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Abstract—This paper formulates a linear receiver for the
uplink of centralized, possibly cloud-based, radio access networks
operating in a cell-free fashion. This receiver, which draws on
the notion of soft parallel interference cancellation, exhibits
substantial interference rejection abilities, yet it does not involve
any matrix inversions. Its computational cost is hence decidedly
inferior to that of an MMSE receiver, but its performance is
markedly superior to that of matched-filter beamforming. And,
with an adequate sparsification of the channel matrix that it
derives from, the proposed receiver can be rendered scalable in
the sense of its computational cost per access point not growing
with size of the network.

I. INTRODUCTION

In cellular networks, every user is served by a single access
point (AP) while being regarded as interference by other APs.
Capitalizing on the invariance with the cell size of the signal-
to-interference ratio (SIR), such networks have sustainedly
increased their area capacity by means of densification. How-
ever, a point is bound to be reached where the SIR invariance
breaks down because of line-of-sight propagation across cells
and an ensuing surge in interference [1]. Along with consid-
erations of software definition, elasticity, and flexibility, this
motivates the new paradigm of centralized, possibly cloud-
based, radio access networks (C-RANs) [2].

C-RANs are compatible with a cellular structure, but they
also open the door to cell-free operation. Influenced by mas-
sive MIMO, much of the cell-free literature posits matched-
filter (MF) beamformers [3], yet the true potential of C-RANs
emerges when their centralized nature is exploited to feature
more sophisticated transceivers. In the uplink specifically, an
MMSE receiver would perform decidedly better than an MF
[4]–[6], but at the cost of having to invert a large-dimensional
matrix per fading coherence block. The performance and com-
putational disparity between the MF and the MMSE receiver
invites exploring alternatives that can outperform the former
without the computational cost of the latter.

Since the MF is optimum against noise, improving upon it
necessarily entails dealing with the interference. And, since
the computational cost of an MMSE filter is dominated by the
matrix inversion, reducing that cost calls for a receiver whose
computation is devoid of inverses. Our goal is hence that of an
interference-aware inverse-free receiver, and a promising path
towards this goal lies in the realm of interference cancellation.

The most established such technique in MIMO communi-
cation is successive interference cancellation (SIC). However,
SIC is out of the question for a C-RAN with hundreds or
even thousands of users, as a huge number of iterations would

be needed to peel off all those users. Parallel interference
cancellation (PIC) is much more appealing, as the number of
iterations then decouples from the number of users. There is
extensive research on PIC receivers that can be built upon, both
without [7]–[14] and with [15] the decoders in the cancellation
loops. Although having the decoders in the PIC loops promises
superior performance, the large number of users—again—and
their potential asynchronicity strongly suggests applying soft
PIC before decoding, and this is the option we focus on.

II. NETWORK AND CHANNEL MODELS

The networks under consideration feature N APs and K
users, all equipped with a single omnidirectional antenna.

The local-average channel gain between the kth user and
the nth AP, denoted by Gn,k, subsumes distance-dependent
pathloss and shadowing. For the pathloss, we consider the
commonplace single-slope model, characterized by its expo-
nent η, as well as a dual-slope model whereby the pathloss
decays quadratically up to some breakpoint distance, and with
exponent η thereafter. This entails the additional parametriza-
tion of this breakpoint distance, but it better reflects the
idiosyncrasy of radio propagation in ultradense networks.

Letting P and σ2 denote the user’s transmit power and the
noise power, respectively, the local-average SNR of user k at
the nth AP is SNRn,k = Gn,k

P
σ2 .

Besides Gn,k, the channel between the kth user and the nth
AP features a small-scale fading coefficient hn,k ∼ NC(0, 1),
independent across users and APs.

III. CHANNEL ESTIMATION AND DATA TRANSMISSION

Disregarding pilot contamination, which can be kept at bay
with procedures such as the ones propounded in [3, sec. IV] or
in [16], [17], the MMSE fading estimate ĥn,k gathered by the
network upon observation at the nth AP of a pilot transmission
from user k satisfies hn,k = ĥn,k + h̃n,k where

E
[
|ĥn,k|2

]
=

SNRn,k
1 + SNRn,k

(1)

while h̃n,k ∼ NC
(
0, 1

1+SNRn,k

)
is uncorrelated error. General-

izing it to multiple pilot transmissions per user and per fading
coherence block entails a mere scaling of SNRn,k within.

