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Abstract— This paper introduces a dual-regularized ADMM
approach to distributed, time-varying optimization. The pro-
posed algorithm is designed in a prediction-correction frame-
work, in which the computing nodes predict the future local
costs based on past observations, and exploit this information
to solve the time-varying problem more effectively. In order to
guarantee linear convergence of the algorithm, a regularization
is applied to the dual, yielding a dual-regularized ADMM. We
analyze the convergence properties of the time-varying algo-
rithm, as well as the regularization error of the dual-regularized
ADMM. Numerical results show that in time-varying settings,
despite the regularization error, the performance of the dual-
regularized ADMM can outperform inexact gradient-based
methods, as well as exact dual decomposition techniques, in terms
of asymptotical error and consensus constraint violation.

I. INTRODUCTION

In this paper, we are interested in solving the time-varying
optimization problem

x̄∗(t) = arg min
x̄∈Rn

N∑
i=1

fi(x̄; t) (1)

over a network of N computing and communicating nodes,
each one privately storing a term fi of the cost function. We
assume that each of the cost functions fi : Rn × R+ → R
is a strongly convex and smooth function uniformly in time
t ≥ 0, so that the solution trajectory x̄∗(t) exists and it
is unique. Problems of the form (1) have recently attracted
an increasing amount of attention, see [1]–[17], and they
naturally appear whenever a group of computing and locally
communicating entities need to reach a consensus in a
cooperative fashion, without revealing private information on
their time-varying costs. In time-varying settings, this can be
the case in robotics [13], smart grids [18], or transportation
networks [19].

What is challenging about (1) is that the computing nodes:
(i) know their private functions only up to the current time t,
while future functions are unknown and need to be predicted;
(ii) they have limited computation and communication capa-
bilities, so that they cannot solve (1) exactly at each time
t. These two challenges can be tackled in the framework of
time-varying algorithms, where one sets up online algorithms
of limited computation that eventually find and track the
solution trajectory as time evolves.

In this paper, we focus on discrete-time algorithms of the
prediction-correction kind [20], [21], instead of continuous-
time ones [22], [23]. Discrete-time algorithms sample the
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problem (1) at fixed intervals tk, k ∈ N with tk+1 − tk =
Ts, which yields the following sequence of time-invariant
problems

x̄∗(tk) = arg min
x̄∈Rn

N∑
i=1

fi(x̄; tk). (2)

The idea is then to devise an online algorithm to approxi-
mately solve (2) within the sampling period, and eventually
converge to the optimizer trajectory. Specifically prediction-
correction algorithms predict how the cost function changes
in time and then correct for errors when a new function is
acquired at time tk+1, see [20], [21] and reference therein.
Here, we will devise algorithms that tracks the optimal
solution trajectory {x̄∗(tk)}k∈N up to a bounded error and
that can be deployed in a distributed fashion.

The key novelty of the paper is a new dual-regularized
alternating direction method of multipliers (ADMM), which
can also be applied to static problems and it is therefore of
independent interest. This dual-regularized ADMM extends
the line of research on dual regularizations started in the
static setting [24], [25] and continued in time-varying scenar-
ios [18], [26]. In general, regularizations change the original
problems but improve the convergence properties (e.g., the
rate) to the regularized optimizer. Whenever the introduced
approximation is acceptable with respect to the added benefit
(a faster obtained approximate solution, rather than a slower
obtained exact one), then regularized algorithms are preferred
to exact ones. We show here that in time-varying scenarios
one might “have the cake and eat it too”: since discrete-time
time-varying algorithms never deliver exact solutions and the
radius of the bounded error at which one converges depends
on the convergence rate, then regularizations can both in-
crease the rate and reduce the asymptotical error, if properly
designed. This conclusion is in line with current research on
algorithm hierarchies in time-varying optimization and their
differences with respect to static optimization [27], [28].

The contributions of this paper are as follows:
• We develop distributed prediction-correction algorithms

that can be deployed on a network of computing and commu-
nicating nodes and prove their convergence. The algorithms
are based on a novel dual-regularized alternating direction
method of multipliers (ADMM). These algorithms extend
the ones available in the literature, e.g., [21], [29], since we
are the first to employ the ADMM machinery in a distributed
prediction-correction setting.
• We analyze the novel dual-regularized ADMM (which

