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Abstract—The uncoordinated spectrum access problem is stud-
ied using a multi-player multi-armed bandits framework. In
the considered system model there is no central control and
the users cannot communicate with each other. Furthermore,
the environment may appear differently to different users, i.e.,
the mean rewards as seen by different users for a particular
channel may be different. With this setup, we present a policy
that achieves expected regret of O(log T ) over a time horizon of
duration T .

I. INTRODUCTION

Current spectrum management protocols treat frequency
spectrum as a fixed commodity, which leads to spectrum
under utilization. Dynamic spectrum access techniques have
emerged as good strategies to improve spectrum utilisation.
Existing techniques for dynamic spectrum access have focused
primarily on the primary/secondary user paradigm, where
secondary users detect vacant bandwidths when available and
vacate the occupied channel when a primary user wants to
transmit.

In this work, we consider the uncoordinated spectrum access
model, where there is no such hierarchy among users and
users are not allowed to communicate with each other. The
users follow a common protocol designed to maximize the
system performance rather than an individual’s reward. This
problem is studied using the stochastic multi-user multi-armed
bandit framework. The channels are treated as the arms and
the channel gains or the rates received from the channels can
be interpreted as the rewards.

In most of the previous work in this area (eg. [1], [2],
[3] and [4]), it is assumed that the reward distributions for
each channel is the same across all users. In [1], [2] and
[4], the assumption is that, in the case of a collision (when
more than one user access a channel) all the colliding users
receive zero reward, which is the assumption we work with
in this paper. The algorithm in [1] combines an ε-greedy
approach with a collision avoiding mechanism and achieves
expected regret of O(T

2
3 ). The musical chairs algorithm in [2]

has an exploration phase where the users estimate the mean
rewards for the channels and the number of users, and the
users occupy one of the best arms for the remainder of the
time horizon. In [3], a model is studied in which more than

This research was supported by the US NSF SpecEES under grant number
1730882, through the University of Illinois at Urbana-Champaign.

one user can access a channel simultaneously and receive non-
zero rewards and an approach similar to the musical chairs
algorithm [2] is presented. The policies provided in [2] and
[3] provide guarantees of constant regret with high probability.
The algorithm presented in [4] achieves a regret of O(log T ).
The lower bound for the single user case is O(log T ), and
since we are considering a scenario without communication
between the users, we expect the regret lower bound to be
O(log T ) at best, which we show is achieved by the policy
presented in this paper.

Given that in a practical scenario, users are not colocated in
a wireless network, assuming that different users have different
reward distributions for the channels results in a more realistic
model. There has been some work covering varying reward
distributions across users (eg. [5], [6], [7] , [8] and [9]). The
algorithms presented in [5] and [6] consider such a model,
with an assumption that the players can sense what happens
on a channel, i.e., if someone is using the channel or not, or if
there is a collision on it. However, such an assumption might
be unrealistic for the uncoordinated spectrum access problem.
In our work, we consider a fully distributed scenario where
players only have access to their previous actions and rewards.
The work in [7] considers such a fully distributed setting, and
the proposed algorithm achieves a regret of O(log2 T ). They
consider a game-theoretic approach to solve for the pareto-
optimal matching that maximizes the system welfare. The
work in [9] extends this game-theoretic approach to the case
of non-zero rewards on collisions.

The work in [4] introduces the idea of using forced col-
lisions as a way to communicate among the users in the
homogeneous setting where the reward distributions for the
channels are the same across users. In this work, we use
the idea of forced collisions in the heterogeneous case. The
algorithm presented here was developed independently of the
work in [8], where an approach similar to ours is explored,
i.e., a fully distributed setting with user dependent rewards and
with zero reward on collision. However, while the algorithm
presented in [8] achieves logarithmic regret only in the case
of a unique optimal matching, the policy presented in this
paper results in logarithmic regret even in the case of multiple
optimal matchings.
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II. SYSTEM MODEL

We consider the scenario of a multi-user game involving K
users and M channels as the arms in a stochastic multi-armed
bandit setup. We assume that K < M and that the rewards for
the channels are bounded in [0, 1]. Let the mean reward for
user j on channel m be denoted by µj(m). Consider a time
horizon T , and let the action taken by user (arm chosen by the
user) j at time t ≤ T be at,j . In the case of a collision, i.e.,
when multiple users access the same channel, all the colliding
users receive zero reward.

