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Abstract—A large majority of cellular networks deployed
today make use of Frequency Division Duplexing (FDD) where,
in contrast with Time Division Duplexing (TDD), the channel
reciprocity does not hold and explicit downlink (DL) probing
and uplink (UL) feedback are required in order to achieve
spatial multiplexing gain. In order to support massive MIMO,
i.e., a very large number of antennas at the base station (BS)
side, the overhead incurred by conventional DL probing and
UL feedback schemes scales linearly with the number of BS
antennas and, therefore, may be very large. In this paper, we
present a new approach to achieve a very competitive trade-
off between spatial multiplexing gain and probing-feedback
overhead in such systems. Our approach is based on two
novel methods: (i) an efficient regularization technique based
on Deep Neural Networks (DNN) that learns the Angular
Spread Function (ASF) of users channels and permits to
estimate the DL covariance matrix from the noisy i.i.d. channel
observations obtained freely via UL pilots (UL-DL covariance
transformation), (ii) a novel “sparsifying precoding” technique
that uses the estimated DL covariance matrix from (i) and
imposes a controlled sparsity on the DL channel such that given
any assigned DL pilot dimension, it is able to find an optimal
sparsity level and a corresponding sparsifying precoder for
which the “effective” channel vectors after sparsification can be
estimated at the BS with a low mean-square error. We compare
our proposed DNN-based method in (i) with other methods
in the literature via numerical simulations and show that it
yields a very competitive performance. We also compare our
sparsifying precoder in (ii) with the state-of-the-art statistical
beamforming methods under the assumption that those methods
also have access to the covariance knowledge in the DL and
show that our method yields higher spectral efficiency since it
uses in addition the instantaneous channel information after
sparsification.

Index Terms—Massive MIMO, Sparse Scattering, Angular
Spread Function (ASF), Uplink-Downlink Covariance Trans-
formation (UDCT), Deep Neural Networks (DNNs), Sparisfying
Precoder.

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) is a varia-
tion of conventional multi-user MIMO, where base station
(BS) has a much larger number of antennas (or antenna
ports) M " 1, and is considered to be a key technology
for the next generation of wireless networks [1]. Large
number of antennas permits to multiplex K " 1 data streams
over the spatial domain to serve K users and guarantees
significant advantages such as energy efficiency due to a
large beamforming gain, reduced inter-cell interference, and
simple user scheduling and rate adaptation due to the well-
known channel hardening phenomenon [1]. To achieve such
benefits, especially in the a downlink (DL) scenario we are
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Fig. 1: Sparse scattering channel between a generic user and
the BS. In this example, the channel consists of 3 large
scatterers reflecting the power of the user to the BS array.

interested in this paper, the BS needs to learn the channel
vectors of K users to M BS antennas in the DL. With Time
Division Duplexing (TDD), due to uplink-downlink (UL-DL)
channel reciprocity which holds under suitable calibration
[2, 3], this can be done via transmitting mutually orthogonal
pilots from the users only in the UL. Unfortunately, channel
reciprocity does not hold in Frequency Division Duplexing
(FDD) since UL and DL channels lie on disjoint and far-
separated frequency bands. Consequently, the only way to
learn the DL channel is to devote a fraction of resource
elements (RE) [4] to estimate the DL channel of K users by
transmitting DL pilots and then UL feedback. Conventional
DL training consists of the transmission of an M ˆTdl pilot
matrix over Tdl REs, such that Tdl ěM to permit each user
to estimate its own DL channel vector. Then, the users feed
their estimated channels back to the BS via the UL channel.
Although this method works quite well for conventional
MIMO systems with moderately small number of antennas
M , it is quite inefficient in massive MIMO since M " 1
and full training of DL channel wastes at least Tdl “ M
REs which may exhaust or be even larger than the whole
REs available in the DL. This feedback bottleneck makes
implementing massive MIMO in FDD quite challenging.

To overcome this bottleneck, several works have been
proposed to reduce DL training and feedback overhead using
the sparse structure of the channel in the angle-of-arrival
(AoA) domain. This sparsity arises due to the fact that FDD
systems in 5G will be mainly used for large cells (while TDD
for smaller denser cells) with tower-mounted base stations
[5], where the communication between the users and the
BS occurs through a sparse cluster of scatterers with limited
angular support (see, e.g., Fig. 1). As a result, the effective
dimension of the channel s is much less than M . Building
on this idea, these works proposed using compressed DL
pilots and Compressed Sensing (CS)-based channel recovery
techniques [6–8]. From standard results in CS, these method
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require a pilot dimension of order Tdl “ Ops logMq, which
may be much less than M for very sparse channels ps !Mq.
Although the assumption s !M may be met in very sparse
Line-of-Sight (LoS) scattering scenarios, it is not fulfilled
when the propagation occurs through diffuse clusters of
moderately large AoA support size because in those cases
the effective dimension s also scales like s “ αM where
α is proportional to the angular width of the scatterer. In
those cases, CS methods incur a pilot dimension overhead
of Tdl “ OpαM logMq which still grows proportionally to
M . Overall, although the CS methods are able to exploit
the sparsity of the channel they are still at the mercy of
sparsity induced by the propagation environment since they
are unable to “shape the channel sparsity” as desired.

