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Approximated Canonical Signed Digit
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Department of Electronics, University of Rome Tor Vergata, Rome, Italy
(1)DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract—Lowering the energy consumption in applications
operating on large datasets is one of the main challenges in
modern computing. In this context, it is especially important to

lower the energy required to transfer data from/to the memory.
Usually, this is obtained by applying smart encoding techniques
to the data. In this work, we show how to reduce the switching
activity in buses and floating-point units by an approximated
canonical signed-digit encoder. The precision of the encoding is
programmable and can be chosen depending on the application’s
required accuracy.

I. INTRODUCTION

Lowering the energy consumption in architectures imple-

menting Intelligent Computation algorithms is a primary target

for new applications such as, for example, Internet-of-Things

(IoT). This goal is achieved by using architectural and micro-

electronic technology level techniques. At architectural level,

the most important actions are aimed at minimizing power

dissipation in parts characterized by high capacitive loads due

to interconnect (buses), or due to complex architectures, such

as hardware multipliers.

Data on power dissipation break-down in multicore chips

show that the cores consume about 50% of the total power, and

that the several levels of memories account for the remaining

50% [1].

In [2], the authors show that for a 45nm CMOS process the

memory access measured in [pJ] is three order of magnitude

more energy expensive than the arithmetic implemented in the

core. Consequently, energy reduction in memory access is very

important for lowering power consumption in applications

with large datasets, e.g., artificial neural networks (ANNs).

In [3] and [4], the authors show different techniques for

the implementation of low power interconnects by using

Canonical Signed Digit Number System and the Binary Coded

Canonical Digit Signed Digit. In [5], the authors use Canonical

Signed Digit (CSD) coding to reduce the time of execution of

the multiplications that are massively used in the ANN infer-

ence phase, while in [6], an ANN architecture is implemented

on FPGA using CSD-based multipliers obtaining a reduction

in hardware resources.

Moreover, a number of engineering fields deal with error

resilient applications (image and audio processing) and algo-

rithms (ANN, fuzzy logic, genetic algorithms). Consequently,

techniques such as approximate arithmetic and approximate

data representation can be fruitfully applied in these areas to

achieve energy savings without sacrificing algorithm perfor-

mances.

As examples, an energy efficient neuromorphic architecture

based on approximated multipliers, and a systematic design

space exploration approach based on approximated ANNs are

presented in [7] and [8].

To address energy efficiency in computation for ANNs, we

introduced in [9] a floating-point variable precision format,

the Tunable Floating-Point (TFP) format, to handle several

precisions and dynamic ranges. Moreover, TFP units for

addition and multiplication were introduced in [10] and [11].

In this work, we propose a method to reduce the switching

activity in the processing units and in the memory buses by

an approximate CSD encoding.

The idea is to suppress sequences of ‘1’s by CSD recoding

and approximate the encoded number by omitting the bits of

negative weight. Fig. 1 shows an example of the proposed

Approximate CSD (ACSD) recoding. Sequences of three or

two ‘1’ are not recoded.

The main contribution of this work is the design of the

ACSD coder, including a parallel CSD recoding algorithm.

The coder precision can be programmed to adjust the accuracy

of the approximated recoding for different applications during

the algorithm execution. The ACSD coder is implemented

in standard cells technology, and we provide data on perfor-

mance, error rates, and power savings for a few test cases.

Simulations of traffic on the bus for several sample se-

quences of binary32 (single-precision) vectors with ACSD

encoded significand show a best-case reduction in switching

activity of 6%, and a worst-case reduction of 2%.

Similarly, the execution of matrix multiplication for ACSD

encoded operands in a binary32 floating-point unit results in

average power savings of about 3%.

II. PARALLEL RECODING ALGORITHM

Canonical recoding of binary numbers into the digit set

{−1, 0, 1} is a sequential recoding that minimizes the num-

ber of non-zero bits [12]. For example, A=01 0111 1001 is

recoded into F=01 1000 1001, where 1 = −1.

In our algorithm, to parallelize the recoding, the binary

number is split into 4-bit digits as illustrated in Fig. 2. To

simplify the recoding, we recode only sequences with at least

four ‘1’s. Since a sequence of ‘1’s can spread across more

digits, we use the transfer bits Q and T to indicate:



input 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1

CSD 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1

recoded 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

ACSD 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1

Fig. 1. Example of Approximated Canonical Signed Digit (ACSD) recoding.
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Fig. 2. Architecture of 4-bit digit-based recoder.

• Qi = 1 there is a sequence of four ‘1’s in digit i.
• Ti+i = 1 there is a sequence of four or more ‘1’s in digit

i+1 originated in digit i.

Moreover, if there is a sequence of ‘1’s active in digit i, its

length Li is passed to digit i+1. Based on these definitions, we

describe how the recoding is done for the 4-bit digit i (Fig. 3).