Let A(K,M) denote all the possible user channel match-
ings, i.e., a = [a1, a2, ..., aK ] ∈ A(K,M), with aj denoting
the action taken by user j. Since we assume that colliding
users get zero rewards, we only consider matchings that are
unique, i.e., once for which all the users are assigned to distinct
arms. Let a∗ ∈ A(K,M) be such that

a∗ ∈ arg max
a∈A(K,M)

K∑
j=1

µj(aj).

Define J1 to be the system reward for the optimal matching,
i.e., J1 =

∑K
j=1 µj(a

∗
j ), and J2 to be the system reward for

the second optimal matching. In our algorithm, we assume that
we have access to a lower bound on the parameter ∆ defined
as follows (see also [5], [7]):

∆ =
J1 − J2

2M

Note that this quantity is strictly positive even in the case of
multiple optimal matchings.
The expected regret of the system is defined as

R(T ) = T

K∑
j=1

µj(a
∗
j )− E

 T∑
t=1

K∑
j=1

µj(at,j)


where the expectation is over the actions of the players.

III. ALGORITHM

We assume that the players are time synchronised and that
they enter the system at t = 0. The algorithm proceeds
in epochs for each user. This allows us to proceed without
knowing the time horizon T . Each epoch has three phases.

The first phase is the exploration phase, which has two parts.
The first part is the fixing phase and is done for each user
to obtain a unique ID. Each user accesses the arms uniformly
and once a free arm is found, i.e., non-zero reward is received,
that arm is played for the rest of the fixing phase. The channel
numbers they settle on serve as their IDs. At the end of the
fixing phase, the users that are not fixed occupy channel 1,
and the fixed users access channel 1 in order of their IDs
sequentially. If the fixed users do not face a collision during
this step, all users have obtained unique IDs. Once all the users
obtain unique IDs, say at epoch `f , this part of the exploration
phase is no longer done from epoch `f + 1. The second part
of the exploration phase is for the users to get estimates of the
mean rewards of the arms. The users start from the channels

corresponding to their IDs, and sample each arm for γ time
units in a round-robin fashion.

The second phase is the matching phase and its purpose
is for the users to arrive at the optimal matching. The first
part of the matching phase is for each user to communicate
their estimates of the mean rewards of all the channels to the
other users. The users transmit the estimated mean rewards
µ̂j(m) for all the channels in the order of their IDs. Since
the players are not allowed to directly communicate with each
other, collisions are used as a way to exchange information
among players. The use of forced collisions as a form of com-
munication was introduced in [4]. The main idea is that there
are M channels available to the users and the transmitting user
j occupies a certain channel. When the receiving users access
the channels one at a time, the channel number on which they
face a collision gives them information about what was being
transmitted. The value of the estimate µ̂j(m) that each user
has received at the end of the matching phase is denoted by
ˆ̂µj(m). Note that this is similar to truncating the value of
µ̂j(m) to a finite number of bits as ˆ̂µj(m). At the end of the
first part of the matching phase, |µ̂j(m)− ˆ̂µj(m)| ≤ ∆/2 for
j ∈ [K] and m ∈ [M ] given that all the users have a unique
ID.