A. Contribution

In this paper we propose an efficient scheme for realizing
FDD massive MIMO. The fundamental assumption we make
to achieve this goal is that, the channel is a Gaussian process
with an Angular Spread Function (ASF) that remains the
same for UL and DL. In particular, this implies that although
the UL-DL reciprocity may not hold for the instantaneous
channel vectors, some sort of statistical reciprocity still holds
as the ASF does not vary between UL and DL. We can
summarize our contributions in this paper as follows.
(i) A Novel UL-DL Covariance Transformation Using
Deep Neural Networks. We use the reciprocity of the
ASF in UL and DL to estimate the DL covariance matrix
from the observation of noisy channel vectors freely available
through the UL pilots. The ASF reciprocity was also assumed
implicitly in several past works [9–11] by considering only
ASFs with spike discrete components. Recent works [12–
14] generalize these results to arbitrary ASFs consisting of
both discrete spike and also continuous components, and
show that such Uplink-Downlink covariance transformation
(UDCT) is still feasible for sufficiently large number of BS
antennas M although establishing the stability of UDCT is
quite challenging when only a noisy estimate of the UL
covariance matrix is available.

One of the aims of this paper is to improve the perfor-
mance of UDCT by exploiting the natural group sparsity
structure of the ASF. Unfortunately, designing good regular-
ization methods that promote the group-sparsity of the ASF
(see, e.g., Fig. 1) is not trivial. In particular, none of the struc-
tured group-sparse estimators widely adopted in sparse signal
recovery literature are applicable here [15, 16]. In this paper,
we bridge this gap by using Deep Neural Networks (DNNs).
We train DNNs with suitable training data corresponding to
group-sparse ASFs and let them learn/capture the notion of
group-sparsity. Once the DNN is suitably trained, we use it
as a black-box algorithm to estimate the ASF, thus, the DL
covariance matrix, from the noisy channel vectors gathered
in the UL. We illustrate via numerical simulations that our
proposed DNN-based method is quite strong and recovers
the DL covariance matrix much better than other methods.

(ii) A Novel Sparsifying Precoder. We use the estimated DL
covariance matrix from (i) to design a sparsifying precoder,
such that the following two criteria are met: (a) the reduced-
dim channel vectors of all the users after sparsification are
sparse enough such that they are stably estimated with a
very low error and (b) the dimension of the channel after
sparsification is kept as large as possible in order to increase

the rank of the effective channel matrix of the users after
sparsification such that large number of users K can be
served. We pose this as a Mixed Integer Linear Program
(MILP) and solve it via off-the-shelf MILP solvers.

It is also worthwhile to mention that compared with
CS methods, which are at the mercy of the sparsity of
the channel due to the propagation, our proposed method
is able to shape the sparsity of the channel completely
flexibly depending on number of REs Tdl available for
channel estimation. We illustrate via numerical simulations
that the proposed method has an excellent performance much
superior to other methods such as statistical beamforming,
which also use the knowledge of the DL covariance matrix.

B. Notation

We denote vectors/matrices with small/large boldface let-
ters (e.g., x/X), and sets with calligraphic letters (e.g., X ).
We use the i-th element of a vector x with rxsi and the
pi, jq-th element of a matrix X with rXsi,j . For an integer
k, we use the short-hand notation rks for t1, . . . , ku.

II. PROPOSED ASF ESTIMATION AND
UPLINK-DOWNLINK COVARIANCE TRANSFORMATION

In this section, we explain our proposed method for UDCT
using DNNs. For the sake of completeness, we first provide
a summary of UDCT problem for the Uniform Linear Array
(ULA) we consider in this paper (see, Fig. 1). Let us consider
a generic use and let us denote the ASF of this user by
γpξq where ξ “ sinpθq P r´1, 1s denotes a parametrization
of the AoA θ P r´π

2 ,
π
2 s and where γpξq is density of the

received signal power at the AoA ξ. The covariance matrix
of the channel vector of this user at UL/DL carrier frequency
f P tful, fdlu is given by [12]

