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Abstract. The task of predicting missing entries of a matrix, from a subset of known entries, is known
as matrix completion. In today’s data-driven world, data completion is essential whether it is the main

goal or a pre-processing step. Structured matrix completion includes any setting in which data is not

missing uniformly at random. In recent work, a modification to the standard nuclear norm minimization
(NNM) for matrix completion has been developed to take into account sparsity-based structure in the

missing entries. This notion of structure is motivated in many settings including recommender systems,

where the probability that an entry is observed depends on the value of the entry. We propose adjusting
an Iteratively Reweighted Least Squares (IRLS) algorithm for low-rank matrix completion to take into

account sparsity-based structure in the missing entries. We also present an iterative gradient-projection-
based implementation of the algorithm that can handle large-scale matrices. Finally, we present a robust

array of numerical experiments on matrices of varying sizes, ranks, and level of structure. We show

that our proposed method is comparable with the adjusted NNM on small-sized matrices, and often
outperforms the IRLS algorithm in structured settings on matrices up to size 1000× 1000.

1. Introduction

Matrix completion is the task of filling-in, or predicting, the missing entries of a partially observed
matrix from a subset of known entries. In today’s data-driven world, data completion is essential, whether
it is the main goal as in recommender systems, or a pre-processing step for other tasks like regression
or classification. One popular example of a data completion task is the Netflix Problem [2, 3, 28], which
was an open competition for the best collaborative filtering algorithm to predict unseen user ratings for
movies. Given a subset of user-movie ratings, the goal is to predict the remaining ratings, which can be
used to decide whether a certain movie should be recommended to a user. The Netflix Problem can be
viewed as a matrix completion problem where the rows represent users, the columns represent movies,
and the entries of the matrix are the corresponding user-movie ratings, most of which are missing.

Matrix completion problems are generally ill-posed without some additional information, since the
missing entries could be assigned arbitrary values. In many instances, the matrix we wish to recover is
known to be low-dimensional in the sense that it is low-rank, or approximately low-rank. For instance, a
data matrix of all user-ratings of movies may be approximately low-rank because it is commonly believed
that only a few factors contribute to an individual’s tastes or preferences [8]. Low-rank matrix completion
is a special case of the affine rank minimization problem, which arises often in machine learning, and is
known to be NP-hard [16, 40].

Standard matrix completion strategies typically assume that there are no structural differences be-
tween observed and missing entries, which is an unrealistic assumption in many settings. Recent
works [12, 37, 41, 44, 47] address various notions of the problem of structured matrix completion. General
notions of structural difference include any setting in which whether an entry is observed or unobserved
does not occur uniformly at random. For example, the probability that an entry is observed could depend
not only on the value of that entry, but also on its location in the matrix. For instance, certain rows
(or columns) may have substantially more entries than a typical row (or column); this happens in the
Netflix Problem for very popular movies or so-called “super-users”.

In [37], Molitor and Needell propose a modification to the standard nuclear norm minimization for
matrix completion to take into account structure when the submatrix of unobserved entries is sparse,
or when the unobserved entries have lower magnitudes than the observed entries [37]. In our work, we
focus on this notion of structure, in which the probability that an entry is observed or not depends
mainly on the value of the entry. In particular, we are interested in sparsity-based structure in the
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missing entries, whereby the submatrix of missing values is close to 0 in the L1 or L0 norm sense.
This is motivated by many situations in which the missing values tend to be near a certain value. For
instance, missing data in chemical measurements might indicate that the measurement value is lower
than the limit of detection of the device, and thus a typical missing measurement is smaller in value
than a typical observed measurement. Similarly, in medical survey data, patients are more likely to
respond to questions addressing noticeable symptoms, whereas a missing response may indicate a lack
of symptoms [37]. In the Netflix problem, a missing rating of a movie might indicate the user’s lack
of interest in that movie, thus suggesting a lower rating than otherwise expected. More generally, in
survey data, incomplete data may be irrelevant or unimportant to the individual, therefore suggesting
structure in the missing observations [37]. For an example in the setting of sensor networks, suppose we
are given partial information about the distances between sensors, where distance estimates are based
on signal strength readings [8], and we would like to impute the missing signal strength readings. Signals
may be missing because of low signal strength, indicating that perhaps these sensors are far from each
other (or there are geographic obstacles between them). Thus, we obtain a partially observed matrix
with structured observations—missing entries tend to have lower signal strength. Sensor networks give a
low-rank matrix completion problem, perhaps of rank equal to two if the sensors are located in a plane,
or three if they are located in three-dimensional space [31, 46]. Therefore, in these settings, we expect
that the missing entries admit a sparsity-based structure in the L1 norm sense.