Subsequently, upon data transmission, on a given time-
frequency resource unit the nth AP observes

yn =

K−1∑

k=0

√
Gn,khn,kxk + vn (2)
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=

K−1∑

k=0

√
Gn,kĥn,kxk +

K−1∑

k=0

√
Gn,kh̃n,kxk + vn

︸ ︷︷ ︸
zn

, (3)

with xk the signal from user k, satisfying E
[
|xk|2

]
= P ,

and with vn ∼ NC(0, σ
2). The transmit-receive relationship

between users and APs can be vectorized into

y =




y0
...

yN−1


 =

K−1∑

k=0

ĉkxk + z (4)

= Ĉx+ z, (5)

where Ĉ =
[
ĉ0 · · · ĉK−1

]
with

ĉk =




√
G0,k ĥ0,k

...√
GN−1,k ĥN−1,k


 (6)

while x = [x0 · · · xK−1]T and z = [z0 · · · zN−1]T. In turn,
E
[
zz∗

]
= σ2D with D the diagonal matrix

[
D
]
n,n

= 1 +

K−1∑

k=0

SNRn,k
1 + SNRn,k

. (7)

IV. NETWORK-WIDE RECEIVER BENCHMARKS

The MF receiver for all K users, or more precisely the
whitening MF, is given by D−1Ĉ and, for given fading
realizations,

sinrMF

k =

∣∣ĉ∗kD−1ĉk
∣∣2

∑
` 6=k

∣∣ĉ∗kD−1ĉ`
∣∣2 + σ2

P ĉ∗kD
−1ĉk

. (8)

In turn, the MMSE receiver for all K users is [18, sec. 6.4]

W MMSE =
(
ĈĈ

∗
+ σ2

P D
)−1

Ĉ (9)

= D−1Ĉ
(
Ĉ∗D−1Ĉ + σ2

P I
)−1

, (10)

which gives

sinrMMSE

k =
|wMMSE∗

k ĉk|2∑
` 6=k |wMMSE∗

k ĉ`|2 + σ2

P wMMSE∗
k DwMMSE

k

, (11)

where

wMMSE

k = [W MMSE]:,k =
(
ĈĈ

∗
+ σ2

P D
)−1

ĉk (12)

is the kth column of W MMSE.

V. LINEAR RECEIVER BASED ON SOFT PIC
From the standpoint of user k, (4) can be rewritten as

y = ĉkxk +
∑

` 6=k

ĉ`x`

︸ ︷︷ ︸
Interference

+z. (13)

The PIC proposition is to subtract a soft estimate of the
interference from y so as to obtain

yk = y −
∑

` 6=k

ĉ`x̂` (14)

where x̂` is a soft estimate of x`. From yk, a better decision
statistic can be derived for user k. Any estimation strategy,
linear or nonlinear, can be applied to obtain x̂0, . . . , x̂K−1.

A. Linear Interference Estimation

Linear estimators do not depend on the signal distributions,
endowing the receiver with broader generality. And, when the
interference estimators are linear, the overall receiver becomes
itself linear [8]–[11], [19]. With linear interference estimation
based on y, x̂` = a∗`y such that (14) can be rewritten as

yk = y −
∑

` 6=k

ĉ`a
∗
`y (15)

=

(
I −

∑

` 6=k

ĉ`a
∗
`

)
y (16)

and, further applying a whitening MF to yk, the decision
statistic for user k becomes

ĉ∗kD
−1yk =

(
ĉ∗kD

−1 −
∑

6̀=k

ĉ∗kD
−1ĉ` a

∗
`

)

︸ ︷︷ ︸
wPIC∗

k

y. (17)

The soft PIC architecture is therefore equivalent to the one-
shot linear receiver

wPIC

k = D−1ĉk −
∑

` 6=k

a` ĉ
∗
`D
−1ĉk, (18)

whose performance and cost depend on a0, . . . ,aK−1. An
inviting choice for a` is the linear MMSE estimator

a` =
(
E[yy∗ | ĉ0, . . . , ĉK−1]

)−1 E[yx∗` | ĉ0, . . . , ĉK−1],
which, unsurprisingly, returns a` = wMMSE

` . The interference
estimates coincide with the MMSE receiver outputs, with
SINRs that cannot be improved upon by any linear receiver.
Indeed, plugging (12) into (18), what emerges after some
algebra is wPIC

k ∝ wMMSE

k with the scaling factor not affecting
the SINR. This confirms that the one-shot linear receiver that
results from applying PIC with MMSE interference estimation
is itself equivalent to a linear MMSE receiver. Let us next
explore alternative forms for the interference estimation.