Σpfq “
ż 1

´1

γpξqapξ, fqapξ, fqHdξ, (1)

where apξ, fq denotes the array response vector at AoA ξ at
frequency f given by

rapξ, fqsk “ ejpk´1qπd f
c0 , k P rM s, (2)

where d denotes the antenna spacing and where c0 is the
speed of light. Note that in (1) we assumed implicitly that the
ASF γpξq is the same in both UL and DL frequency range.
As explained before, this provides some sort of statistical
UL-DL channel reciprocity for FDD (in contrast with the
instantaneous channel reciprocity which may not hold). With
this notation, can pose the UDCT problem as follows.
UDCT Problem: Given the UL covariance matrix or an
estimate thereof Σul :“ Σpfulq, find the DL covariance
matrix Σdl :“ Σpfdlq. ♦

For the ULA, we can gain a better understanding of UDCT
by looking at the Fourier coefficients of the ASF γpξq. We
first assume that the array has the standard half wavelength
spacing in the UL, namely, d “ λul

2 where λul “ c0
ful

denotes
the wavelength at UL carrier frequency. Then, it is not
difficult to show that Σul is a Toeplitz matrix whose first
column is given by σulpγq P CM where

rσulpγqsk “
ż 1

´1

γpξqejpk´1qπξdξ, k P rM s, (3)
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denotes the pk´ 1q-th Fourier coefficient of γpξq. Similarly,
Σdl is also a Toeplitz matrix with first column σdlpγq P CM

rσdlpγqsk “
ż 1

´1

γpξqejpk´1qπβξdξ, k P rM s, (4)

where β “ fdl
ful

denotes the ratio between the DL and UL
carrier frequencies. In current deployments of FDD systems
typically ful ą fdl, thus, β ą 1. Therefore, in the ideal case
where Σul is known exactly, one can pose UDCT as recov-
ering the projections of the positive functions γpξq on the
DL set of harmonic functions Hdl “ tejpk´1qπβξ : k P rM su
from the knowledge of its projections on the UL harmonic
functions Hul “ tejpk´1qπξ : k P rM su.

All the UDCT algorithms in the literature implicitly or
explicitly do the following: (a) estimate a positive function
pγpξq that has exactly (in the noiseless case) or approximately
(in the noisy case) the same projections on the UL harmonic
functions Hdl as the original ASF γpξq, (b) use the resulting
estimate pγpξq to compute the projections onto the DL set Hdl
to recover an estimate of the DL covariance matrix. Note
that even in the ideal noiseless case, the mapping from the
ASF to the DL projections is a linear map from the infinite-
dim space of positive functions to the finite-dim space of M
projections. Therefore, there are generally a large set of ASFs
corresponding to a given UL projection σulpγq produced by
a generic ASF γpξq:

Apγq :“  

µpξq :

ż 1

´1

µpξqejpk´1qπξdξ “ rσulpγqsk
(

. (5)

All the UDCT algorithms can be seen in one way or
other as simply different strategies for selecting a specific
candidate ALGpσulpγqq P Apγq according to specific criteria.
One such criterion is to assume that the original ASF γ
belongs to a specific subset A0 of structured ASFs. Also,
the UDCT algorithm can written more generally as a method
that produces ALGpσulpγqq P Apγq XA0 when fed with the
UL projections σulpγq.

A similar argument applies to the more general case where
instead of Σul one has access to a collection of N i.i.d. noisy
UL channel vectors ypsq “ hulpsq` zpsq, s P rN s, gathered
via UL pilot transmission where hulpsq and zpsq denote the
UL channel vector and additive measurement noise over
resource block s P rN s. Then, one can compute the UL
sample covariance matrix as

xΣul “ 1

N

ÿ

sPrNs
ypsqypsqH, (6)

and design an algorithm ALG that produces a structured
ASF in A0 whose UL covariance matrix matches xΣul under
suitable metric. For example, [12, 13] propose such algo-
rithms using Non-Negative Least Squares (NNLS) and `2-
norm projections. However, none of these methods are able
to capture the group-sparsity of the ASF in the AoA domain
as illustrated in Fig. 1. For example, as we will illustrate via
numerical simulations, the NNLS proposed in [12] is able
to promote sparsity of ASF in the AoA domain but it does
not yield necessarily group-sparse ASF. The `2 projection
method [13], in contrast, is able to produce smooth ASFs
but creates out-of-support components in the estimated ASF
since `2 norm is inherently unable to promote sparsity.

Overall it is generally difficult to design suitable regu-
larization methods that promote notion of group-sparsity of
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Fig. 2: The structure of DNN adopted for ASF estimation.
DNN consists of 5 layers with 2M , 4M , 8M , 16M , and G
neurons, where M is the number of antennas and where G is
the ASF quantization grid size. The last layer has a soft-max
activation function and produces positive values for γ P RG`.