1.1. Background and Related Work. The Affine Rank Minimization Problem (ARMP), or the prob-
lem of finding the minimum rank matrix in an affine set, is expressed as

(1)
minimize

X
rank(X)

subject to A(X) = b,

where matrix X ∈ Rm×n is the optimization variable, A : Rm×n → Rq is a linear map, and b ∈ Rq
denotes the measurements. The affine rank minimization problem arises frequently in applications like
system identification and control [32], collaborative filtering, low-dimensional Euclidean embeddings [17],
sensor networks [4, 43, 45], quantum state tomography [22, 23], signal processing, and image processing.

Many algorithms have been proposed for ARMP, e.g. reweighted nuclear norm minimization [35],
Singular Value Thresholding (SVT) [5], Fixed Point Continuation Algorithm (FPCA) [33], Iterative
Hard Thresholding (IHT) [19], Optspace [27], Singular Value Projection (SVP) [25], Atomic Decompo-
sition for Minimum Rank Approximation (AdMiRA) [30], Alternating Minimization approach [26], and
the accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
(NNLS) [48], etc.

The low-rank matrix completion problem can be formulated as follows [10, 39]. Suppose we are given
some matrix X ∈ Rm×n with a set Ω of partially observed entries, of size |Ω| � mn. The goal is to
recover the missing elements in X. The low-rank matrix completion problem is a special case of the
affine rank minimization problem where the set of affine constraints restrict certain entries of the matrix
X to equal observed values. In this case, the linear operator A is a sampling operator, and the problem
can be written as

minimize
X

rank(X)

subject to Xij = Mij , (i, j) ∈ Ω,

where M is the matrix we would like to recover, and where Ω denotes the set of entries which are revealed.
We define the sampling operator PΩ(X) : Rm×n → Rm×n via

(PΩ(X))ij =

{
Xij (i, j) ∈ Ω

0 (i, j) 6∈ Ω,

as in [10]. Further, Ωc denotes the complement of Ω, i.e., all index pairs (i, j) that are not in Ω. Thus,
Ωc corresponds to the collection of missing entries. The degrees of freedom ratio of a partially observed
m×n matrix of rank r is given by FR = r(m+n− r)/|Ω|. Thus, the larger the degrees of freedom ratio
is, the harder it becomes to recover the matrix M .

The rank minimization problem (1) is NP-hard in general, and therefore we consider its convex
relaxation [7, 8, 10, 16, 40],

(2)
minimize

X
‖X‖∗

subject to A(X) = b,
2



where ‖ · ‖∗ denotes the nuclear norm, given by the sum of singular values.
Inspired by the iteratively reweighted least squares (IRLS) algorithm for sparse vector recovery ana-

lyzed in [14], iteratively reweighted least squares algorithms [18, 29, 36] have been proposed as a com-
putationally efficient method for low-rank matrix recovery (see Section 2.3). Instead of minimizing the
nuclear norm, the algorithms essentially minimize the Frobenius norm of the matrix, subject to affine
constraints. Properly reweighting this norm produces low-rank solutions under suitable assumptions.
In [36], Mohan and Fazel propose a family of Iterative Reweighted Least Squares algorithms for matrix
rank minimization, called IRLS-p (for 0 ≤ p ≤ 1), as a computationally efficient way to improve over
the performance of nuclear norm minimization. In addition, a gradient projection algorithm is presented
as an efficient implementation for the algorithm, which exhibits improved recovery when compared to
existing algorithms.

Generally, standard matrix completion strategies assume that there are no structural differences be-
tween observed and unobserved entries. However, recent works [12, 13, 37, 38, 41, 44, 47] also address
various notions of the problem of structured matrix completion in mathematical, statistical, and machine
learning frameworks. In our work, we are interested in sparsity-based structure. This notion of struc-
ture was proposed in [37], where the standard nuclear norm minimization problem for low-rank matrix
completion is modified to take into account sparsity-based structure by regularizing the values of the
unobserved entries. We refer to this algorithm as Structured NNM (see Section 3.1).