B. Scalar Linear Interference Estimation

A way to circumvent the need for matrix inversions is to
estimate each interference term on the basis of a scalar input,
rather than from y, and a prime candidate is the output of
the respective MF. Then, x̂` = a∗` · ĉ∗`D−1y with the MMSE
estimation coefficient being

a` =
E[ĉ∗`D

−1y · x∗` | ĉ0, . . . , ĉK−1]
E[ĉ∗`D

−1y · y∗D−1ĉ` | ĉ0, . . . , ĉK−1]
(19)

=
ĉ∗`D

−1ĉ`∑K−1
j=0

∣∣ĉ∗`D−1ĉj
∣∣2 + σ2

P ĉ∗`D
−1ĉ`

. (20)

Recalling (8), the above can be seen to equal

a` =
sinrMF

`

1 + sinrMF

`

1

ĉ∗`D
−1ĉ`

(21)

such that the linear PIC receiver in (18) morphs into

wPIC

k = D−1ĉk −
∑

6̀=k

sinrMF

`

1 + sinrMF

`

ĉ∗`D
−1ĉk

ĉ∗`D
−1ĉ`

D−1ĉ` (22)
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Fig. 1. On the left-hand side, directions taken by wMMSE
0 for ĉ0 = [1 1]T

and ĉ1 = [−1 0]T with P/σ2 = 1 and P/σ2 = 5. On the right-hand side,
respective directions for wPIC

0 . In all cases, D = I .

and the SINR of user k at the output of wPIC

k is

sinrPICk =
|wPIC∗

k ĉk|2∑
6̀=k |wPIC∗

k ĉ`|2 + σ2

P wPIC∗
k DwPIC

k

. (23)

The expression in (22) offers considerable intuition on how
the soft PIC modifies the original MF for user k:
• As sinrMF

` grows, the confidence on x̂` increases and
a larger share of the ensuing interference is cancelled.
Equivalently, wPIC

k deviates progressively from its MF
direction so as to avoid the interference from the `th user.

• As the projection of ĉ` onto ĉk grows strong, the inter-
ference from the `th user further afflicts the kth user and
the cancellation of the former from the latter intensifies
accordingly. Equivalently, wPIC

k again deviates from its
MF direction, away from the `th user.

Altogether, each initial MF vector is modified so as to reduce
its projection on the rest, a procedure that can be illustrated
in a toy setting with K = N = 2. Consider

ĉ0 =

[
1
1

]
ĉ1 =

[
−1
0

]
(24)

with D = I . The MF receiver for user 0 would align with
ĉ0 whereas, as shown in Fig. 1, the corresponding MMSE
receiver tilts to be more orthogonal to ĉ1; moderately for
P/σ2 = 1, and more pronouncedly for P/σ2 = 5. The
respective PIC receiver directions for user 0 are also depicted
in the figure; they also lean to increase their orthogonality to
ĉ1, but somewhat short of optimally. This reflects the different
amount of information based on which either receiver aligns its
vectors: finding the SINR-maximizing directions requires pro-
cessing Ĉ jointly, and inevitably a matrix inversion, whereas
the PIC approximation to those directions only necessitates
the pairwise projection of its columns, ĉ0, . . . , ĉK−1.

