
Training DNA Perceptrons via Fractional Coding
Xingyi Liu and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455, USA

Email: liux3138@umn.edu, parhi@umn.edu

Abstract—This paper describes a novel approach to synthesize
molecular reactions to train a perceptron, i.e., a single-layered
neural network, with sigmoidal activation function. The approach
is based on fractional coding where a variable is represented
by two molecules. The synergy between fractional coding in
molecular computing and stochastic logic implementations in
electronic computing is key to translating known stochastic
logic circuits to molecular computing. In prior work, a DNA
perceptron with bipolar inputs and unipolar output was proposed
for inference. The focus of this paper is on synthesis of molecular
reactions for training of the DNA perceptron. A new molecular
scaler that performs multiplication by a factor greater than
1 is proposed based on fractional coding. The training of
the perceptron proposed in this paper is based on a modified
backpropagation equation as the exact equation cannot be easily
mapped to molecular reactions using fractional coding.

Index Terms—Molecular Computing, Fractional Coding, Per-
ceptron, Backpropagation, Molecular Scaler, DNA Computing.

I. INTRODUCTION

Since the pioneering work on DNA computing by Adleman,
there has been growing interest in DNA computing for signal
processing and machine learning functions [1]. For example,
several logic functions and simple arithmetic operations have
been simplemented in vitro using bimolecular reactions [2]–
[4]. In recent work, fractional coding has been introduced in
[5], [6] for molecular implementations of Markov chains and
for computing polynomials using Bernstein expansion. The
synergy between fractional coding in molecular computing and
stochastic logic in electronic computing was first established
in [7]. This synergy is significant as it enables every stochastic
logic circuit to be translated to a molecular circuit. Based on
prior stochastic logic circuit implementations in [8], several
complex mathematical functions and perceptrons for inference
applications were implemented using molecular computing
based on fractional coding [7]. A molecular radial basis
function kernel for support vector machines was also presented
in [9] based on fractional coding.

Inspired by stochastic logic for electronic computing [10],
a value X can be represented by two molecules: a 1-molecule
(X1) and a 0-molecule (X0). All 1-bits are grouped to form
the 1-molecule and all 0 bits to the 0-molecule [7]. Unlike
electronic stochastic logic, the molecular circuits do not suffer
from correlation effects and the computation is deterministic.
Each value can be either unipolar or bipolar. In a unipolar
representation, the variable is bounded between 0 and 1. In
a bipolar representation, the dynamic range of the variable is
between −1 and 1.

In the unipolar format, the value of a variable is given by:

x =
[X1]

[X0] + [X1]

where [X0] and [X1] correspond to the concentrations of the
assigned molecular types X0 and X1, respectively. In the
bipolar format, the value of a variable is given by:

x =
[X1]− [X0]

[X0] + [X1]

where [X0] and [X1] are defined as before.
Molecular reactions for the Mult and NMult units that

perform multiplication using unipolar or bipolar representation
as well as MUX unit that computes scaled addition have been
presented in [7] and are illustrated in Fig. 1.

Fig. 1. Basic molecular units as described in [7]. (a) The Mult unit with
unipoar inputs and output. (b) The NMult unit with unipolar inputs and
output. (c) The Mult unit with bipolar inputs and output. (d) The NMult
unit with bipolar inputs and output. (e) The MUX unit with unipolar/bipolar
x, y and z and unipolar s.

The four molecular reactions shown in Fig. 1(a) compute
z = x× y, all in unipolar format. We refer to this molecular
unit as Mult unit. Fig. 1(b) shows the molecular reactions
that compute z = 1− x× y in unipolar format, referred to as
NMult unit. Figs. 1(c) and (d) illustrate the implementations
of Mult unit and NMult unit with bipolar inputs and output,
respectively. The bipolar Mult unit performs multiplication
in the bipolar format. The bipolar NMult unit computes z =
−x × y, all in bipolar format. The MUX unit that performs
scaled addition is shown in Fig. 1(e). This unit computes z =
(1 − s) × x + s × y. Notice that x, y and z can be in the
unipolar format or bipolar format, but s must be in unipolar
format.