is also of independent interest) theoretically and practically.
In theory, we bound the distance of the dual solution of the
regularized problem with the non-regularized one and show
linear convergence of the former. In practice, we demonstrate
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how adding a regularization term is beneficial in time-varying
settings, in a numerical example.
Notation. Vectors and matrices are indicated with x ∈ Rn, and A ∈
Rn×m, respectively. We denote by G = (V, E) the undirected, connected
graph describing the distributed system. We denote by Ni the neighborhood
of node i, and by di := |Ni| its degree. With dM we denote the
maximum degree in the network. The Euclidean norm is denoted by ‖·‖,
the Kronecker product by ⊗. The identity matrix is denoted by I , and
111, 000 denote the column vectors of all ones and zeros, respectively. With
λm(A) and λM(A) we denote the smallest and largest eigenvalues of
a matrix A ∈ Rn×m. The convex conjugate of a convex, closed and
proper function is defined as f?(w) = maxx {〈w,x〉 − f(x)}. The
indicator function of a non-empty, closed, convex set X is denoted by
ιX(x), with ιX(x) = 0 if x ∈ X, and ιX(x) = +∞ otherwise. Given
a convex, closed and proper function f , we define its proximal operator
as proxρf (x) = arg miny{f(y) + ‖y − x‖2 /(2ρ)}, ρ > 0, and the
corresponding reflective operator as reflρf (x) = 2 proxρf (x) − x. A
function f : Rn → R is m-strongly convex, for a constant m ∈ R+,
iff f(x) − m

2
‖x‖2 is convex. The function f is said to be L-smooth if

its gradient is L-Lipschitz continuous, or equivalently f(x) − L
2
‖x‖2 is

concave. We denote the class of m-strongly convex and L-smooth functions
with Sm,L(Rn).

II. AN ADMM REFORMULATION

In this section, we reformulate (2) as a consensus problem,
which we will tackle with a new, regularized, time-varying
version of ADMM.

A. Consensus problem formulation

We introduce the local copies (each for every nodes)
xi ∈ Rn, i = 1, . . . , N , of the unknown variable x̄, and
equivalently rewrite (2) as

x∗(tk) = arg min
x∈RnN

N∑
i=1

fi(xi; tk) =: f(x; tk) (3a)

s.t. xi = xj if (i, j) ∈ E (3b)

where x∗(tk) = x∗k = [(x∗1,k)>, · · · , (x∗N,k)>]> and x∗1,k =
. . . = x∗N,k due to the consensus constraints (3b). Further
introducing the two bridge variables yij ∈ Rn and yji ∈
Rn for each edge (i, j) ∈ E , we can rewrite the consensus
constraints as

xi = yij , xj = yji and yij = yji.

We define now the matrix A ∈ R2n|E|×nN as

A =

111d1 000d1 · · · 000d1
. . .

000dN · · · 000dN 111dN

⊗ In

and the permutation matrix P ∈ R2n|E|×2n|E| which swaps
yij with yji (see [30] for details). Notice that for each edge,
there are two consensus constraints of the form xi = yij ,
and so the bridge variables are 2|E|. We can then rewrite the
consensus constraints as Ax− y = 000 and y = Py, and
thus the consensus problem (3) at time tk is equivalent to

x∗(tk),y∗(tk) = arg min
x∈RnN

N∑
i=1

fi(xi; tk) + ιker(I−P )(y)

(4a)
s.t. Ax− y = 0 (4b)

where ker(M) denotes the null-space of matrix M .

It has been shown in e.g. [30], [31], how problem (4) for
a fixed time tk can be solved in a distributed fashion, by
allowing each node to communicate only with its neighbors
and by employing ADMM. Here we look at time-variant
versions of ADMM, where only a limited number of steps
are allowed at each time instant.

We also notice that we have 2|E| > N , which implies
that A is not full row-rank. As we will see shortly, this
implies that the dual problem to (4) is not strongly-convex.
This generally is a problem in time-varying optimization,
since then the (dual) optimizer trajectory is not unique. We
explore next how to tackle this issue with a dual-regularized
version of ADMM.

B. Dual-regularized Problem
We now examine more closely the consensus problem (4).

First, we can write its dual problem as

w∗(tk) = arg min
w

{
dfk(w) + dh(w)

}
(5)

where we have set f(x; tk) :=
∑N
i=1 fi(xi; tk) and h(y) =

ιker(I−P )(y), and where we have:

dfk(w) = f?(A>w; tk) and dh(w) = h?(−w).

The dual problem is strongly convex provided that the cost
f(·; tk) is L-smooth and that A is full row-rank. However,
as noticed, for distributed problems, A is rank deficient,
and thus the dual problem is only convex, see also [30,
Remark 5]. This is an issue for time-varying algorithms1.

