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TIME DELAY ESTIMATION FROM MULTIBAND RADIO CHANNEL SAMPLES IN
NONUNIFORM NOISE

Tarik Kazaz, Gerard J. M. Janssen and Alle-Jan van der Veen

Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands

ABSTRACT

The multipath radio channel is considered to have a non-bandlimited
channel impulse response. Therefore, it is challenging to achieve
high resolution time-delay (TD) estimation of multipath components
(MPCs) from bandlimited observations of communication signals. It
this paper, we consider the problem of multiband channel sampling
and TD estimation of MPCs. We assume that the nonideal multi-
branch receiver is used for multiband sampling, where the noise is
nonuniform across the receiver branches. The resulting data model
of Hankel matrices formed from acquired samples has multiple shift-
invariance structures, and we propose an algorithm for TD estima-
tion using weighted subspace fitting. The subspace fitting is formu-
lated as a separable nonlinear least squares (NLS) problem, and it is
solved using a variable projection method. The proposed algorithm
supports high resolution TD estimation from an arbitrary number of
bands, and it allows for nonuniform noise across the bands. Numer-
ical simulations show that the algorithm almost attains the Cramér
Rao Lower Bound, and it outperforms previously proposed methods
such as multiresolution TOA, MI-MUSIC, and ESPRIT.

Index Terms— time-of-arrival, channel estimation, super-
resolution, sparse recovery, multiband sampling, cognitive radio

1. INTRODUCTION

The first step of time-delay (TD) estimation is an estimation of the
multipath components of the underlying communication channel.
Since the impulse response of multipath radio channels is considered
to be not bandlimited, it is challenging to achieve high resolution
TD estimation from bandlimited observations of communications
signals. Traditional channel modeling is mainly suited for commu-
nication system design, where it is more important to estimate the
effects of the channel on the signal to perform equalization, rather
than estimating the parameters of the underlying multipath channel.
Therefore, radio channels are typically modeled as FIR filters where
the time resolution of the channel is inversely proportional to the
bandwidth of the signal used for channel probing [1].

Therefore, high resolution channel estimation requires modeling
assumptions. Modeling the channel impulse response (CIR) as a
sparse sequence of Diracs, time-delay estimation becomes a problem
of parametric spectral inference from observed bandlimited signals.
Under this assumption, theoretically, it is possible to obtain perfect
estimates of the channel parameters from an equally finite number
of samples taken in the frequency domain [2].

This research was supported in part by NWO-STW under contract 13970
(“SuperGPS”).

Many algorithms for TD estimation from frequency domain
samples have been proposed in the past. These algorithms are usu-
ally based on (i) subspace estimation [3, 4, 5, 6], (ii) finite rate of in-
novation [2, 7, 8], or (iii) compressed sampling [9, 10, 11, 12, 13, 14]
methods. Few of the previous works [8, 10, 11, 14] discuss issues
related to frequency domain sampling. However, these methods are
typically complex for the implementation or not robust to noise.

The resolution of TD estimation is proportional to the frequency
aperture of the samples taken in the frequency domain. To improve
the resolution of TD estimation, without arriving at unrealistic sam-
pling rates, multiband channel sampling has been proposed in [15].
In [16] a practical multibranch receiver for multiband channel sam-
pling has been proposed. Due to hardware impairments of analog
electronics components such as low-noise and power amplifiers, the
noise level is typically varying across the receiver branches.

In this paper, we are interested in a generalized algorithm for
high resolution TD estimation from an arbitrary number of sampled
bands with nonuniform noise. Following the shift-invariance struc-
ture of Hankel matrices formed from the acquired samples, we pro-
pose an algorithm for TD estimation based on weighted subspace
fitting [17, 18]. We formulate weighted subspace fitting as a sepa-
rable nonlinear least squares problem and solve it using the variable
projection method [19]. To initialize the variable projection method,
we use the TD estimate obtained via the multiresolution TOA al-
gorithm [16]. With this initialization, the iteration of the variable
projection method converges very fast, typically within three steps
for moderate or high signal-to-noise ratios (SNR).