C. Performance Evaluation

To evaluate the performance, we resort to a wrapped-around
universe with N = 200 APs. The AP and user positions are
drawn uniformly at random for every network snapshot, which
makes unnecessary the explicit inclusion of shadowing [20].
We set P/σ2 such that SNRn,k = 10 dB at a distance d,
where d would be the inter-AP spacing if the network were
arranged as a hexagonal grid with the same spatial density.
Under reasonable values for the transmit power, bandwidth,
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Fig. 2. CDF of the user SINR for MF, linear PIC and MMSE receivers with
K/N = 0.25 and η = 4. Also included is the curve corresponding to a linear
TPE of the MMSE receiver.
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Fig. 3. 3% and 50% user SINR levels as a function of the pathloss breakpoint
distance normalized by d, with K/N = 0.25.

and pathloss intercept, this is compatible with ultradense
deployments (d ≈ 5–20 m).

Fig. 2 shows the distribution over the AP and user locations
of the local-average SINR, E[sinrk] expected over the small-
scale fading, with K/N = 0.25 and a single-slope pathloss.
The PIC receiver is uniformly superior to the MF and within
3 dB of the MMSE benchmark. Also shown is how the PIC
receiver outperforms the SINR-optimized first-order truncated
polynomial expansion (TPE) of the MMSE receiver [21], a
competing alternative to bridge the MF and MMSE extremes.

Under a dual-slope pathloss model, a similar behavior is
observed over a wide range of breaking distances (see Fig. 3).

VI. SCALABILITY

A network-wide receiver spanning the entire C-RAN is not
scalable. Moreover, it is an overkill because, due to pathloss
and shadowing, only a small subset of APs capture substantial
power from user k and only a small subset of other users
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cause substantial interference to user k. This suggests that the
vast majority of entries of C should be disregarded and the
estimation of those entries should be foregone altogether.

Let us consider scalability in terms of those aspects that
are inherent to a C-RAN, namely (i) receiver computational
cost, and (ii) channel estimation. To measure the former, we
denote by M the number of complex multiply-and-accumulate
(MA) operations accrued computing and applying the receiver
coefficients. To measure the latter, L is the number of channel
coefficients to be estimated. For growing N and K, we want
M/N = O(1) and L/N = O(1) as in a cellular network.

Measured in MA operations, the cost of N × N matrix
inversions is O(N3) while the multiplication of N ×K and
K × N matrices costs O(KN2). Our goal here is not to
present a detailed complexity analysis, but rather to establish
scalability. With this in mind, these measures suffice and
simpler operations such as additions can be neglected, leading
to the following considerations:
• The whitening MF is directly available from the channel

estimates, and its application to the observation y incurs
a cost per AP of MMF/N = O(K).

• The MMSE cost is dominated by the computation of (10),
which satisfies MMMSE/N = O(K2).

• For PIC, sinrMF

0 , . . . , sinr
MF

K−1 can be measured directly
and a0, . . . , aK−1 thus require computing ĉ∗`D

−1ĉ` for
` = 0, . . . ,K − 1, with a cost of O(KN). Then,
producing x̂0, . . . , x̂K−1 again incurs a cost of O(KN).
Likewise, (14) and the subsequent MF application both
have a cost of O(KN). All in all, M PIC/N = O(K).

• For all the receiver types, L/N = O(K).

Although the PIC receiver does involve additional opera-
tions, its computational cost per AP is O(K) as for the MF, in
contrast with O(K2) in the MMSE case. The PIC receiver thus
goes a long way towards reconciling the MMSE performance
with the MF cost. But the challenge remains to render the
PIC receiver truly scalable, meaning M PIC/N = O(1) and
LPIC/N = O(1), without compromising its performance.

VII. SPARSE PIC
The path to scalability lies in recognizing and exploiting

the nature of C, which, as mentioned, has most of its mass
concentrated on a small share of its entries.

An intuitive idea could be to zero out all but the dominant
entries of C, thereby obtaining a sparse matrix C to be plugged
into the various expressions in lieu of C itself. Unfortunately,
such a direct sparsification might yield a channel matrix that
is sparse, but unbalanced, with some users heavily favored by
many connections while others are outright disconnected from
the network. Likewise, some APs might be essentially taken
out of service. The desideratum is thus a sparse channel matrix
that is balanced across rows and columns.