In order to have a strongly convex dual problem, we
introduce now a dual regularization, by substituting the linear
constraints (4b) with the following

Ax− y = −(ε/2)w (6)

with ε > 0. The corresponding dual problem is then (see
Appendix A)

w∗(ε; tk) = arg min
w

{
dfk(w; ε) + dh(w)

}
(7)

with dfk(w; ε) = ε
2 ‖w‖

2
+ f?(A>w; tk), and where we

have overloaded the notation with: w∗(tk) = w∗(0; tk) and
dfk(w) = dfk(w; 0). Problem (7) has now a ε-strongly
convex cost function.

Before moving on to solve (7), we examine its properties
with respect to the original (5), under the following assump-
tion.

Assumption 1: The solutions of the original and regular-
ized dual problems, (5) and (7), respectively, are finite, for
each time instance tk: max{‖w∗(tk)‖, ‖w∗(ε; tk)‖} ≤ C.

The following Lemma bounds the distance between the
regularized dual solution and the solution(s) of the original
problem around a neighborhood of ε = 0.

Lemma 1 (Regularization error): Let the cost f(·; tk) be
in Sµ,L(RnN ) uniformly in time. Let w∗(ε; tk) be the

1Notice that the distributed ADMM derived by applying the Douglas-
Rachford splitting to the dual has provable linear convergence, see [31].
However, we purposely use the Peaceman-Rachford splitting applied to the
regularized dual problem, since its convergence rate is better than that of the
Douglas-Rachford, which is key in time-varying scenarios, see also [30].



optimal solution of the regularized dual problem (7), and
w∗(tk) be a solution to the original dual problem (5). Then
there exist a ψ0 > 0 for which for all ε > 0 close enough to
0, we have

‖w∗(ε; tk)−w∗(tk)‖ ≤ (1 + ψ0ε) ‖w∗(ε; tk)‖ .
Proof: See Appendix B.

Notice that by Lemma 1, it holds that:

‖w∗(ε; tk)−w∗(tk)‖ ≤ C(1 + ψ0ε).

The bound provided by Lemma 1 is not tight, in the sense
that when ε → 0, the norm ‖w∗(ε; tk)−w∗(tk)‖ does not
go to zero. Nonetheless, the bound does characterize the fact
that the smaller ε is, the smaller the regularization error is,
guaranteeing that it is indeed a bounded error.

C. Distributed Dual-regularized ADMM
We are now ready to solve (7) for a fixed time instant

tk. One can use the Peaceman-Rachford splitting to the
regularized dual problem to find the corresponding dual-
regularized ADMM that solves the primal and dual problem
(see Appendix Afor the details).

First, we introduce the auxiliary variables z :=
{zij , zji}(i,j)∈E ∈ R2n|E|, two for each edge, from which
we can compute the value of the dual variable wij for the
respective consensus constraints. In particular, starting from
an initial guess z0 ∈ R2n|E|, the dual-regularized ADMM
corresponds to the following recursion for ` ∈ N:

x`k = arg min
x

{
f(x; tk) +

ρδ

2

∥∥Ax− z`k/ρ
∥∥2 }

(8a)

w`
k = δ

(
z`k − ρAx`k

)
(8b)

y`k = arg min
y

{
h(y) +

ρ

2

∥∥−y − (2w`
k − z`k)/ρ

∥∥} (8c)

u`k = 2w`
k − z`k + ρy`k (8d)

z`+1
k = z`k + 2(u`k −w`

k) (8e)

where we have set δ := 1/(1 + ερ) for simplicity, and the
subscript k denotes dependence from the problem sampled
at time tk. Recursions (8) generate the sequence of primal
and auxiliary variables {x`k, z`k}`∈N. Recursions (8) can be
shown to be implementable in a distributed fashion due to the
particular distributed structure of the problem. In particular,
it is possible to derive the following local updates (see
Appendix D), called distributed dual-regularized ADMM.

Distributed Dual-regularized ADMM
0. Initialization: node i set z0

ij,k = 000 for all j ∈ Ni
1. Local update: node i computes

x`i,k = arg min
xi∈Rn

{
fi(xi; tk)+

ρδdi
2
‖xi‖2−δ〈xi,

∑
j∈Ni

z`ij,k〉
}

(9a)
2. Communication step: node i sends to neighbor j ∈ Ni

the local variables x`i,k and z`ij,k
3. Auxiliary update: using the information received from

node j ∈ Ni, node i computes

z`+1
ij,k = (2δ − 1)z`ji,k + 2δρx`j,k. (9b)

As a consequence of [21, Lemma A.3], the dual-
regularized ADMM (8), and its distributed version, converges
Q-linearly to the solution of the dual-regularized problem as∥∥w`+1

k −w∗(ε; tk)
∥∥ ≤ ζ(`; ε)

∥∥w`
k −w∗(ε; tk)

∥∥
where ζ(`; ε) ∈ (0, 1) is defined in (13), and R-linearly to
the solution of the primal dual-regularized problem as∥∥x`k − x∗(ε, tk)

∥∥ ≤ (‖A‖ /µ)
∥∥w`

k −w∗(ε; tk)
∥∥ .