The resulting algorithm is benchmarked through simulations by
comparing its performance with the algorithms proposed in [20, 21,
16] and the Cramér Rao Lower Bound (CRLB). The results show
that for low SNR, the proposed algorithm provides better perfor-
mance than previously proposed algorithms, and it almost attains
the CRLB.

2. PROBLEM FORMULATION

Consider a multipath radio channel model withK propagation paths
defined by a continuous-time impulse and frequency response as

h(t) =

K∑
k=1

αkδ(t− τk) and H(ω) =

K∑
k=1

αke
−jωτk , (1)

where α = [α1, . . . , αK ]T ∈ CK and τ = [τ1, . . . , τK ]T ∈ RK+
are collecting unknown gains and time-delays of the MPCs, respec-
tively [22]. We are interested in estimating α and τ by probing
the channel using the known wideband OFDM probing signal si(t)
transmitted over i = 0, . . . , L − 1, separate frequency bands (cf.
Fig. 1a). The probed frequency bands areWi = [ωi − B

2
, ωi + B

2
],

where B is the bandwidth, and ωi is the central angular frequency

1237978-1-7281-4300-2/19/$31.00 ©2019 IEEE Asilomar 2019

Authorized licensed use limited to: TU Delft Library. Downloaded on January 15,2021 at 09:36:49 UTC from IEEE Xplore.  Restrictions apply. 



0 1 L-1

𝑋 𝜔
∆𝝓

∆𝜽L−1

𝜔𝜔1 + 𝐵1/2𝜔1 − 𝐵1/2

𝑆𝑖𝑔𝑛𝑎𝑙

𝑆𝑎𝑚𝑝𝑙𝑒𝑠
∆𝜽1 𝑁𝑜𝑖𝑠𝑒

(a)

.

.

.

𝑒−𝑗𝜔0𝑡

𝑒−𝑗𝜔1𝑡

𝑒−𝑗𝜔𝐿−1𝑡

ℱ

ℱ

ℱ 𝑑𝑒𝑐𝑜𝑛𝑣.

𝜏𝑘 𝑘=1
𝐾

𝑑𝑒𝑐𝑜𝑛𝑣.

𝑑𝑒𝑐𝑜𝑛𝑣.

.

.

.

G0

GL-1

G1

Su
b

sp
ac

e
 

Es
ti

m
at

io
n

 &
 F

it
ti

n
g

𝑦(𝑡)
𝑦𝐿−1(𝑡)

𝑦0(𝑡)

𝑦1(𝑡)

(b)

Fig. 1: (a) The multiband channel frequency response, and (b) a multibranch receiver with L RF chains.

of the ith band. We consider that measurements are collected using
nonideal multibranch transceivers with nonuniform noise across the
receiver branches. Our objective is to estimate τ from an arbitrary
number of sampled bands while considering the difference in noise
levels of the acquired samples.

3. DATA MODEL

Continous-time signal model: We consider a baseband signal
model and assume ideal conversion to and from the passband with-
out phase and synchronization errors. The response of RF chains at
the probed frequency bands are modeled using equivalent linear and
time-invariant low-pass filters gi(t), where the corresponding CTFT
Gi(ω) has passband [−B

2
, B

2
] (cf. Fig. 1b). We assume that the fre-

quency responses of the RF chains Gi(ω) are characterized during
calibration and known. The algorithm for time-delay estimation in
the case when Gi(ω), i = 0, . . . , L−1, are unknown is proposed in
[23]. The impulse response of the ith channel band is hi(t), and its
CTFT is Hi(ω) = H(ωi + ω). Assume that hi(t) is time-limited
to the duration of the OFDM symbol cyclic prefix, that is hi(t) = 0
for t /∈ [0, TCP ]. Therefore, there is no inter-symbol interference,
allowing us to consider the model for a single OFDM symbol only.