Once this communication part of the matching phase is
completed, each user has the same approximated values of
estimated mean rewards. Each user then independently solves
for the set of optimal matchings from the matrix of ˆ̂µj(m)
values. If there is a unique optimal matching, the users play
the arm according to that matching for the exploitation phase.
If there are multiple optimal matchings, it is necessary for each
user to choose the same optimal matching from this set. This
is achieved in the following manner. The user with ID number
one chooses one of the optimal matchings and occupies that
channel. The remaining users access the M channels in order
of their IDs to get the channel number chosen by the user with
ID one and update the set of optimal matchings that correspond
with the channel chosen by user one. This process is repeated
until all the users settle on the same optimal matching. This
matching is played by all the users for the exploitation phase.

In our algorithm, the estimated mean rewards of all the
channels are communicated to each user through the idea of
forced collisions, and hence all the users can independently
solve the assignment problem to arrive at the same set of
optimal matchings. However, in [8], the communication mech-
anism is adapted from [4], where a leader-follower protocol is
employed. The followers send the values of estimated mean re-
wards to the leader, and the leader computes the matching that
has to be played by the users. While the algorithm presented
here gives guarantees of logarithmic regret for the cases of
unique optimal matching and multiple optimal matchings, the
work in [8] provides guarantees of logarithmic regret only for
unique optimal matchings and quasi-logarithmic regret in the
case of multiple optimal matchings. Note that the constants
in the upper bound for average regret of our algorithm are
comparable to the ones obtained in [8].



Algorithm 1: Decentralized MUMAB Algorithm
Initialization: Set µ̂j(m) = 0 for all values of j ∈ [K]

and all m ∈ [M ] and LT as the last epoch with time
horizon T.

for ` = 1, ..., LT do
Exploration phase:
Fixing phase : Access channels uniformly for Tf
time units till find a channel with no collision; fix
on that for remainder of sub-phase. The channel
number fixed on serves as unique ID.

If not fixed during fixing phase, send a flag by
occupying channel 1.

If fixed during part fixing phase, access channel 1 in
order of ID. Once all users are fixed, skip fixing
phase.

Access each channel in a round robin fashion for γ
time units to get estimates µ̂j(m).

Matching phase: Enter the matching algorithm to
convey the estimates to all users, receive their
estimates and calculate the optimal matching.

Exploitation phase: Occupy the channel resulting
from the matching algorithm for 2` time units.

end

Algorithm 2: Matching Algorithm for user i
Initialization: Transmit in order of ID.
for Transmitting user j′ = 1, ...,K do

If turn to transmit, transmit µ̂j′(m) for m = 1, ...,M
as:

Occupy channel h1 = dMµ̂j′(m)e for M time units.
Occupy hr = dMr(µ̂j′(m)−

∑r−1
n=1

hn−1
Mn )e for M

time units for each subsequent round r for
1

logM log ( 1
∆ ) rounds.

If not turn to transmit, in order of IDs:
Access channels in round robin fashion and initialize

the estimates of the transmitted value as
ˆ̂µj′(m) = 2h−1

2M in the first round.
Update in the subsequent round r as

ˆ̂µj′(m) =
∑r−1
n=1

hn−1
Mn + 2hr−1

2Mr .
end
Calculate the set SM of optimal matchings with values

of estimates.
if SM is a singleton set then

Assign channel according to the optimal matching.
else

User 1 chooses one of the optimal matchings.
Remaining users update their set of optimal

matchings accordingly.
Similar mechanism for subsequent users allows users

to settle on one of the optimal matchings.
end

IV. REGRET ANALYSIS

Theorem 1. Assuming the rewards of each channel for all
users are bounded in [0, 1] and i.i.d. for all t ≤ T for a
time horizon T and ∆ = J1−J2

2M is known, the regret of the
decentralized MUMAB algorithm is O(log T )

Proof. The regret incurred during the LT epochs can be
analyzed as the sum of the regrets incurred in the three stages
of the algorithm. From the structure of the epochs, we have
that LT < log T .

1) Exploration phase: Let the regret incurred during the
exploration phase for all epochs be R1. The exploration
goes on for Tf +K+γM time units till epoch `f (when
all the users get fixed) and for γM time units after that.
Choosing Tf = M log(20K) and γ = 1

2∆2 , we have that

R1 ≤
LT∑
`=1

(
M

(
1

2∆2
+ 1 + log 20K

))
≤
(
M

(
1

2∆2
+ 1 + log 20K

))
log T.