III. DISTRIBUTED PREDICTION-CORRECTION ADMM

The previous sections have introduced a dual regulariza-
tion technique to guarantee strong convexity of the dual prob-
lem, and thus linear convergence of the ADMM. Moreover,
we have formulated the time-varying distributed problem
of interest as a sequence of static problems that can be
solved with ADMM. In this section, we briefly review the
prediction-correction framework analyzed in [21], and apply
it to solve the distributed problem (4).

The proposed prediction-correction scheme is character-
ized by the following two steps:
• Prediction: at time tk, each node approximates the

as yet unobserved local cost fi,k+1(xi) := fi(xi; tk+1)
using past observations of the cost; let f̂i,k+1(x) be such
approximation, then the network solves

min
x∈RnN

N∑
i=1

f̂i,k+1(xi) + ιker(I−P )(y)

s.t. Ax− y = 0

(10)

which yields the prediction x̂∗k+1. In practice, it is possible to
compute only an approximation of x̂∗k+1, denoted by x̂k+1,
by applying NP steps of the dual-regularized ADMM.
• Correction: when, at time tk+1, the nodes can observe

fi,k+1(x), they can correct the prediction computed at the
previous step by solving:

min
x∈RnN

N∑
i=1

fi,k+1(xi) + ιker(I−P )(y)

s.t. Ax− y = 0

(11)

with initial condition equal to x̂k+1. We will denote by xk+1

the (possibly approximate) correction computed by applying
NC of the dual-regularized ADMM.

During the prediction step, each node needs to approxi-
mate the future cost using the information locally available
up to time tk. In particular, we employ the following Taylor-
based expansion of ∇xi

fi,k+1 around (xi,k, tk):

∇xi
f̂i,k+1(xi) := ∇xi

fi,k(xi,k)

+∇xixi
fi,k(xi,k)(xi − xi,k) + Ts∇txi

fi,k(xi,k).
(12)

Notice that f̂i,k+1 is a quadratic function that inherits the
same strong convexity and smoothness properties of fi,k,
since they have the same Hessian.

Algorithm 1 reports the pseudo-code for the proposed
prediction-correction ADMM.



Algorithm 1 Prediction-correction dual-regularized ADMM.
Input: xi,0, horizons NP and NC, parameters ε and ρ.
1: for k = 0, 1, . . . do

// time tk (prediction)
2: for i ∈ V do
3: Compute the local prediction function f̂i,k+1(xi)
4: end for
5: Apply NP steps of the distributed dual-regularized ADMM (from
` = 1 to ` = NP) to problem (10); that is, the nodes perform the steps
1)-3) NP times, choosing z0

ij,k+1 = zij,k and outputting ẑij,k+1 =

z
NP
ij,k+1 and x̂i,k+1 = x

NP
i,k+1;

// time tk+1 (correction)
6: for i ∈ V do
7: Observe the local cost function fi,k+1(xi)
8: end for
9: Apply NC steps of the distributed dual-regularized ADMM (from
` = 1 to ` = NC) to problem (11); that is, the nodes perform the
steps 1)-3) NC times, choosing z0

ij,k+1 = ẑij,k+1 and outputting

zij,k+1 = z
NC
ij,k+1 and xi,k+1 = x

NC
i,k+1;

10: Set xk+1 equal to the last iterate of ADMM
11: end for

A. Convergence analysis
We now analyze the convergence properties of Algo-

rithm 1 to find and track the solution trajectory x∗(tk) of
the original problem (4). We will use the following standard
(in time-varying optimization) assumption.

Assumption 2: (i) The local costs fi : Rn × R+ → R
belong to Sµ,L(Rn) uniformly in t. (ii) There exists C0 such
that ‖∇txi

fi(xi; tk)‖ ≤ C0 for any xi ∈ Rn, t ∈ R+. (iii)
The solution to (4) is finite for any k ∈ N.

The following Lemma lists the properties of the regular-
ized dual problem given that Assumption 2 holds for the
primal.