ASF we address here. In particular, none of the structured
group-sparse estimators widely adopted in sparse signal
recovery literature are applicable here [15, 16]. In this paper,
we develop such a group-sparsity promoting regularization
using DNNs as follows.
(a) Training Data. We first consider a class of group-sparse
ASFs A0 that may potentially arise in practical propagation
scenarios. To capture the notion of group sparsity, we assume
that each ASF in A0 can be written as γpξq “ řg

i“1 κipipξq
where g denotes the number of groups, where pipξq is a
normalized, i.e.,

ş1

´1
pipξqdξ “ 1, positive function with

connected support in rξi, ξi ` wis with wi denoting the
angular width of the ASF of the i-th group pipξq, and where
κi P r0, 1s with

řg
i“1 κi “ 1 are the normalized weights

corresponding to ASFs in g groups. For example, Fig. 1
corresponds to an ASF with g “ 3 groups.

We use the ASFs in A0 to train a DNN as follows.
Given a training sample size S, we select S ASFs from A0

completely randomly. For each specific ASF γ inside this
training set, we compute the first row of the UL covariance
matrix as (3) and produce N i.i.d. noisy UL channel vectors
and their corresponding sample covariance xΣul as in (6).
Since the covariance matrices for ULA are Toeplitz, we
toeplitizify xΣul and define the first column of the resulting
Toeplitz matrix as xσul where

rxσulsk “
řM´k`1
i“1 rxΣulsi,i`k
M ´ k ` 1

. (7)

We define a uniform quantization grid G :“ tξi : i P rGsu
over the set of AoAs r´1, 1s of size G " M where
ξi “ ´1 ` 2pi´1q

G denotes the i-th quantization point. We
also define the discrete quantization of the ASF γpξq over
the grid G as γ “ pγpξ1q, . . . , γpξGqqT P RG`. For simplicity,
we always normalize γ to make sure that

řG
i“1rγsi “ 1.

Finally, we use pxσul,γq as input-output labeled pair for
training the DNN illustrated in Fig. 2. By repeating this for
all the S ASFs selected for training, we obtain a collection
of S training samples for DNN.
(b) Supervised Learning. We use these S training samples
to train a Deep Neural Networks (DNN). For training, we
use the widely-adopted Stochastic Gradient Descend (SGD)
with `pγ, pγq “ }γ ´ pγ}1 as the loss function between
the true γ and the estimate pγ generated by the network.
DNNs have recently been of tremendous importance in
Machine Learning and also in many applications in wireless
communications, such as signal detection, channel encoding
[17], and decoding [18].
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(c) Structure of DNN. One of the important factors affecting
the performance of the ASF estimation using DNNs is the
structure of the DNN consisting of the number of layers, the
number of neurons in each layer, and the activation function
of each layer. In this paper, we use a fully-connected network
illustrated in Fig. 2, with 5 layers consisting of 2M , 4M ,
8M , 16M , and G neurons, respectively, where M denotes
the number of antennas, where the number of neurons G in
the last layer corresponds to the grid size we are adopting
for ASF quantization. The activation function of the 4 initial
layers is the RelU function x ÞÑ maxtx, 0u. For the last layer
we use the soft-max activation function, which for an input
vectors px1, . . . , xGqT in the input produces the output as
px1, . . . , xGqT ÞÑ pex1 ,...,exG qT

řG
j“1 e

xj
. Note that the summation of

the elements produced by soft-max layer is always 1, which
produces a normalized γ, i.e.,

řG
i“1 γi “ 1, as desired.

(d) UDCT using DNN. Once the DNN was suitably trained
we use it as a black-box algorithm for ASF estimation
and UDCT. More specifically, given N i.i.d. noisy chan-
nel vectors received in UL, we compute the UL sample
covariance matrix as in (6) and xσul as in (6). Then, we
feed xσul to the trained DNN and obtain an estimate of the
quantized ASF pγ P RG` where G is the grid size. Then, we
build an estimate of the original continuous ASF pγpξq by
triangular interpolation. Finally, we use pγpξq to compute the
first column of the DL Toeplitz covariance matrix as in (4).
Note that DNNs have the fundamental advantage that one
does not need to run any iterative algorithm as in [12, 13],
which may require many iteration to converge; instead one
immediately computes the estimate by straightforward cal-
culations through the network, which can be done even in
parallel to obtain a tremendous speed-up.