Stochastic logic implementations of complex functions such
as exponential, logarithmic and trigonometric functions were
presented in [8]. By translating the stochastic logic gates to

ar
X

iv
:1

91
1.

07
11

0v
2

 [
cs

.E
T

]
 8

 J
an

 2
02

0

molecular reactions, the authors in [7] presented molecular
implementations of these functions and perceptron. This paper
presents an approach for the synthesis of molecular reactions
for training a perceptron which are then mapped to DNA
strand displacement (DSD) reactions [3]. A new molecular
scaler that multiplies a protein by a value greater than 1
using fractional coding is also presented in this paper. The
performance of training a DNA perceptron with 3 bipolar
inputs and 1 bipolar bias is presented in this paper.

This paper is organized as follows. Section II presents a
review of the perceptron with sigmoidal activation function.
Molecular reactions of forward computation and backpropa-
gation for a perceptron are, respectively, presented in sections
III and IV. Section V presents the experimental results of a
simple perceptron using DNA.

II. PERCEPTRON WITH SIGMOIDAL ACTIVATION
FUNCTION

In machine learning, a perceptron is typically used for
supervised learning of binary classifiers. A binary classifier is a
function which can decide whether or not an input, represented
by a vector of numbers, belongs to some specific class [11]. A
perceptron with sigmoidal activation function shown in Fig. 2
can also be used in regression applications and is used as a
basic unit for multi-layer neural networks.

Fig. 2. A typical perceptron that can apply sigmoid function to the weighted
sum and update weights according to the distance between actual output y
and desired output d.

The output of the perceptron is given by:

y = sigmoid(

N∑
i=0

wixi)

where xi and wi represent input and corresponding weight,
respectively. The paameter x0 is set to 1 and w0 represents
the bias. In machine learning, backpropagation is widely used
in the training of feedforward neural networks for supervised
learning [12]. Backpropagation can efficiently compute the
gradient of the loss function with respect to the weights of
the network. In this paper, we define the loss function as
E = 1

2 (y− d)2 where y is the actual output of the perceptron
and d represents the desired output for a given input vector
x. Then the derivative of the loss function in terms of the
weights ∂E

∂wi
is computed where wi is the ith weight for

i = 0, 1, 2, · · ·N . Each weight should be adapted to minimize
the loss function as:

wi,new = wi − α
∂E

∂wi

where α represents the learning rate and is assumed to be a
constant.

III. MOLECULAR REACTIONS OF FORWARD
COMPUTATION IN PERCEPTRON

This section presents the molecular implementation of the
forward computation of a perceptron where the inputs and
output are in bipolar format. This computation can be divided
into two parts: computing the scaled inner product of the input
vector and their corresponding weights (1

N

∑N
i=1 xiwi), and

computing the sigmoid function. The molecular inner product
was first introduced in [7] and later revisited in [13]. The
molecular implementation of the inner product scaled by sum
of the absolute weights was also proposed in [13]. But this
method is not suitable for training a perceptron as the weights
are trained continuously during the training process. This
method has a format conversion in the last step that converts
the bipolar output to unipolar output in order to improve the
precision. But in this paper, this format conversion is removed
since bipolar outputs are needed for the training process.

A. Inner Products Scaled by the Number of Inputs

Given two bipolar input vectors, x =

x1
x2
:
xN

 and w =

w1

w2

:
wN

, the molecular implementation of inner product func-

tions scaled by the number of inputs N with 4N molecular
reactions was proposed in [7]. As shown in Fig. 3, the four
reactions correspond to the Mult shown in Fig. 1(c) with two
corresponding inputs, xi and wi. Fig. 3 also shows the pro-
posed molecular reactions, where i = 1, 2, · · ·N . Notice that
−1 ≤ xi ≤ 1, −1 ≤ wi ≤ 1 must be guaranteed to meet the
requirement of bipolar representation. Given xi = [Xi1]−[Xi0]

[Xi1]+[Xi0]

and wi = [Wi1]−[Wi0]
[Wi1]+[Wi0]

then y = [Y1]−[Y0]
[Y1]+[Y0]

= 1
N

∑N
i=1 wixi.