Lemma 2: Let Assumption 2 hold. The dual function
dfk(w; ε) is µ̄(ε) := ε-strongly convex and L̄(ε) :=
ε + dM/µ-smooth. Moreover, for any w, tk, ε it holds∥∥∇twdfk(w, ε)

∥∥ ≤ √dMC0/µ =: C̄0.
Proof: By [21, Lemma A.1] the dual function

f?(A>w; tk) is λM(AA>)/µ-smooth, and λm(AA>)/L-
strongly convex. But since λm(AA>) = 0, then it is only
convex. Therefore, adding the regularization term implies ε-
strong convexity and ε+ dM/µ-smoothness of dfk .

By [21, Lemma 4.3] we have that
∥∥∇twdfk(w; ε)

∥∥ ≤
‖A‖C0/µ. Moreover, we have that AA> =
blk diag(111di×di) ⊗ In, and so the i-th diagonal block
has eigenvalues di and 0. Since ‖A‖ =

√
λM(AA>) =√

maxi di, it follows ‖A‖ =
√
dM.

Notice that as a consequence of Lemma 2, the condition
number of dfk is κ̄(ε) := 1 + dM/(µε) independently of the
time instant tk.

As mentioned above, the ADMM corresponds to the
Peaceman-Rachford splitting (PRS) applied to the regular-
ized dual. Since the dual is strongly convex and smooth,
we know that the PR operator is Lipschitz continuous with
constant [32]

λ(ε) := max

{∣∣∣1− ρL̄(ε)

1 + ρL̄(ε)

∣∣∣, ∣∣∣1− ρµ̄(ε)

1 + ρµ̄(ε)

∣∣∣} ∈ (0, 1).

Moreover, given the fixed point z∗(ε; tk) of the PR
operator, that is, z∗(ε; tk) = reflρdh(reflρdf (z∗(ε; tk))),

we can derive the solution to the dual with w∗(ε; tk) =
proxρdfk (z∗(ε; tk)), and it holds

‖w −w∗(ε; tk)‖ ≤ ω(ε) ‖z − z∗(ε; tk)‖ ,

where z ∈ R2n|E|,w = proxρdfk (z) and with ω(ε) := (1 +
ρL̄(ε))/(1 + ρµ̄(ε)).

Finally, we introduce the following notation that will be
useful for the convergence results:

ζ(`; ε) :=

{
1, for ` = 0,
ω(ε)λ(ε)`, otherwise (13)

ξ(`; ε) :=

{
0, for ` = 0,
1 + ω(ε)λ(ε)`, otherwise

The following result characterizes the convergence of the
sequence of {wk}k∈N generated by the prediction-correction
ADMM of Algorithm 1 to a neighborhood of the regularized
dual optimal trajectory {w∗(ε; tk)}k∈N.

Remark 1: As one can notice, Algorithm 1 technically
does not generate dual variables, since not necessary, yet one
could generate those by implementing (8b) after Step 1 in a
distributed way. In particular, node i can compute the dual
variables wij,k, j ∈ Ni as wij,k = δ(zij,k − ρxi,k), which
only requires the local information zij,k and xi,k, without
the need for additional communications.

Corollary 1 (Convergence to w∗(ε; tk)): Let As. 2 hold.
Let {wk}k∈N be the sequence of dual variables generated
by the prediction-correction ADMM of Algorithm 1. Choose
NP, NC such that

η1(ε) := ζ(NC; ε) [ζ(NP; ε) + 2κ̄(ε)ξ(NP; ε)] < 1. (14)

Then the trajectory {wk}k∈N converges to a neighborhood
of {w∗(ε; tk)}k∈N with radius upper bounded by

lim sup
k→∞

‖wk −w∗(ε; tk)‖ =
η0(ε)

1− η1(ε)
,

where

η0(ε) := ζ(NC; ε)
C̄0Ts

µ̄
[ζ(NP; ε) + 2(1 + κ̄(ε)ξ(NP; ε))] .

Proof: This is a consequence of [21, Theorem 3.10]
applied to the regularized dual problem.

The following result characterizes the convergence of
{wk}k∈N in terms of the original optimal trajectory.

Proposition 1 (Convergence to w∗(tk)): Let As. 1-2
hold. Let {wk}k∈N be the sequence of dual variables
generated by the prediction-correction ADMM of
Algorithm 1, and choose NP, NC such that (14) holds.
Then, for a small enough ε > 0, {wk}k∈N converges to a
neighborhood of the original solution {w∗(tk)}k∈N with
radius upper bounded by

lim sup
k→∞

‖wk −w∗(tk)‖ =
η0(ε)

1− η1(ε)
+ C(1 + ψ0ε).

Proof: The result follows by the triangle inequality:

‖wk−w∗(tk)‖≤‖wk−w∗(ε; tk)‖+‖w∗(tk)−w∗(ε; tk)‖ ,

from the bound in Lemma 1 to the regularization error, and
taking the limit and using Corollary 1.