Consider that the same OFDM probing signal is transmitted in
all bands, that is, si(t) = s(t) and Bi = B for i = 0, . . . , L − 1,
and s(t) is given by

s(t) =

{∑N−1
n=0 sne

jωscnt, t ∈ [−TCP , Tsym]

0, otherwise ,

where s = [s0, . . . , sN−1]T ∈ CN are the known pilot symbols, ωsc
is the sub-carrier spacing, and Tsym = 2π/ωsc is the duration of one
OFDM symbol.The signal received at the ith band after conversion
to the baseband and low-pass filtering is

yi(t) = s(t) ∗ gi(t) ∗ hi(t) + qi(t) , (2)

where qi(t) is low-pass filtered Gaussian white noise. The corre-
sponding CTFT of the signal yi(t) is

Yi(ω) =

{
S(ω)Gi(ω)Hi(ω) +Qi(ω), ω ∈ [−B

2
, B

2
]

0, otherwise ,
(3)

where S(ω) and Qi(ω) are the CTFTs of s(t) and qi(t), respec-
tively.

Discrete-time signal model: The receiver samples yi(t) with pe-
riod Ts = 1/B, performs packet detection, symbol synchronization,
and removes the cyclic prefix. During the period of single OFDM
symbol, N complex samples are collected, where N is the number
of sub-carriers and Tsym = NTs. Next, N -point DFT is applied on
the collected samples, and they are stacked in increasing order of the
DFT frequencies in yi ∈ CN . Then, the discrete data model of the
received signal (3) can be written as

yi = diag(s ◦ gi)hi + qi , (4)

where ◦ is the Khatri-Rao product, s collects the known pilot sym-
bols, gi, and qi, collect samples of Gi(ω), and Qi(ω) at the subcar-
rier frequencies, respectively. Likewise, hi ∈ CN collects samples
of Hi(ω) as

Hi[n] = H (ωi + nωsc) , n = −N
2
, . . . ,

N

2
, (5)

where ωsc = 2π
NTs

, and we assume that N is an even number. We
consider that bands {Wi}L−1

i=0 are laying on the discrete frequency
grid ωi = ω0 + niωsc, where ni ∈ N, and ω0 denotes the lowest
frequency considered during channel probing. Inserting the channel
model (1) into (5) gives

Hi[n] =

K∑
k=1

αke
−jniωscτke−jnωscτk , (6)

where we absorbed e−jω0τk in αk ∀ k. Now, the channel vector hi
satisfies the model

hi = Mdiag(θi)α , (7)

where M ∈ CN×K is a Vandermonde matrix

M =


1 1 · · · 1

Φ1 Φ2 · · · ΦK
...

...
. . .

...
ΦN−1

1 ΦN−1
2 · · · ΦN−1

K

 , (8)

and Φk = e−jφk , where φk = ωscτk. Likewise, the band dependent
phase shifts of MPCs are collected in θi = [θi,1, . . . , θi,K ]T ∈ CK ,
where θi,k = Φni

k .

Next, we assume that none of the entries of s or gi are zero or
close to zero, and estimate hi by applying deconvolution on the data
vector (4) as

hi = diag−1(s ◦ gi)yi ,
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which satisfies the model

hi = MΘiα + q′i . (9)

where Θi = diag(θi). The pilot symbols s have the constant mag-
nitude, and we assume that frequency responses of receiver chains
gi are almost flat. Therefore q′i = diag−1(s ◦ gi)qi is a zero-
mean white Gaussian distributed noise with covariance Σi = σ2

i IN ,
where IN is the N × N identity matrix. In the case that the fre-
quency responses of the RF chains are not perfectly flat, q′i will be
colored noise. However, its coloring is known and can be taken into
account.

4. MULTIBAND TIME-DELAY ESTIMATION

Our next objective is to estimate τ from the channel estimates hi,
i = 0, . . . , L− 1. We begin by stacking the channel estimates in the
multiband channel vector h = [hT0 , . . . ,h

T
L−1]T ∈ CNL. From (9),

h satisfies the model

h = A(τ )α + q :=


M

MΘ1

...
MΘL−1

α +


q′0
q′1
...

q′L−1

 . (10)

Since A(τ ) has a multiple shift-invariance structure and (10) resem-
bles the data model of Multiple Invariance ESPRIT [18], τ can be
estimated using a subspace fitting methods.

4.1. Multiband estimation algorithm

From the vectors hi, i = 0, · · · , L−1, we construct Hankel matrices
of size P ×Q as

Hi =


Hi[0] Hi[1] · · · Hi[Q]
Hi[1] Hi[2] · · · Hi[Q+ 1]

...
...