A proof of the functionality of the molecular inner product
in Fig. 3 is described in Section S.5 of the Supplementary
Information in [7].

1

1

N
y w x

i iN i

=
=

y
x

w

0 0 1

0 1 0

1 0 0

1 1 1

Xi Wi Y

Xi Wi Y

Xi Wi Y

Xi Wi Y

+ →

+ →

+ →

+ →

Fig. 3. The inner product unit in [7]. This unit calculates y = 1
N

∑N
i=1 wixi,

the scaled inner product of two input vectors x and w where each element is
in bipolar fractional representation.

B. Implementation of Sigmoid Functions in Bipolar Format

Consider the approximation of the sigmoid function given
by [8]:

sigmoid(x) =
1

1 + e−x

≈ 1

2
+
x

4
+
x3

48
+

x5

480

=
1

2
− 1

2
x(

1

2
(−1 + x2

1

2
(
1

6
− x2

60
))). (1)

where sigmoid(x) is approximated by a 5th-order truncated
Maclaurin series and then reformulated by Horner’s rule [14].
In equation (1), all coefficients, 1

2 , − 1
2 , −1, 1

6 and − 1
60 ,

can be represented using bipolar format. Fig. 4 shows the
molecular implementation of sigmoid(x) by cascading XOR,
XNOR and MUX gates. The bipolar Mult, NMult and MUX
units discussed before compute the same operations as XNOR,
XOR and MUX in stochastic implementation, respectively. So
equation (1) can be implemented using bipolar Mult, NMult
and MUX units shown in Figs. 1 (c), (d) and (e), respectively.

Fig. 4. Molecular implementation of sigmoid(x) using 5th-order Maclaurin
expansion and Horner’s rule.

By cascading the inner product and sigmoid function,
the final output of the molecular perceptron is given by
sigmoid(1

N

∑N
i=1 wixi). Fig. 5 shows the modified percep-

tron where the input to the activation function is the scaled
weighted sum, as opposed to the weighted sum. During the
training of the molecular perceptron, the error function will be
different from the original error function. Here the output of
the sigmoid function is different from the desired value. The
desired output d of a typical perceptron is modified to d′ that
can be computed a priori using:

d′ = sigmoid(
1

N
logit(d))

= sigmoid(
1

N
log(

d

1− d
))

=
1

1 + (d
1−d)−

1
N

. (2)

where logit is the inverse of the sigmoid function and log
represents the natural logarithm with base e.

Fig. 5. A modified perceptron that can apply sigmoid function to the scaled
weighted sum and update weights according to the distance between actual
output y′ and desired output d′.

IV. MOLECULAR REACTIONS FOR BACKPROPAGATION IN
PERCEPTRON

This section presents the molecular implementation of
updating weights in the modified perceptron after forward
computation.

Define the loss function E as:

E =
1

2
(y′ − d′)2 where y′ = sigmoid(

1

N

N∑
i=1

wixi)

represents the actual output of the modified perceptron for a
given input vector and d′ is the corresponding desired output
computed by equation (2). Then the negative of the derivative
of the loss in terms of the weights, − ∂E

∂wi
, can be computed

as:

− ∂E
∂wi

= − ∂

∂wi
(
1

2
(y′ − d′)2)

= (d′ − y′) ∂y
′

∂wi

= (d′ − y′) ∂

∂wi
(sigmoid(

1

N

N∑
i=1

wixi))

=
1

N
(d′ − y′)y′(1− y′)xi. (3)

For molecular implementation, equation (3) can be refor-
mulated as:

− ∂E
∂wi

=
4

N

1

2
(d′ − y′)1

2
(y′ − y′2)xi

where 4
N is a constant and can be integrated into the training

rate, i.e., by replacing α by αN
4 . Then the update rule for each

weight is illustrated as follows:

wi,new = wi − α
∂E

∂wi

= wi +
1

2
(d′ − y′)1

2
(y′ − y′2)xi

= wi + ∆wi. (4)

where ∆wi = 1
2 (d′ − y′) 1

2 (y′ − y′2)xi.

Fig. 6. Molecular implementation of ∆wi.