We do not use indices to refer to local variables in digit i.

The recoding algorithm is divided in the following logical

steps.

Step 1. The sequence of ‘1’s can be either toward the right

or the left, or toward both ends. Therefore, we list in Table I

the sequence lengths L (left) toward digit i+1 and R (right)

toward digit i-1.

For example, when A=1101 there is a sequence of two ‘1’s

toward the digit at left (L = 2) and a sequence of one toward

the digit at right (R = 1)

The sequence toward the left is passed to digit i+1

Li ← L = (L1L0)2 (two bits)

Moreover, the bit Qi is set to one if A=1111.

Step 2. The results of Table I and the incoming Qi−1 and

Li−1 are used to compute the length of the sequence in digit

i, as follows. We compute the length p of the sequence of ‘1’s

p = plocal + pR

where

- plocal is the length in the digit, computed as:

plocal = 4 if Qi = 1
plocal = R otherwise

In the latter case (Qi = 0), there is some ’0’ in the digit

and there is a sequence ≥ 4 only if started in digit i-1.

A L1 L0 R1 R0 Qi

0000 0 0 0 0 0
0001 0 0 0 1 0
0010 0 0 0 0 0
0011 0 0 1 0 0
0100 0 0 0 0 0
0101 0 0 0 1 0
0110 0 0 0 0 0
0111 0 0 1 1 0
1000 0 1 0 0 0
1001 0 1 0 1 0
1010 0 1 0 0 0
1011 0 1 1 0 0
1100 1 0 0 0 0
1101 1 0 0 1 0
1110 1 1 0 0 0
1111 0 0 0 0 1

TABLE I
SEQUENCE LENGTHS: L = (L1L0)2 HOLDS THE LENGTH TOWARD THE

DIGIT AT LEFT, R = (R1R0)2 TOWARD THE DIGIT AT RIGHT.
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- pR holds the sequence length originating from the digit

at right to be added to plocal. This sequence is interrupted

when there are ’0’s in the bits of A toward the left:

pR = 3 if Li−1 = 3 AND R ≥ 1
pR = 2 if Li−1 = 2 AND R ≥ 2
pR = 1 if Li−1 = 1 AND R = 3
pR = 0 otherwise

For example, A=1001 and Li−1 = 3, we have plocal = 1,

pL = 3, and p = 4. There is a sequence of ‘1’s ending in the

digit. In this case, the bits in the digit are recoded as F=1010.

When in digit i there is sequence originating from the right,

we have to pass the recoding info to digit i-1. This is done

through the bit T (going left-to-right in Fig. 2)

Ti = Qi OR (p ≥ 4)

Step 3. Bit Ti and the incoming (from left) Ti+1 determine

the recoding in the digit. The actual recoding, i.e., transform-

ing the sequence of ‘1’, is done according to L and R values

determined in Table I.



Extending the previous example, A=1001 1110, we have:

Li−1 = 3, p = 4, Ti = 1 resulting in F=1010 0010. Clearly,

we need a special code to represent 1.

The transfer bits Qi and Ti, and the Li−1 value do not

propagate further than one digit, therefore, the recoding is done

in parallel. The detail is illustrated in Fig. 3.

The recoder of Fig. 2 requires additional output bits to

represent the bits with negative weights 1.

The approximated CSD recoding is implemented by omit-

ting the 1 bits. The approximation introduces an error 2j where

j is the position of 1 in the word (we assume unsigned integers,

in this case).

A. Non-Recoding Zone

Since the error can be quite large if the omitted 1 is in the

most-significant part of the word, we can adjust the accuracy

of the approximated recoding by introducing a “non-recoding

zone (NRZ)”. Fig. 4 shows an example where the NRZ is

extended to the 16 most-significant bits (MSBs). With this

protection, H = 16, the maximum error is 27 (unsigned

integers). The actual error in the example of Fig. 4 is 26.

The NRZ is specified by a mask M, implemented by a

decoder. For example, for a 16-bit integer, if we want to limit

the error to 28 we have:

A = 0011 1110 0111 1110 (input)

M = 1111 1111 0000 0000 (mask)

F = 0011 1110 1000 0010 (recoded)

FA = 0011 1110 1000 0000 (approx. recoded).

In each digit of the recoder, we need to introduce an

enable signal (EN) to enforce the NRZ. The operations in

the modified 4-bit digit encoder, illustrated in Fig. 5, are the

following:

- In each digit, the mask is checked against the position of

the trailing ‘1’ (to become 1, and, therefore, omitted).

For example, if A=1110 we define the position of the

trailing ‘1’ as B=0010 and we determine if the position

falls in the NRZ for each of the four bits Bj and Mj

K = NOT(B3M3 OR B2M2 OR B1M1 OR B0M0)

Therefore, K = 0 indicates that there is potential trailing

‘1’ falling in the NRZ. For example, for B=0010, if

M=1111 → K = 0, but if M=1100 → K = 1, and the

potential trailing ‘1’s can be recoded because the error

introduced by omitting 1 falls outside the NRZ.

