Dense) 16 96 elu
Layer 2 (Dense) 64 1088 elu
Layer 3 (Dense) 32 2080 sigmoid
Layer 4 (Dense) 16 528 sigmoid
Layer 5 (Dense) K 85 relu

consider a Cell-free mMIMO network with L = 9 APs at

fixed locations in a square of 150m ×150m, as illustrated in

Fig. 1. The large-scale fading coeffcients are generated as [3]

βkl = −30.5− 36.7 log10

(

dkl
1m

)

dB (18)

where dkl is the distance of UE k from AP l. In each

realization of the network, K = 5 UEs are independently

and random uniformly distributed in the area. The APs are

deployed 10m above the UEs. All other simulation parameters

are reported in Table I. The length of the pilot sequences is

τp = K, so orthogonal pilots are allocated to the UEs. We

consider the downlink with MR or RZF precoding.

The centralized and decentralized DNNs used with both

precoding schemes are reported in Tables II and III, whose

trainable parameters are 241965 and 3877, respectively. The

DNNs were trained based on a dataset of Ns = 249900
samples of independent realizations of the user locations,

corresponding to large-scale fading coefficients {βkl(n) : n =
1, . . . , Ns} and the corresponding max-min power allocation

variables {µ⋆
kl(n) : n = 1, . . . , Ns} for any given pair k and l.

Particularly, 90% percent of the samples was used for training

and 10% for validation. The remaining 100 samples formed

the test dataset, which is independent from the training dataset

and is used to generate the simulation results presented in this

section. We used the Adam optimizer and categorical cross-

entropy as loss function. The number of epochs, batch size

and learning rate are optimized by a trial-and-error method.
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The performance of both DNNs is evaluated by computing

the cumulative distribution function (CDF) of the downlink

SE per user, where the randomness is due to the UE locations.

Comparisons are made with the performance achieved by the

max-min optimization algorithm developed herein and the

heuristic power allocation recently proposed in [7], where

each AP uses full power and allocates power to UE propor-

tionally to the square root of the channel estimation variance.

Fig. 2 shows the CDF with MR precoding. The centralized

DNN closely follows the performance achieved with the max-

min algorithm. The distributed DNN outperforms [7] for 80%

of the UEs, but lower SE for the 20% most unfortunate users.

A possible explanation for the performance improvement

using the DNN based power allocation is that it learns the

propagation environment of the network so that every AP can

apply a locally optimized power allocation policy. However,

there is still a substantial gap between the distributed and

centralized methods.

Fig. 3 shows the CDF of downlink SE per user with RZF

precoding. For 40% users, the centralized DNN power allo-

cation closely approximate the conventional max-min fairness

algorithm without having to actually solve (17). It achieves

42% higher average SE than that of [7]. In addition, local

DNN at each AP achieves 4% higher SE compared to [7].

VI. CONCLUSIONS

In this paper, we proposed a deep learning framework for

downlink power allocation in a Cell-free mMIMO network

with MR and RZF precoding and short-term power con-

straints. We developed the optimal power allocation strategy

using the max-min fairness approach (which was previously

only known for MR precoding with long-term power con-

straints) and used it to generate the training dataset for DNNs.

We showed that a properly trained feed-forward DNN is able

to learn how to allocate powers. This is achieved by using only

large-scale fading information, thereby substantially reducing

the complexity and processing time of the optimization pro-
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Fig. 3: CDF of DL SE per UE with RZF.

cess. Also, we showed that a decentralized DNN at each AP

can allocate power more effectively as compared to previous

heuristic methods. However, there is still improvements to be

made since the gap between the decentralized and centralized

methods is rather large.
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