III. SPARSIFICATION PRECODING

In this section, we provide an step-by-step method to design
the sparsifying precoder for a collection of K users based
on their estimated DL covariance matrix denoted by Σk,
k P rM s, where for simplicity we drop the label ‘dl’. An
essential requirement for the our method is the existence
of the common eigen-vector property for the array and in
particular for the set of K DL covariance matrices Σk,
k P rKs. In brief, this property is satisfied when the set
of all the DL covariance matrices produced by the array is,
at least asymptotically for large M , diagonalizable in the
same basis. Fortunately, this assumption is met for Uniform
Linear/Planar Array (ULA/UPA) widely adopted in wireless
applications since the resulting covariance matrices have
Toeplitz/Block-Toeplitz structure. And, it is well-known that,
asymptotically for large M , all such matrices are diagonal-
izable with appropriate DFT (Discrete Fourier Transform)
matrices, thus, common eigen-vector property.

In the following, we provide a detailed derivation of the
this property for the ULA. We first calculate the circulant
approximation of the estimated DL covariance matrices of
all users, so that they all share the same set of eigen-vectors,
or equivalently virtual beam-space representation.1 The cir-
culant approximation of large Toeplitz matrices imposes an
small error as a result of the application of Szegö Theorem
[19]. Let Σk, k P rKs, be as before and define the diagonal

1Recall that circulant matrices are diagonalizable with the orthogonal
DFT matrix.
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Fig. 3: (a) An example of a bipartite graph L. (b) The correspond-
ing weighted adjacency matrix W.

matrices Λ̊k “ diagpFHΣkFq for k P rKs. There are several
ways to define a circulant approximation [20], among which
we choose Σ̊k “ FΛ̊kF

H. According to Szegö’s theorem,
for large M , Λ̊k converges to the diagonal eigenvalue matrix
Λk of Σk, i.e. Λ̊k Ñ Λk as M Ñ8. This shows that, with
a small error, we can find a set of common eigenvectors
for all the estimated DL covariance matrices Σk, k P rKs.
As a consequence, the DL channel covariance of each user
k P rKs is characterized simply by a vector of eigenvalues
λk P RM , with m-th element λ

pkq
m “ rΛ̊pkqsm,m. In

addition, the DFT matrix whose pm,nq-th entry is given by
rFsm,n “ 1?

M
e´j2πmn

M , m, n P rM s, forms a unitary basis
for (approximately) expressing any user channel vector via
an (approximated) Karhunen-Loeve expansion. In particular,
letting fn :“ rFs¨,n denote the nth column of F, we can
express the DL channel vector of user k as

hpkq «
M´1
ÿ

m“0

gpkqm

b

λ
pkq
m fn (8)

where g
pkq
m „ CN p0, 1q. Here, we wish to design the

precoder B such that the support of the effective channels
ȟ
pkq
eff “ Bhpkq is not larger than Tdl, such that all users

have a chance of being served. Let H “ L d G P CMˆK
denote the matrix of DL channel coefficients expressed in
the DFT basis (8), in which each column of H represents
the coefficients vector of a user, where L is a MˆK matrix

with elements rLsm,k “
b

λ
pkq
m , where G P CMˆK has i.i.d.

elements rGsm,k “ g
pkq
m , and where d denotes the Hadamard

(elementwise) product.
To design the sparsifying precoder, we first illustrate the

joint user-beam association of all K users by a graphical
model. Let A “ rLs denote a one-bit thresholded version
of L, such that rAsm,k “ 1 if λpkqm ą ε, where ε ą 0 is a
suitable small threshold, used to identify the components that
are significantly larger than 0 from the “almost zero” ones,
and consider the M ˆK bipartite graph L “ pA,K, Eq with
adjacency matrix A and weights wm,k “ λ

pkq
m on the edges

pm, kq P E . An example of the bipartite graph L and its
corresponding weighted adjacency matrix W is illustrated
in Figs. 3a and 3b. Given a pilot dimension Tdl, our goal
consists in selecting a subgraph L1 “ pA1,K1, E 1q of L in
which each node on either side of the graph has a degree at
least 1 and such that

1) For all k P K1 we have degL1pkq ď Tdl, where degL1
denotes the degree of a node in the selected subgraph.

2) The sum of weights of the edges adjacent to any node
k P K1 in the subgraph L1 is greater than a threshold,
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i.e.
ř

mPNL1 pkq wm,k ě P0, @k P K1, where NL1pkq
denotes the set of neighbors in L1 of node k.

3) The channel matrix HA1,K1 obtained from H by select-
ing a P A1 (referred to as “selected beam directions”)
and k P K1 (referred to as “selected users”) has large
rank.