The molecular implementation of ∆wi in equation (4) is
shown in Fig. 6. Note that the input and all coefficients are
represented in bipolar format. The internal nodes and final
output are described by:

n1 = −y′, n2 = 0.5(d′ + n1), n3 = y′
2
, n4 = −n3

n5 = 0.5(y′ + n4), n6 = n2n5, ∆wi = n6xi

Define a modified scaling function as:

y = f(x,M) =

−1, Mx < −1

Mx, −1 ≤Mx ≤ 1

1, Mx > 1

where input x and output y are in bipolar format and M ≥ 1.
Assume that [X1] and [X0] are the concentrations of the two
assigned molecular types of the input x of the modified scaling
function in bipolar format. Also assume that [Y +

1] and [Y +
0]

are the concentrations of the two assigned molecular types of
the output y of the modified scaling function. The relationship
between the two sets of concentrations can be written as:

y =
[Y +

1]− [Y +
0]

[Y +
1] + [Y +

0]
= M

[X1]− [X0]

[X1] + [X0]
= Mx. (5)

The modified scaling function described by equation (5) can
be realized by the following molecular reactions:

X0 −→ (M + 1)Y +
0 + (M − 1)Y −1

X1 −→ (M + 1)Y +
1 + (M − 1)Y −0

Y +
0 + Y −0

fast−−−→ Ø

Y +
1 + Y −1

fast−−−→ Ø (6)

After the eight molecular reactions shown in equation (6)
are completed, the molecules Y +

1 and Y +
0 are treated as

1-molecule and 0-molecule of y, respectively. Then, y =
[Y +

1]−[Y +
0]

[Y +
1]+[Y +

0]
is the output of the modified scaleing function.

Therefore, to compute wi,new as required in equation (4), we
can reformulate this equation into equation (7) and implement
it by cascading a MUX unit with two inputs (wi and ∆wi) and
a modified scaling function with scale factor M = 2 as shown
in Fig. 7.

Fig. 7. Molecular implementation of wi,new with two inputs wi and ∆wi.

wi,new = 2× 1

2
(wi + ∆wi). (7)

V. EVALUATION OF PERCEPTRON USING DNA

Abstract chemical reaction networks (CRNs) described by
molecular reactions can be mapped to DNA strand displace-
ment (DSD) reactions as shown in [3]. A framework that
can implement arbitrary molecular reactions with no more
than two reactants by linear, double-stranded DNA complexes
was proposed in [3]. Notice that our computational units
are all built based on molecular reactions with at most two
reactants. We simulate the perceptron that can learn by using
the software package provided by Winfree’s team at Caltech
[3]. More details of mapping bimolecular reactions to DSD
are also described in [3].

A simple modified perceptron with 3 inputs and 1 bias is
evaluated as shown in Fig. 8. Two sets of input-output pairs
are selected to demonstrate the functionality of the modified
perceptron that can learn. The input vector, initial weight

vector and bias of both sets are

 0
−0.6
0.4

,

 0.6
−0.1
0.4

 and −0.4,

respectively. The only difference between these two data sets
is the desired output value. Given d = 0.835 and 0.309 for
these two data sets, we can get d′ = 0.6 and 0.45 for these
two data sets by using equation (2). In a real application, one
input-output pair from the whole data set should be fed into
the perceptron during each epoch. To show the convergence of
the molecular perceptron, we input the same input-output pair
to the modified perceptron each epoch. The simple modified
perceptron with forward computation and backpropagation is
mapped to DNA using DSD.

Fig. 8. Evaluated modified perceptron with 3 inputs and 1 bias.

Figs. 9 and 10 show the forward computation results of the
modified perceptron during training with desired outputs 0.6

Fig. 9. Forward computation result of the modified perceptron during training
with desired output d′ = 0.6.

Fig. 10. Forward computation result of the modified perceptron during
training with desired output d′ = 0.45.

Fig. 11. Weights and bias of the modified perceptron during training with
desired output d′ = 0.6.