Finally, we can characterize the convergence of the
prediction-correction ADMM in terms of the primal variable.

Corollary 2 (Convergence to x∗(tk)): Let As. 1-2 hold.
Let {xk}k∈N be the sequence of primal variables generated
by the prediction-correction ADMM of Algorithm 1, and
choose NP, NC such that (14) holds. Then, for small enough
ε > 0, the primal trajectory converges to a neighborhood
of the original optimal trajectory {x∗(tk)}k∈N with radius
upper bounded as:

lim sup
k→∞

‖xk − x∗(tk)‖ =
‖A‖
µ

[
η0(ε)

1− η1(ε)
+ C(1 + ψ0ε)

]
.

Proof: The result follows by combining Proposition 1
with the following bound

‖xk − x∗(tk)‖ ≤ (‖A‖ /µ) ‖wk −w∗(tk)‖ ,

which can be derived for the dual-regularized ADMM along
the lines of [21, Lemma A.3]. In particular, by the strong
convexity of f(·; tk), we know that

µ ‖x− x∗(tk)‖2 ≤
〈∇xf(x; tk)−∇xf(x∗(tk); tk),x− x∗(tk)〉 (15)

for any x ∈ RnN . Moreover, by the KKT conditions of
the original problem (4), it must hold ∇xf(x∗(tk); tk) =
A>w∗(tk).

Imposing the first-order optimality condition for (8a) at
time ` = NC we have

∇xf(xk; tk)− δA> (zk − ρAxk) = 000

and, recalling by (8b) that wk = δ (zk − ρAxk), yields
∇xf(xk; tk) = A>wk.

Subtracting ∇xfk(xk) = A>wk and ∇xf(x∗(tk); tk) =
A>w∗(tk), and substituting them into (15) we get

µ ‖xk − x∗(tk)‖2 ≤ 〈A>(wk −w∗(tk)),xk − x∗(tk)〉
≤ ‖A‖ ‖wk −w∗(tk)‖ ‖xk − x∗(tk)‖

which proves the thesis.

B. Trade-offs

It is interesting now to illustrate the trade-off, mediated
by ε, between convergence rate and the asymptotic error
achieved by the proposed algorithm. On one hand, low values
of ε imply algorithms closer to the original problem, on the
other hand, high values of ε are better for a more favorable
convergence rate. This is translated into a larger or smaller
radius for the asymptotical error.

For simplicity, in the following we take ρ =
1/
√
µ̄(ε)L̄(ε), which maximizes λ(ε). As a consequence we

have:

ω(ε) =
√
κ̄(ε), λ(ε) =

∣∣∣∣∣1−
√
κ̄(ε)

1 +
√
κ̄(ε)

∣∣∣∣∣,
and using these facts we get (assuming that ` > 0):

ζ(`; ε) =
√
κ̄(ε)

∣∣∣∣∣1−
√
κ̄(ε)

1 +
√
κ̄(ε)

∣∣∣∣∣
`

, ξ(`; ε) = 1 + ζ(`; ε).

Since
√
κ̄(ε) is monotonically decreasing as ε increases, and

limε→+∞
√
κ̄(ε) = 1, then it follows that ζ(`; ε) and ξ(`; ε)

decrease as well when ε grows. In turn, this implies that η0

and η1 decrease as well as ε increases.
Overall, the asymptotic error term η0(ε)/(1 − η1(ε)) due

to the prediction-correction scheme grows smaller as larger
values of the regularization constant ε are chosen. On the
other hand, however, the regularization error itself increases
when ε does so. Therefore we can observe that ε mediates a
trade-off between the two terms in the asymptotic error.

C. Communication complexity
Recalling the dual-regularized ADMM of (9a)-(9b), we

can observe that node i sends at each iteration di packets, one
to each of its neighbors. As a consequence, in Algorithm (1)
at each sampling time tk the total number of communications
performed by node i is equal to (NP +NC)di.

This highlights a further trade-off, between the commu-
nication complexity and tracking error, which respectively
increase and decrease as NP and NC grow larger.

IV. NUMERICAL RESULTS

In this section, we present numerical results showcasing
the performance of the proposed algorithm on the distributed
optimization problem characterized by the local costs [27]:

fi(xi; t) =
1

2
‖xi − bi(t)‖2 + log (1 + exp(xi − ai))

where bi(t) = A cos((ν − 1)t+ ϕi), ai ∼ U [−10, 10], ϕi ∼
U [0, 2π), A = 2.5, ν = π/80. The network is a random
geometric graph with N = 25 nodes. The simulations were
implemented using tvopt [33].