1.2. Contribution. We adapt an iterative algorithm for low-rank matrix completion to take into account
sparsity-based structure in unobserved entries by adjusting the IRLS-p algorithm studied in [36]. We
refer to our algorithm as Structured IRLS. We also present a gradient-projection-based implementation,
called Structured sIRLS (motivated by sIRLS in [36]). Our code is available at [1]. The main motivations
for our approach, along with its advantages, are as follows:

• Iterative algorithm for structured matrix completion. Much work has been put into de-
veloping iterative algorithms (SVT [5], FPCA [33], IHT [19], IRLS [18, 29, 36], etc.) for ARMP,
rather than solving the nuclear norm convex heuristic (NNM). We develop the first (to our knowl-
edge) iterative algorithm that addresses the structured low-rank matrix completion problem, for
which Structured NNM has been proposed. Indeed, iterative methods are well-known to offer
ease of implementation and reduced computational resources, making our approach attractive in
the large-scale settings.

• Comparable performance with Structured NNM. Structured NNM adapts nuclear norm
minimization and `1 norm minimization, which are common heuristics for minimizing rank and
inducing sparsity, respectively. For various structured regimes, we consider small-sized matrices
and show that our proposed iterative method is comparable to Structured NNM on “hard” matrix
completion problems and with “optimal” parameter choices for Structured NNM.

• Improved IRLS recovery for structured matrices. We show that in structured settings,
Structured sIRLS often performs better than the sIRLS algorithm, as follows. We perform
numerical experiments that consider 192 = 361 combinations of different sampling rates of the
zero and nonzero entries, in order to demonstrate various levels of sparsity in the missing entries.
Consider for example Figure 1, on matrices of size 1000×1000 of rank 10, in which our proposed
method outperforms standard sIRLS in over 90% of the structured experiments (and also in
many of the unstructured experiments).

• Handle hard problems. We consider problems of varying degrees of freedom, and a priori
rank knowledge. We show that Structured sIRLS often outperforms the sIRLS algorithm in
structured settings for hard matrix completion problems, i.e. where the degrees of freedom ratio
is greater than 0.4.

• Handle noisy measurements. We consider matrices with noisy measurements with two dif-
ferent levels of noise. We show that for small enough noise Structured sIRLS often performs
better than sIRLS in structured settings. As the noise gets larger, both converge to the same
performance.

1.3. Organization. We review related iteratively reweighted least squares algorithms for recovering
sparse vectors and low-rank matrices in Section 2. In Section 3, we describe the structured matrix
completion problem, propose for this problem an iterative algorithm, Structured IRLS, and present
preliminary analytic remarks. Furthermore, we present a computationally efficient implementation,
Structured sIRLS. In Section 4, we run numerical experiments to showcase the performance of this
method, and compare it to the performance of sIRLS and Structured NNM on various structured settings.
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2. Iteratively Reweighted Least Squares Algorithms

In this section, we set notation for the rest of the paper, and we review related algorithms for recovering
sparse vectors and low-rank matrices.

2.1. Notation. The entries of a matrix X ∈ Rm×n are denoted by lowercase letters, i.e. xij is the entry
in row i and column j of X. Let I denote the identity matrix and 1 the vector of all ones. The trace of

a square matrix X ∈ Rm×m is the sum of its diagonal entries, and is denoted by Tr(X) =
m∑
i=1

xii. We

denote the adjoint matrix of X by X∗ ∈ Rn×m. Without loss of generality, we assume m ≤ n and we
write the singular value decomposition of X as

X = UΣV ∗.

Here U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Σ = diag(σ1, · · · , σm) ∈ Rm×n is a diagonal
matrix, where σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are the singular values. The rank of X ∈ Rm×n, denoted by
rank(X), equals the number of nonzero singular values of X. Further, the Frobenius norm of the matrix
X is defined by

‖X‖F =
√

Tr(XX∗) =

 m∑
i=1

n∑
j=1

x2
ij

1/2

=

(
m∑
i=1

σ2
i

)1/2

.