The first criterion enables the stable estimation of the ef-
fective channel of any selected user with only Tdl common
pilot dimensions and Tdl complex symbols of feedback per
selected user. The second criterion makes sure that the
effective channel strength of any selected user is greater than
a certain desired threshold. The third criterion is motivated
by the fact that the DL multiplexing gain is given by
rankpHA1,K1q ˆ maxt0, 1 ´ Tdl{T u, where T denotes the
whole number of REs, and it is obtained by serving a number
of users equal to the rank of the effective channel matrix.

In [21] we show that the rank of H is given, with probabil-
ity 1, by the size of the largest intersection submatrix whose
associated bipartite graph contains a perfect matching.2 With
this observation, we can formulate the problem mentioned
above as follows. Let MpA1,K1q denote a matching of the
subgraph L1pA1,K1, E 1q of the bipartite graph LpA,K, Eq.
Find the solution of the following optimization problem:

maximize
A1ĎA,K1ĎK

ˇ

ˇM
`

A1,K1
˘
ˇ

ˇ (9a)

subject to degL1pkq ď Tdl @k P K1, (9b)
ÿ

aPNL1 pkq
wa,k ě P0, @k P K1. (9c)

It turns out that, this problem can be transformed into the
following equivalent mixed integer linear program (MILP),
denoted by PMILP [21]:

maximize
xm,yk,zm,k

ÿ

mPA

ÿ

kPK
zm,k ` ε

ÿ

mPA
xm (10a)

subject to zm,k ď rAsm,k @m P A, k P K, (10b)
ÿ

kPK
zm,k ď xm @m P A, (10c)

ÿ

mPA
zm,k ď yk @k P K, (10d)

ÿ

mPA
rAsm,kxm ď Tdlyk `Mp1´ ykq @k P K,

(10e)

P0 yk ď
ÿ

mPA
rWsm,kxm @k P K, (10f)

xm ď
ÿ

kPK
rAsm,kyk @m P A, (10g)

xm, yk P t0, 1u @a P A, k P K, (10h)
zm,k P r0, 1s @m P A, k P K, (10i)

The binary variable xm in (10) determines whether beam
m P A is selected or not, i.e., xm “ 1 if and only if the
m-th beam is selected. Similarly, yk controls the selection
of user k for channel estimation (and eventually serving).
For a given set of user DL covariance matrices, we denote
by B “ tm : xm̊ “ 1u “ tm1,m2, . . . ,mM 1u the set of
selected beams directions of cardinality |B| “ M 1 and by
K “ tk : y˚k “ 1u the set of selected users of cardinality
|K| “ K 1, where txm̊uMm“1 and ty˚k uKk“1

are solutions to
PMILP.

The desired sparsifying precoding matrix B is finally
obtained as B “ FH

B, where FB “ rfm1 , . . . , fmM1
s and

2A matching is a set of edges of a graph without common vertices.

fm denotes the m-th column of the M ˆM unitary DFT
matrix F. Using (8), the effective DL channel vectors take
on the form

ȟ
pkq
eff “ B

ÿ

mPSk

gpkqm

b

λ
pkq
m fm “

ÿ

i:miPBXSk

b

λ
pkq
mig

pkq
mi

ui,

(11)
where Sk is the the support of hpkq in the DFT domain and
where ui denotes a M 1ˆ 1 vector with all zero components
but a single “1” in the i-th position. With this construction,
the number of non-identically zero coefficients for each user
k are |B X Sk| ď Tdl and their positions (encoded in
the vectors ui in (11)) are known to the BS. Hence, the
effective channel vectors can be estimated from the Tdl-
dimensional DL pilot observation with an estimation MSE
that vanishes as 1{SNR [21] by increasing the Signal-to-
Noise Ration (SNR). With the above precoding, we have
BBH “ IM 1 . Furthermore, we can choose the DL pilot
matrix Ψ to be proportional to a random unitary matrix of
dimension Tdl ˆM 1, such that ΨΨH “ PdlITdl

. After DL
pilot transmission, all users k P rKs send back their noisy
observations ypkq to the BS via analog unquantized feedback.
The BS, having an estimate of the DL channel covariance,
performs linear MMSE estimation to obtain an estimate of
the DL channel.