We compare the proposed dual-regularized PC-ADMM
with (i) the prediction-correction dual decomposition of [29]
applied to minx f(x; tk) s.t. (I−W )x = 000, with W a dou-
bly stochastic matrix designed by the Metropolis-Hastings
rule, and (ii) the prediction-correction gradient method [21],
applied to minx f(x; tk) + (1/2α)x>(I −W )x, with α >
0 a suitable step-size. Notice that the dual decomposition
algorithm is imposing exact consensus constraints in the
static case, while the other two methods approximate them
with a primal or dual regularization. The parameters of
the three algorithms were hand-tuned to achieve the best
asymptotic error, and in particular for the dual regularized
PC-ADMM we chose ε = 10−3 and ρ = 1.06× 104.

Figure 1 depicts the trajectory of the error computed as
‖xk − x∗(tk)‖ /N , where x∗(tk) is the primal solution to
the non-regularized problem.

Figure 2 compares the evolution of the distance from
consensus, computed as

∥∥xk − 111(111>/N)xk
∥∥.

As we can see from both results, the dual-regularized
ADMM achieves the best performance in terms of asymp-
totic error and distance from consensus, even though the con-
sensus constraints are not enforced exactly. Moreover, since
the proposed algorithm outperforms the gradient method,
it appears that a dual regularization is better than the pri-
mal regularization (1/2α)x>(I −W )x. This example fur-
ther demonstrates how adding regularization terms in time-
varying setting does not necessarily incurs in an accuracy
trade-off.
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V. CONCLUSIONS

In this paper, we have proposed a dual-regularized,
prediction-correction ADMM to solve time-varying dis-
tributed optimization problems. On the one hand, the dual
regularization ensures that the convergence of the algorithm
is linear, and on the other, the prediction-correction scheme
allows to efficiently track the optimal trajectory of the
problem, up to a bounded error.

APPENDIX

A. Regularized dual problem
Similarly to [34, Appendix A.2] for the non-regularized

ADMM, we define the Lagrangian of problem (4) with the
modified constraints (6):

Lk(x,y;w) := f(x; tk) + h(y)− 〈w,Ax− y + (ε/2)w〉

and we compute the dual problem by minimizing
Lk(x,y;w) in x and y. We have

min
x,y
Lk(x,y;w) = min

x
{f(x; tk)− 〈w,Ax〉}

+ min
y
{h(y) + 〈w,y〉}+

ε

2
‖w‖2

= f?(A>w; tk) +
ε

2
‖w‖2 + h?(−w)

where we used the definition of convex conjugate.

B. Proof of Lemma 1
Let w∗k(ε) := w∗(ε; tk) for convenience. First of all,

given that f is strongly convex, then the dual function is
differentiable [21, Proposition 4.2], and specifically,

∇wd
fk(w; ε) = εw +∇wf

?
k (A>w). (16)

Second, we notice that the dual optimal solution w∗k(ε) can
be interpreted as the solution mapping ε 7→ w∗k(ε) of the
generalized equation

∇wd
fk(w; ε) + ∂dh(w) 3 000, (17)

parametrized by ε. The angle of attack for the proof is then
bounding the Lipschitz continuity constant of this solution
mapping using [35, Theorem 2B.5]. We verify that the
assumptions of [35, Theorem 2B.5] hold in this scenario,
and the spell out the consequences of the Theorem.

Assumption (a) requires that ∇wd
fk(w; ε) is continuous

in ε, and that the linearization,

∇wd̂
fk(w) = ∇wd

fk(w∗k(ε); ε)+

∇wwd
fk(w∗k(ε); ε)(w −w∗k(ε))

is a strict estimator of ∇wd
fk(w; ε) around (w∗k(ε); ε) with

constant µ. Both are true, and in particular the linearization
has µ = 0 (note in addition that ∇wwd

fk(w∗k(ε); ε) is well
defined everywhere [21, Prop. 4.2]).