. . .
...

Hi[P − 1] Hi[P ] · · · Hi[N − 1]

 . (11)

Here, P = N − Q − 1, Q is a design parameter and we require
P > K and Q ≥ K. From (9), and using the shift invariance of the
Vandermonde matrix (8), the constructed Hankel matrices satisfy

Hi = M′ΘiX + Qi , (12)

where M′ is an P ×K submatrix of M,

X = [α, Φα, Φ2α, · · · ,ΦQ−1α],

Qi is a noise matrix, and Φ = diag([Φ1 · · ·ΦK ]).
The column subspaces of Hi, i = 0, · · · , L − 1, are spanned

by the same K dimensional basis. Therefore, a good initial estimate
of the orthonormal basis that spans the column subspace of Hi, i =
0, · · · , L − 1, can be obtained from the low-rank approximation of
the block Hankel matrix

Hr =
[
H0 H1 · · · HL−1

]
. (13)

The matrix Hr satisfies the model

Hr = M′Xr + Qr,

where Xr = [X, Θ1X, · · · , ΘL−1X], and likewise Qr =
[Q0, · · · , QL−1]. Let Ur be a K dimensional orthonormal basis

for the column span of Hr , then PUr = UrU
H
r is the correspond-

ing projection matrix. To perform noise reduction, we project Hi,
i = 0, · · · , L − 1, onto the column subspace of Ur and form the
block Hankel matrix

H = (IL ⊗PUr )


H0

H1

...
HL−1

 ,
where ⊗ is the Kronecker product. Now, H satisfies the model

H = A′(τ )X + Q :=


M′

M′Θ1

...
M′ΘL−1

X +


PUrQ0

PUrQ1

...
PUrQL−1

 . (14)

Note that A′(τ ) has multiple shift-invariance structures intro-
duced by the phase shifts of τ on the (i) subcarrier frequencies of
the pilots, Φ, and (ii) carrier frequencies of the bands, Θi = Φni ,
i = 0, · · · , L−1, as shown in Fig.1a. The phase shifts Φ can be esti-
mated from the low-rank approximation of H and its shift-invariance
properties using subspace fitting methods. From the estimate of Φ,
τ immediately follows.

Let U be a K-dimensional orthonormal basis for the column
span of H, obtained using the singular value decomposition [24],
then we can write A′(τ ) = UT, where T is a K ×K nonsingular
matrix. Next, let us define selection matrices

Ji,1 = eTi ⊗ [IP−1 0P−1] ,

Ji,2 = eTi ⊗ [0P−1 IP−1] ,
(15)

where (·)T is transpose, 0P−1 is a zero vector of size P − 1, ei is
a vector of size L, with ith element equal to 1 and zero otherwise.
To estimate Φ we select submatrices consisting of the first and, re-
spectively, the last row of each block matrix stacked in U, that is
Ui,1 = Ji,1U and Ui,2 = Ji,2U, i = 0, · · · , L− 1. In the view of
shift-invariance structure of A′(τ ), we have

Ui,1 = M′′Φni , Ui,2 = M′′Φni+1 , (16)

where M′′ is a (P − 1)×K submatrix of M′. Next, we form block
matrices

U =


U0,1

U0,2

...
UL−1,2

 , A =


M′′

M′′Φ
...

M′′ΦnL−1+1

 . (17)

Finally, Φ can be estimated by solving the following weighted sub-
space fitting problem

Φ̂ = argmin
Φ

∥∥∥W1/2 (U −AT−1)∥∥∥2
F

= argmin
Φ

∥∥∥W1/2 (I−PA(Φ))U
∥∥∥2
F

(18)

where PA(Φ) = AA†, (·)† is the pseudoinverse of a matrix, and
W = I2L(P−1) for the case when noise is uniform accross the re-
ceiver chains branches. When the noise power is nonuniform ac-
cross the receiver branches, the weighting martix is given by W =
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Fig. 2: RMSE for estimated time-delay in uniform (a-b) and nonuniform noise (c-d) vs signal to noise ratio and number of snapshots.

blkdiag
(
Σ′1
−1
, . . . ,Σ′L

−1
)
∈ C2L(P−1)×2L(P−1), where Σ′i =

σ2
i IP−1 and we assume that σi, i = 0, · · · , L− 1, are known.