We concclude by describing the channel precoding step.
Let pHeff “ rphp1qeff , . . . ,

ph
pK1q
eff s be the matrix of the estimated

effective DL channels for the selected users. We consider the
ZF beamforming matrix V given by the column-normalized
version of the Moore-Penrose pseudoinverse of the estimated

channel matrix, i.e., V “
´

pHeff

¯:
G1{2, where

´

pHeff

¯: “
pHeff

´

pHH
eff
pHeff

¯´1

and G is a diagonal matrix that makes the
columns of V to have unit norm. A channel use of the DL
precoded data transmission phase at the k-th user receiver
takes on the form ypkq “ `

hpkq
˘H

BHVP1{2d`npkq, where
d P CK

1ˆ1 is a vector of unit-energy user data symbols and
P is a diagonal matrix defining the power allocation to the
DL data streams. The transmit power constraint is given by
trpBHVPVHBq “ trpVHVPq “ trpPq “ Pdl, where we
used BBH “ IM 1 and the fact that VHV has unit diagonal
elements by construction. For simulation results, we use the
simple uniform power allocation Pk “ Pdl{K 1 to each k-th
user data stream. The received symbol at user k receiver is
given by

ypkq “ bk,kdk `
ÿ

k1‰k
bk,k1dk1 ` npkq, (12)

where the coefficients pbk,1, . . . , bk,K1q are given by the
elements of the 1 ˆ K 1 row vector

`

hpkq
˘H

BHVP1{2. Of
course, in the presence of an accurate channel estimation
we expect that bk,k «

?
GkPk and bk,k1 « 0 for k1 ‰ k. To

calculate achievable sum-rate, we assume that all coefficients
pbk,1, . . . , bk,K1q are known to the corresponding receiver
k. Including the DL training overhead, this yields the rate
expression

Rsum “

ˆ

1´
Tdl

T

˙

ÿ

kPK
E

«

log

˜

1`
|bk,k|

2

1`
ř

k1‰k |bk,k1 |
2

¸ff

.

(13)
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Fig. 4: Comparison of performance of ASF estimation for
DNN, NNLS, and `2 Projection method.

IV. SIMULATION RESULTS

In this section, we perform numerical simulations to as-
sess the performance of our proposed method. For simu-
lations, we consider IMT-FDD band as in LTE standard
[22] with a UL band r1920, 1980sMHz and a DL band
r2110, 2170sMHz. Thus, we use ful “ 1950 and fdl “ 2140,
and set the UDCT parameter β in (4) to β “ fdl

ful
« 1.1 ą 1.

We also set the number of BS antennas to M “ 256.

A. ASF Estimation and UL-DL Covariance Transformation

In this section, we perform numerical simulations to
compare a DNN trained with group-sparse ASFs with NNLS
method in [12] and `2 projection method in [13].
ASF Estimation. We assume that each ASF in the set of
feasible group-sparse ASFs consists of two groups g “ 2
where the ASF corresponding to each group is a uniform
distribution with a center randomly selected in the range
of AoAs r´1, 1s and with a random width of size at most
wmax “ 0.4. We consider a SNR of 20 dB for noisy UL
channel vectors used for training and set the sampling ratio
to N

M “ 2 (see, e.g., (6)). We refer to Section II for a more
detailed discussion of the data set used for training the DNN.
We build a training data set of size S “ 10000 where we
use 80% of this data set for training and the remaining 20%
for validation.

Fig. 4 illustrates the simulation results for ASF estimation.
It is seen that DNN performs much better than NNLS and `2
projection. NNLS estimates the support very well but is quite
spiky over the support. In contrast, `2 projection method is
quite smooth over the support but produces considerable off-
support elements.
UL-DL Covariance Transformation. In this part, we com-
pare the UDCT performance of our proposed DNN with that
of NNLS and `2 projection method for different sampling
ratios N

M P t1, . . . , 8u. As in the previous part, we assume
a SNR of 20 dB for the noisy UL channel vectors. Recall
that an UDCT algorithm takes N noisy UL channel vectors
as the input and produces an estimate of the DL covariance
matrix as the output. We use the following distortion metrics:

1) Normalized Frobenius-norm: defined as

ENFD “ E

"}Σdl ´Σdl
‹}F

}Σdl}F
*

,
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Fig. 5: Comparison of the performance of UDCT for
DNN, NNLS, and `2 Projection method under Normalized
Frobenius-norm distortion.

where }.}F denotes the matrix Frobenius norm, where
Σdl and Σdl

‹ denote the true and the estimated DL
covariance matrices, and where the expectation is taken
over random realizations of the UL channel vectors.

2) Power-loss: Suppose that the eigenvalue decomposition
of the true and estimated DL covariance matrices
are given as Σdl “ UDUH and Σdl

‹ “ rUrDrUH,
respectively. We define the efficiency metric of order
q P rM s as

ηq “
tr
´

rUH
qΣdl rUq

¯

tr
`

UH
qΣdlUq

˘ P r0, 1s, (14)

where trp.q denotes the trace operator, and where Uq

and rUq denotes Mˆq matrices consisting of the first q
columns of U and rU respectively. This metric indicates
which fraction of the power lying in the dominant q-
dim subspace of the true DL covariance Σdl is captured
by the estimated subspace with the same dimension in
Σdl

‹ spanned by rUq [23, 24]. The closer the efficiency
parameter ηq is to one, the better the power in the
dominant q-dim subspace of Σdl is captured by the
estimated covariance Σdl

‹. As a worst-case distortion
metric that works independent of the dimension of the
subspace, we consider

EPLE “ 1´ Et min
qPrMs

ηqu (15)

where the expected value is taken with respect to the
random realization of the noisy UL channel vectors.