The nuclear norm of a matrix X is defined by ‖X‖∗ =
m∑
i=1

σi. Given a vector w ∈ Rn of positive weights,

we define the weighted `2 norm of a vector z ∈ Rn as

‖z‖`2(w) =

(
n∑
i=1

wiz
2
i

)1/2

.

Let z(X) denote the vector of missing entries of a matrix X, and let z2(X) denote the corresponding
vector with entries squared, i.e. z2(X) = z(X)� z(X) where � denotes elementwise multiplication.

2.2. Sparse Vector Recovery. Given a vector x, the value ‖x‖0 denotes the number of nonzero entries
of x, and is known as the `0 norm of x. The sparse vector recovery problem is described as

(3)
minimize ‖x‖0,
subject to Ax = b,

where x ∈ Rn and A ∈ Rm×n. This problem is known to be NP-hard. A commonly used convex heuristic
for this problem is `1 minimization [9, 15],

(4)
minimize ‖x‖1,
subject to Ax = b.

Indeed, many algorithms for solving (3) and (4) have been proposed. In [14], Daubechies et al. propose
and analyze a simple and computationally efficient reweighted algorithm for sparse recovery, called the
Iterative Reweighted Least Squares algorithm, IRLS-p, for any 0 < p ≤ 1. Its k-th iteration is given by

xk+1 = argmin
x

{
n∑
i=1

wki x
2
i : Ax = b

}
,

where wk ∈ Rn is a weight vector with wki = (|xki |2 + ε2k)p/2−1, and where εk > 0 is a regularization
parameter added to ensure that wk is well-defined. For p = 1, [14] gives a theoretical guarantee for
sparse recovery similar to `1 norm minimization.

2.3. Low-rank Matrix Recovery. We review two related algorithms [18, 36] for low-rank matrix
recovery that generalize the iteratively reweighted least squares algorithm analyzed in [14] for sparse
recovery. In general, minimizing the Frobenius norm subject to affine constraints does not lead to
low-rank solutions; however, properly reweighting this norm produces low-rank solutions under suitable
assumptions [18, 36].

4



In [18], Fornasier et al. propose a variant of the reweighted least squares algorithm for sparse recovery
for nuclear norm minimization (or low-rank matrix recovery), called IRLS-M. The k-th iteration of
IRLS-M is given by

(5) Xk+1 = argmin
X

{
‖(W k)1/2X‖2F : PΩ(X) = PΩ(M)

}
.

Here W k ∈ Rm×m is a weight matrix defined as W 0 = I, and for k > 0, W k = Uk(Σkεk)−1(Uk)∗, where

Xk(Xk)∗ = Uk(Σk)2(Uk)∗ and Σεk = diag(max{σj , εk}). Indeed, each iteration of (5) minimizes a
weighted Frobenius norm of the matrix X. Under the assumption that the linear measurements fulfill
a suitable generalization of the Null Space Property (NSP), the algorithm is guaranteed to iteratively
recover any matrix with an error on the order of the best rank k approximation [18]. The algorithm
essentially has the same recovery guarantees as nuclear norm minimization. Though the Null Space
Property fails in the matrix completion setup, the authors illustrate numerical experiments which show
that the IRLS-M algorithm still works very well in this setting for recovering low-rank matrices. Further,
for the matrix completion problem, the algorithm takes advantage of the Woodbury matrix identity,
allowing an expedited solution to the least squares problem required at each iteration [18].

In [36], Mohan and Fazel propose a related family of Iterative Reweighted Least Squares algorithms for
matrix rank minimization, called IRLS-p (for 0 ≤ p ≤ 1), as a computationally efficient way to improve
over the performance of nuclear norm minimization. The k-th iteration of IRLS-p is given by

(6) Xk+1 = argmin
X

{
Tr(W k

pX
>X) : PΩ(X) = PΩ(M)

}
,

where W k
p ∈ Rm×m is a weight matrix defined as W 0

p = I, and for k > 0, W k
p = ((Xk)>Xk + γkI)

p
2−1.