Assumption (b) requires that the inverse mapping G−1
k of

Gk(w) := ∇wd̂
fk(w)+∂dh(w), for which Gk(w∗k(ε)) 3 000,

is Lipschitz continuous around 0. But by definition of inverse
mapping we have that

G−1
k (z) =

{
w | z ∈ ∇wd̂

fk(w) + ∂dh(w)
}

which means that G−1
k (z) is the solution mapping of the gen-

eralized equation z ∈ ∇wd̂
fk(w)+∂dh(w) parametrized by

z. Since d̂fk is ε-strongly convex, [21, Theorem D.1] implies
that indeed G−1

k is ε−1-Lipschitz continuous everywhere.
Therefore, by [35, Theorem 2B.5], the mapping (17) is

single-valued and locally Lipschitz continuous around ε as

‖w∗k(ε)−w∗k(ε′)‖ ≤ (ε−1 + ψ)×∥∥∇wd
fk(w∗k(ε); ε)−∇wd

fk(w∗k(ε); ε′)
∥∥ ,

where the locality is measured by ψ > 0. In particular, one
can always choose a ψ, say ψ0, such that ε′ = 0 and ε > 0
in the neighborhood of 0, and therefore by (16),

‖w∗k(ε)−w∗k(0)‖ ≤ (1 + ψ0ε) ‖w∗k(ε)‖ ,

from which the thesis follows.

C. Regularized ADMM

Following the derivation in [36, Appendix A], we now
show that the Peaceman-Rachford splitting applied to the
regularized dual problem is equivalent to (8).

The PRS is described by the updates, with ` ∈ N

w`
k = proxρdfk (z`k) (18a)

u`k = proxρdh(2w`
k − z`k) (18b)

z`+1
k = z`k + 2(u`k −w`

k) (18c)

and the aim is to show that (18a) is equivalent to

x`k = arg min
x

{
f(x; tk) +

ρδ

2

∥∥Ax− z`k/ρ
∥∥2
}

(19a)

w`
k = δ

(
z`k − ρAx`k

)
; (19b)



the same derivation holds for (18b).
By definition of the dual function dfk and of proximal

operator, to compute (18a) we need to solve the following
minimization

min
w

{
dfk(w) +

1

2ρ

∥∥w − z`k
∥∥2
}

=

= min
w

{
f?(A>w; tk) +

ε

2
‖w‖2 +

1

2ρ

∥∥w − z`k
∥∥2
}

= min
w

max
x

{
〈w,Ax〉−f(x; tk)+

ε

2
‖w‖2+

1

2ρ

∥∥w−z`k∥∥2
}

= max
x

min
w

{
〈w,Ax〉−f(x; tk)+

ε

2
‖w‖2+

1

2ρ

∥∥w−z`k∥∥2
}

where we used the definition of convex conjugate to the
derive the second to last equality. Imposing the first order
optimality condition for the innermost minimization yields

w`
k = δ

(
z`k − ρAx

)
. (20)

Substituting (20) into the minimization problem and rear-
ranging the terms gives

max
x

{
−f(x; tk)− ρδ

2
‖Ax‖2+δ〈z`k,Ax〉+ 1− δ

2ρ

∥∥z`k∥∥2
}

= −min
x

{
f(x; tk) +

ρδ

2

∥∥Ax− z`k/ρ
∥∥2
}

whose argument yields the desired update for x. The same
computations can be traced to compute the proximal operator
of dh.

D. Distributed ADMM
This derivation follows closely [30, Appendix C-A]. By

definition of A, it is possible to see that ‖Ax‖2 =
x>(diag di ⊗ In)x, and moreover that [〈A>z`k,x〉]i =
〈
∑
j∈Ni

z`ij,k,xi〉. Therefore we can write

x`k=arg min
x

N∑
i=1

{
fi(xi; tk)+

ρδdi
2
‖xi‖2−δ〈

∑
j∈Ni

z`ij,k,xi〉
}
.

Since the problem is separable, the update (9a) for x`i,k
follows. Using the fact that h is the indicator function of
ker(I − P ) it is possible to derive (see [30, Appendix C-
A]). Indeed, imposing the KKT conditions for

y`k = arg min
y∈ker(I−P )

{ρ
2

∥∥−y − (2w`
k − z`k)/ρ

∥∥2
}

yields

y`k =
1

ρ

(
(I − P )ννν − (2w`

k − z`k)
)

and y`k = Py`k

where ννν are the Lagrange multipliers. Substituting the first
KKT condition into the right-hand side of the second KKT
condition gives

y`k =
1

ρ

(
−(I − P )ννν − P (2w`

k − z`k)
)

where we used the property of permutations matrices P 2 =
I . Summing the two equations yields

y`k = − 1

2ρ
(I + P )(2w`

k − z`k) (21)

and substituting (21) into the update for u yields:

u`k = 2w`
k − z`k + ρy`k =

1

2
(I − P )(2w`

k − z`k). (22)

Finally, using (22) and w`
k = δ(z`k − ρAx`k) into the

update for z yields

z`+1
k = z`k+2(u`k−w`

k) = (1−2δ)Pz`+2ρδPAx` (23)

and using the definition of P we get (9b).
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