The subspace fitting problem (18) can be formulated as a separa-
ble nonlinear least squares problem, which can be solved efficiently
using several iterative optimization methods (e.g., variable projec-
tion, Gauss-Newton or Levenberg-Marquardt). We use the variable
projection method [19] to find a solution, where a good initialization
is obtained by the multiresolution TOA algorithm [16]. With this ini-
tialization, the variable projection method converges very fast, typi-
cally within three steps for moderate and high signal-to-noise ratios
(SNR).

5. NUMERICAL EXPERIMENTS

This section evaluates the performance of the proposed algorithm via
numerical simulations. We consider a scenario where the multipath
channel has nine dominant MPCs, i.e., K = 9, with gain of line-
of-sight (LOS) MPC distributed according to a Rician distribution.
The continuous-time channel is modeled using a 2 GHz grid, with
channel tap delays spaced at 500 ps. We consider that the receiver
estimates the channel frequency response in four frequency bands,
i.e., L = 4, using probing signal with N = 256 subcarriers and
bandwidth ofB = 80 MHz. The central frequencies of the bands are
{60, 180, 290, 400}MHz, respectively. To evaluate the performance
of TD estimation, we use the root mean square error (RMSE) of the

LOS multipath component TD estimate. The RMSEs are computed
using 103 independent Monte-Carlo trials and compared with the
CRLB and RMSEs of the algorithms proposed in [16, 20, 21] which
are shortly denoted with MR-ESPRIT, ESPRIT, and MI-MUSIC, re-
spectively.

Fig. 2a shows the performance of the proposed, MR-ESPRIT,
ESPRIT, and MI-MUSIC algorithms in different signal-to-noise ra-
tio (SNR) regimes for the case when noise power is uniform across
the receiver branches. The number of channel snapshots is set to
10 and kept fixed during trials. From Fig. 2a, we observe that the
RMSE of TD estimation decreases with SNR. The MR-ESPRIT and
ESPRIT algorithms utilize only samples available from the first and
fourth band. Therefore, as expected, their performance is worse,
compared to the performance of the proposed and MI-MUSIC algo-
rithms. The MR-ESPRIT, MI-MUSIC and the proposed algorithms
are all almost attaining the CRLB for sufficiently high SNR, while
ESPRIT due to inefficient use of available data is not able to resolve
closely spaced MPCs even for high SNR. The proposed algorithm
attains the CRLB for lower SNR than any of the algorithms used for
comparison.

In the second scenario, we fixed the signal-to-noise ratio to
SNR = 10 dB and evaluated the performance of algorithms for
the different number of snapshots. From Fig. 2b, it is seen that the
RMSE of TD estimation decreases with the number of snapshots.
It can be observed that the number of snapshots needs to be suf-
ficiently high, i.e., equal or higher than 10, for the algorithms to
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perform well, which is the consequence of the errors introduced by
signal subspace estimation.

The same simulation scenarios are repeated for the case when
the noise power is nonuniform across the receiver branches, and the
corresponding RMSEs are shown in Fig. 2c and Fig. 2d. The signal-
to-noise ratios in the third and fourth band are set to−3 dB and−4.7
dB compared to the SNR of the x-axis on the Fig.2c. Likewise, in
the fourth scenario, the signal-to-noise ratios for the third and fourth
bands are set to 12 dB and 11.3 dB, respectively. Due to the appro-
priate weighting of the cost function (18), the proposed algorithm is
still close to the CRLB also in the case of nonuniform noise.

6. CONCLUSIONS

In this paper, we proposed an algorithm for time-delay estimation
from multiband channel measurements. Considering the channel
impulse response as a sparse signal in the time domain, we have
formulated time-delay estimation as a problem of parametric spec-
tral inference from observed multiband measurements. The acquired
measurements exhibit multiple shift-invariance structures, and we
estimate time-delays by solving the subspace fitting problem. The
solution to the problem is found efficiently using the variable projec-
tion method. Future directions aim towards evaluating the proposed
algorithm with real channel measurements and solving the problem
of joint time-delay estimation and calibration of RF chains.
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