Fig. 12. Weights and bias of the modified perceptron during training with
desired output d′ = 0.45.

and 0.45, respectively. The yellow lines illustrate the desired
outputs, and the blue lines illustrate the convergence of the
output. Figs. 11 and 12 illustrate the convergence of weights
and biases during training. The blue, yellow, green and red
lines represent the values of w1, w2, w3 and w4, respectively.
The horizontal axis in these four figures represents the epoch
index.

VI. CONCLUSION

This paper has presented the molecular implementations
of backpropagation in a perceptron using DNA. A molecular
perceptron with a rectified linear unit (ReLU) can be synthe-
sized in a similar manner using the molecular ReLU function
described in [13]. The delay element for weight update has
not been integrated into the molecular perceptron. However,
the molecular delay element can be realized using either an
asynchronous RGB clock or a synchronous clock [15]–[17].

REFERENCES

[1] L. M. Adleman, “Molecular computation of solutions to combinatorial
problems,” Science, vol. 266, no. 5187, pp. 1021–1024, 1994.

[2] D. Y. Zhang and E. Winfree, “Control of DNA strand displacement
kinetics using toehold exchange,” Journal of the American Chemical
Society, vol. 131, no. 47, pp. 17303–17314, 2009.

[3] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate
for chemical kinetics,” Proceedings of the National Academy of Sciences,
vol. 107, no. 12, pp. 5393–5398, 2010.

[4] L. Qian, E. Winfree, and J. Bruck, “Neural network computation with
DNA strand displacement cascades,” Nature, vol. 475, no. 7356, p. 368,
2011.

[5] S. A. Salehi, M. D. Riedel, and K. K. Parhi, “Markov chain computations
using molecular reactions,” in 2015 IEEE international conference on
digital signal processing (DSP), pp. 689–693, IEEE, 2015.

[6] S. A. Salehi, K. K. Parhi, and M. D. Riedel, “Chemical reaction networks
for computing polynomials,” ACS synthetic biology, vol. 6, no. 1, pp. 76–
83, 2016.

[7] S. A. Salehi, X. Liu, M. D. Riedel, and K. K. Parhi, “Computing
mathematical functions using DNA via fractional coding,” Scientific
reports, vol. 8, no. 1, p. 8312, 2018.

[8] K. K. Parhi and Y. Liu, “Computing arithmetic functions using stochastic
logic by series expansion,” IEEE Transactions on Emerging Topics in
Computing, vol. 7, pp. 44–59, Jan 2019.

[9] X. Liu and K. K. Parhi, “Computing radial basis function support vector
machine using DNA via fractional coding,” in Proceedings of the 56th
Annual Design Automation Conference 2019, p. 143, ACM, 2019.

[10] B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20,
1967, spring joint computer conference, pp. 149–156, ACM, 1967.

[11] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” Machine learning, vol. 37, no. 3, pp. 277–296,
1999.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[13] X. Liu and K. K. Parhi, “Molecular and DNA artificial neural networks
via fractional coding,” arXiv preprint arXiv:1910.05643, 2019.

[14] K. K. Parhi, VLSI digital signal processing systems: design and imple-
mentation. New York : Wiley, 1999.

[15] H. Jiang, M. D. Riedel, and K. K. Parhi, “Digital signal processing with
molecular reactions,” IEEE Design & Test of Computers, vol. 29, no. 3,
pp. 21–31, 2012.

[16] H. Jiang, S. A. Salehi, M. D. Riedel, and K. K. Parhi, “Discrete-time
signal processing with DNA,” ACS synthetic biology, vol. 2, no. 5,
pp. 245–254, 2013.

[17] H. Jiang, M. Riedel, and K. Parhi, “Synchronous sequential computation
with molecular reactions,” in Proceedings of the 48th Design Automation
Conference, pp. 836–841, ACM, 2011.

	I Introduction
	II Perceptron with Sigmoidal Activation Function
	III Molecular Reactions of Forward Computation in Perceptron
	III-A Inner Products Scaled by the Number of Inputs
	III-B Implementation of Sigmoid Functions in Bipolar Format

	IV Molecular Reactions for Backpropagation in Perceptron
	V Evaluation of Perceptron using DNA
	VI Conclusion
	References