Figs. 5 and 6 illustrate the simulation results. It is again
seen that, as in the ASF estimation, our proposed method
yields better performance in terms of UDCT under both dis-
tortion metrics, especially in the practically-relevant regime
where the sampling ratio N

M may be very small.

B. Sparsifying Precoder vs. Statistical Beamforming

In this paper, we designed the sparsification precoding
from the estimated DL covariance matrices Σk, k P rKs
(for simplicity, we dropped the label ‘dl’). In the presence
of channel sparsification imposed by this precoder, BS still
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Fig. 6: Comparison of the performance of UDCT for DNN,
NNLS, and `2 Projection method under Power-loss distor-
tion.

needs to probe the reduced-dim channel in the DL and
request the users to feedback their channel measurements
during the probing to the BS, from which the BS is able
to extract the instantaneous channel state of the users after
sparsification.

As an alternative to sparsification precoding, one may
use the statistical beamforming, which uses only the DL
covariance knowledge to beamform to the users, and es-
pecially does not apply any DL probing and UL feedback
to extract the instantaneous channel of the users [25, 26].
Consequently, the statistical beamforming does not suffer
from the fractional rate loss factor 1 ´ Tdl

T in (13) caused
because of devoting Tdl out of T REs to DL channel probing.

We compare the performance of the sparsification precoder
with the statistical beamforming method proposed in [26].
Let tΣkuKk“1 denote the DL covariance matrices of the users,
either exact or estimated via a UDCT method. In particular,
in this section, we provide results for both the case in which
the BS has access to exact DL covariances and the case
where the DL covariances are estimated using DNN. Given
tΣkuKk“1, the beamforming vector for the user k is given by

uk “ umax

#

`

N0IM `
ÿ

`‰k
Σ`

˘´1
Σk

+

, (16)

where umaxp.q denotes the normalized eigenvector corre-
sponding to the maximum eigenvalue of a matrix, and
where N0 denotes the normalized noise power. The statistical
beamforming matrix is then given by V “ ru1, . . . ,uKs.
We also assume uniform power allocation across the users,
just as explained in Section III, and calculate the sum-rate
according to (13).

We set the simulation parameters as follows: the BS has
M “ 256 antennas and serves K “ 20 users, each having a
randomly generated ASF as before. Fig. 7 illustrates the sum-
rate vs. pilot dimension results. The blue curves represent the
results by assuming true DL covariances, and the red curves
represent the results for estimated DL covariances via DNN.
As we can see, the performance of the statistical beamform-
ing (SBF) method is substantially inferior to the performance
of the sparsification precoding for almost all range of pilot
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Fig. 7: Sum-rate comparison of the proposed sparsification
precoder with statistical beamforming for SNR “ 20 dB. We
have M “ 256 BS antennas and K “ 20 served users.

dimensions. This implies that, it is always worthwhile to
spend some of resource blocks to estimate instantaneous
channels and design the beamformer upon them. This is true,
even for small values of the pilot dimension, which implies
that even a coarse estimation of the instantaneous channel
using a few pilots yields a better performance than the that
of statistical beamforming.

V. CONCLUSION

In this paper, we presented a new approach to achieve a
very competitive tradeoff between spatial multiplexing gain
and probing-feedback overhead in FDD massive MIMO sys-
tems. Our approach has two main ingradients: (i) an efficient
regularization technique based on Deep Neural Networks
(DNN) for structured ASF estimation and UL-DL covariance
transformation, (ii) a novel “sparsifying precoding” technique
that uses the estimated DL covariance matrices from (i) and
shapes the channel sparsity depending on the pilot dimension
such that the “effective” channel vectors after sparsification
can be estimated at the BS with a low mean-square error.
In particular, the proposed sparsifying precoder is not at the
mercy of the channel sparsity induced by the propagation
environment, which is a bottleneck for Compressed Sens-
ing based channel estimation methods. We compared our
proposed DNN-based method in (i) with other methods in
the literature via numerical simulations and showed that it
yields a very competitive performance. We also compared
our sparsifying precoder in (ii) with the state-of-the-art
statistical beamforming methods under the assumption that
those methods also have access to the covariance knowledge
in the DL and showed that our method yields higher spectral
efficiency since it uses in addition the instantaneous channel
information after sparsification.
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