(1)

2) Matching phase: Let the regret incurred during the
matching phase be R2. The matching phase runs for
KM3

logM log 1
∆ +(M−k)M2 +M3 when there are multiple

optimal matchings and for KM3

logM log 1
∆ +(M−k)M2 time

units when there is an unique optimal matching. Thus

R2 ≤
LT∑
`=1

KM3

logM
log

1

∆
+ (M − k)M2 +M3

≤
(

K

logM
log

1

∆
+ 2

)
M3 log T.

(2)

3) Exploitation phase: Let R3 denote the regret incurred
during the exploitation phase. Regret is incurred in the
exploitation phase in epoch ` only in case of the following
two events:
a) The users do not get a unique ID in the first part of

the exploration phase. Let P`(A) denote the probability
that after the exploration phase of epoch ` the users do
not have a unique ID

b) Given that users have unique IDs, for some j ∈ [k]
and some m ∈ [M ], | ˆ̂µj(m)−µj(m)| > ∆. Let P`(B)
denote the probability of this event.

Thus we have that

R3 =

LT∑
`=1

2`(P`(A) + P`(B)). (3)

Let pf denote the probability that with the fixing phase
running for Tf time units, all users are fixed. From
Lemma 1 of [4], we have that pf ≥ (1 −Ke

Tf
M ). From

the definition of the event A, we have that

P`(A) = (1− pf )` (4)



Our choice of Tf results in pf >
3(e−1)

2e and thus,
LT∑
`=1

2`P`(A) =

LT∑
`=1

2`(1− pf )` ≤ e

2e− 3
. (5)

We therefore get the first term of R3 to be bounded by
a finite number.
Let F denote the event that in epoch ` all the users
have unique IDs. This means that in some epoch `f ∈
0, 1, ..., `− 1, the system was fixed. Thus

P`(B)

= P (| ˆ̂µj(m)− µj(m)| > ∆|F )

=

`−1∑
i=1

P (| ˆ̂µj(m)− µj(m)| > ∆|F, `f = i)P (`f = i)

≤
`−1∑
i=1

2e−2∆2γ(`−i)pf (1− pf )i−1

= 2e−2∆2γ`
`−1∑
i=1

e2∆2γipf (1− pf )i−1.

(6)

Choosing Tf = M log(20K) gives pf > 3(e−1)
2e , and

using γ = 1
2∆2 yields

P`(B) ≤ 4e

e− 1
e−` (7)

and

LT∑
`=1

2`P`(B) ≤ 4e

e− 1

LT∑
`=1

(
2

e

)−`
≤ 8e

(e− 1)(e− 2)
.

(8)

Thus

R3 ≤ C =
e

2e− 3
+

8e

(e− 1)(e− 2)
. (9)

Therefore

R(T ) = R1 +R2 +R3

≤
(
M

2∆2
+
KM3

logM
log

1

∆
+ 4M3

)
log T + C

= O(log T ).

(10)

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to validate
the performance of our algorithm. We applied the proposed
algorithm to a system with K = 10 users and M = 10
channels. Figure 1 shows the plot of average accumulated
regret across the time horizon. The algorithm was run for 10
epochs. We see from the figure that the average accumulated
regret grows sub-linearly with time and the regret is bounded
by log T .

VI. CONCLUSION

In this work, we have studied the uncoordinated spec-
trum access problem using a multi-player multi-armed bandit
framework where there is no central control and users cannot
communicate with each other. We have considered the case
where the mean rewards as seen by different users for a
particular channel may be different. Under this setup, we have
presented an algorithm that provides a regret of O(log T ). It
is of interest to extend the results presented here to the case
where the users receive non-zero rewards on collisions. See
[9] for an initial study along these lines.
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