Let us restrict to a subset Kn the users whose channels are
estimated by the nth AP; users not in Kn are treated as noise
by such AP. Then, (3) can be rewritten as

yn =
∑

k∈Kn

ĉn,kxk +
∑

k/∈Kn

ĉn,kxk + zn

︸ ︷︷ ︸
zn

(25)

from which (4) changes to

y =




y0
...

yN−1


 = Ĉx+ z (26)

with z = [z0 · · · zN−1]T,

[Ĉ]n,k =

{
[Ĉ]n,k k ∈ Kn

0 otherwise,
(27)

and E[zz∗] = σ2D where

[D]n,n =
∑

k/∈Kn

SNR2
n,k

1 + SNRn,k
+ [D]n,n (28)

= 1 +
∑

k∈Kn

SNRn,k
1 + SNRn,k

+
∑

k/∈Kn

SNRn,k. (29)

The signals being borne by the zeroed-out entries of Ĉ have
been moved to the augmented noise z and, with a proper
choice of K0, . . . ,KN−1, the rows of Ĉ have a balanced
number of nonzero entries.

Next, let us curb to a subset Nk the APs that participate
in the reception of user k. This can be effected by a zeroing
process dual to that of (27), namely

[Ĉ]n,k =

{
[Ĉ]n,k n ∈ Nk
0 otherwise,

(30)

and, with a proper choice of Nk, the columns of the final Ĉ
are also balanced for every k.

Based on the sparsified channel, the PIC for user k is applied
as

y −
∑

6̀=k

ĉ`x̂`, (31)

where x̂` = a` ĉ
∗
`D
−1y and

a` =
sinrMF

`

1 + sinrMF

`

1

ĉ∗`D
−1ĉ`

(32)

with sinrMF

` the value obtained when user ` is MF-received by
the APs that constitute N`. Altogether, the linear PIC receiver
for user k is now

wPIC

k = D−1ĉk −
∑

` 6=k

sinrMF

`

1 + sinrMF

`

ĉ∗`D
−1ĉk

ĉ∗`D
−1ĉ`

D−1ĉ` (33)

and

sinrPICk =
|wPIC∗
k ĉk|2∑

6̀=k |wPIC∗
k ĉ`|2 + σ2

P wPIC∗
k DwPIC

k

. (34)

What remains is to determine the composition ofNk and Kn to
ensure that Ĉ is sparse, but balanced, and that the performance
of the network-wide PIC receiver is approached. These subsets
should be determined from large-scale quantities only, such
that they are relatively stable in time and frequency.
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A. Subset Selection

For user k, the number of AP subsets of size |Nk| is

N !

(|Nk|)! (N − |Nk|)!
, (35)

hence an exhaustive inspection is out of the question. Rather,
to select N0, . . . ,NK−1 we embrace the policy propounded
in [22] for MF and in [4], [6] for MMSE reception, whereby
Nk contains the |Nk| APs whose Gn,k is largest.

In terms of the selection of Kn, a dual policy of the one
adopted for Nk seems sensible. However, an added require-
ment exists: the nth AP should always estimate the channels
of users in whose reception it participates. We hence propose
that Kn contain the union of:
• A fixed number of the users whose Gn,k are largest.
• All users for which n ∈ Nk, i.e., being received by AP n.
Provided the subset cardinalities are fixed, scalability

is guaranteed. Precisely, computing a0, . . . , aK−1 requires
ĉ∗`D

−1ĉ` for ` = 0, . . . ,K−1, with a cost of O
(∑K−1

`=0 |Nk|
)
,

and subsequently producing x̂0, . . . , x̂K−1 has a cost of the
same order. Likewise, (31) and the necessary MF applications
have a cost of that same order. All in all, the cost of obtaining
and applying wPIC

0 , . . . ,w
PIC

K−1 satisfies

M PIC

N
= O

(∑K−1
k=0 |Nk|
N

)
, (36)

which is O(1) for fixed K/N . In turn,

LPIC

N
=

∑N−1
n=0 |Kn|
N

= O(1). (37)

B. Performance Evaluation

Let the AP subset size |N | be identical for all users, while
K0, . . . ,KN−1 contain the K

N |N | users with strongest channels
to the respective APs in union with the users being received
by each such AP. Presented in Fig. 4 is the distribution of
the user SINR with sparse PIC reception, parameterized by
|N |. Remarkably, very small subset sizes suffice to essentially
match the performance of network-wide PIC reception.
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