- If K = 1, the partial sequence ‘1’ is recoded only

if Ti+1 = 1. In this case the “enable recoding” in-

formation is communicated to the adjacent digits if

Ei = Ti+1 AND K .

- To preserve the NRZ across several digits, long sequences

of ‘1’, the enable in digit i+ 1 is generated as:

ENi+1 = Ei AND Ei−1 AND . . . AND E0

input 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1

CSD 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1

recoded 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

N R Z

ACSD 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1

ǫmax ↑

Fig. 4. Example of ACSD recoding with “non-recoding zone” (NRZ).
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B. Critical Path

Fig. 6 shows the architecture for a (n+1)-bit ACSD recoder

with NRZ. The highlighted blocks contributes to the critical

path. In two adjacent digits i and i + 1, there is competition

between the sum of delays in Step 1 and Step 2 in block i+1
(producing Ti+1, and the delay of K comp. in block i plus

the delay of the decoder to generate the mask M depending

on the value of the non-recoding zone H , not depicted in the

figure. Since the synthesis tends to equalize the slacks in the

different paths, we reported both possibilities in Fig. 6.

Once all Ei values are generated in parallel (same delay for

all digits), the longest delay in the critical path depends on the

fan-in of the AND gate generating the ENi values. Therefore,

ENn in the most-significant digit is the one on the critical path

because the fan-in of the AND gate is n (the largest).

Fig. 6 demonstrates that in the overall recoding process with

non-recoding zone there is no carry propagation through the

n+1 digits.

III. EXPERIMENTAL RESULTS

We ran some tests to evaluate the errors introduced by the

approximated recoder for approximating the 24-bit significand

of binary32 (single-precision) floating-point numbers. This

format is suitable for training in deep learning applications.

We ran tests on 1024 24-bit random vectors and extended

the “non-recoding zone” from H = 0 (fully approximated) to

H = 24 (no recoding).
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Fig. 6. Critical path for an ACSD (n+1)-digit recoder with NRZ.

numbers (total) : 1024
n. seq. ‘1’s ≥ 4 (total) : 697
average seq. length : 4.82 bits
max. seq. length : 12 bits

NRZ numbers errors reduct.
H approx. ǫave ǫmax 1s count

24 0 0 0 0

20 107 2
−23

2
−18 6%

16 168 2
−20

2
−14 9%

12 344 2
−16

2
−11 14%

8 434 2
−12

2
−6 18%

4 527 2
−9

2
−3 21%

0 697 2
−8

2
−2 23%

TABLE II
APPROXIMATED RECODING: SUMMARY OF RESULTS FOR DIFFERENT NRZ.

The results, reported in Table II, show that the average error

on the significand ǫave is quite acceptable and the reduction

in the number of ‘1’s in the representation is quite significant.

Moreover, for each NRZ, the table reports the number of

approximated elements (col. 2), and the reductions in the

number of ‘1’s for the 1024 elements after recoding (col. 5)

The reduction in the switching activity in a bus depends on

how the sequence of data are accessed (transit on bus). We ran

simulations for several sample sequences (traffic on the bus)

and found a best-case reduction in switching activity of 6%,

and a worst-case reduction of 2%. Although the reduction is

small, it may lead to sizeable power dissipation savings in the

bus if the switched capacitance is large.

A. Hardware Implementation

The 24-bit approximated recoder is implemented in a com-

mercial 45 nm library of standard cell. The unit includes

hardware to renormalize the significand in case the recoding

causes an overflow.

The latency of the approximated recoding is 520 ps, corre-

sponding to 8 FO4 delay.

 14.9
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 0  204 2416128
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Approx. Recoded

H

Fig. 7. Average power dissipation in FP-unit as H scales. Pave is in mW

at 1GHz clock rate.

As application, we chose matrix multiplication, arguably,

the most common kernel in machine learning.

Fig. 7 shows the average power dissipation reduction when

the approximated recoding is applied to a FP-unit (FP-

multiplier and FP-adder) executing the matrix product. By

increasing the approximation (reducing H) we can achieve

power savings of about 3%.

IV. CONCLUSIONS

In this work, we designed a parallel approximated CSD

recoder to reduce the switching activity in buses and FP-units.

The recoding is done in parallel on 4-bit digits and the

overall operation is carry-free. The critical path traverses the

blocks belonging to three digits, but contributing to the delay

of one digit only, plus a few gates (Fig. 6).

Although the energy savings are not large, the trade-off er-

ror/savings makes the ACSD recoder suitable for applications

in deep learning and other areas where huge datasets need to

be transfered from/to memory.
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