Here γk > 0 is a regularization parameter added to ensure that W k
p is well-defined. Each iteration of (6)

minimizes a weighted Frobenius norm of the matrix X, since

Tr(W k−1
p X>X) = ‖(W k−1

p )1/2X‖2F .
The algorithms can be viewed as (locally) minimizing certain smooth approximations to the rank func-
tion. When p = 1, theoretical guarantees are given similar to those for nuclear norm minimization, i.e.,
recovery of low-rank matrices under the assumptions that the operator defining the constraints satisfies
a specific Null Space Property. Further, for p < 1, IRLS-p shows better empirical performance in terms
of recovering low-rank matrices than nuclear norm minimization. In addition, a gradient projection
algorithm, IRLS-GP, is presented as an efficient implementation for IRLS-p. Further, this same paper
presents a related family of algorithms sIRLS-p (or short IRLS), which can be seen as a first-order method
for locally minimizing a smooth approximation to the rank function. The results exploit the fact that
these algorithms can be derived from the KKT conditions for minimization problems whose objectives
are suitable smooth approximations to the rank function [36]. We will refer to IRLS-p (resp. sIRLS-p)
studied in [36] as IRLS (resp. sIRLS).

The algorithms proposed in [18, 36] differ mainly in their implementations, and in the update rules
of the weights and their corresponding regularizers. In IRLS-M [18], the weights are updated as
W k = Uk diag(max(σkj , εk)−1)(Uk)∗, and in IRLS-p [36] they are updated as W k = Uk diag(((σkj )2 +

γ2
k)−1/2)(Uk)∗. Further, each of the regularization parameters εk and γk are updated differently. The

IRLS-M algorithm makes use of the rank of the matrix (either given or estimated), and thus the choice
of parameter εk depends on this given or estimated rank. On the other hand, the IRLS-p algorithm
chooses and updates its regularizer γk based on prior sensitivity experiments.

Terminology

NNM Nuclear Norm Minimization

Structured NNM Adjusted NNM for sparsity-based structure in the missing entries,
proposed in [37]

IRLS-p Iterative Reweighted Least Squares algorithms for matrix rank min-
imization, proposed in [36]

sIRLS short IRLS-p, proposed in [36]

Structured IRLS Our proposed algorithm: adjusted IRLS for sparsity-based structure
in the missing entries

Structured sIRLS Our proposed implementation: adjusted sIRLS for sparsity-based
structure in the missing entries
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3. Structured Iteratively Reweighted Least Squares Algorithms

In this section, we first introduce the structured matrix completion problem. Second, we introduce
and analyze our proposed algorithm and implementation.

3.1. Problem Statement. In [37], the authors propose adjusting the standard nuclear norm mini-
mization (NNM) strategy for matrix completion to account for structural differences between observed
and unobserved entries. This could be achieved by adding to problem (2) a regularization term on the
unobserved entries, which results in a semidefinite program:

(7)
minimize

X
‖X‖∗ + α‖PΩc(X)‖

subject to PΩ(X) = PΩ(M),

where α > 0, and where ‖ · ‖ is an appropriate matrix norm. If most of the missing entries are zero
except for a few, then the `1 norm is a natural choice1. If the missing entries are mostly close to zero,
then the `2 norm is a natural choice. The authors show that the proposed method outperforms nuclear
norm minimization in certain structured settings. We refer to this method as Structured Nuclear Norm
Minimization (Structured NNM).

Equation (7) very closely resembles the problem of decomposing a matrix into a low-rank component
and a sparse component (see e.g. [11]). A popular method is Robust Principal Component Analysis
(RPCA) [6], where one assumes that a low-rank matrix has some set of its entries corrupted. In a more
recent paper [42], reweighted least squares optimization is applied to develop a novel online Robust PCA
algorithm for sequential data processing.

3.2. Proposed Algorithm: Structured IRLS. We propose an iterative reweighted least squares
algorithm related to [18, 36] for matrix completion with structured observations. In particular, we
adjust the IRLS-p algorithm proposed in [36] to take into account the sparsity-based structure in the
missing entries.

The k-th iteration of IRLS-p is given by

Xk = argmin
X

{
‖(W k−1

p )1/2X‖2F : PΩ(X) = PΩ(M)
}
,

where Xk ∈ Rm×n denotes the k-th approximation of the true matrix M , W k
p ∈ Rm×m is a weight

matrix defined as W 0
p = I, and for k > 0, W k

p = ((Xk)>Xk + γkI)
p
2−1. Here γk > 0 is a regularization

parameter added to ensure that W k
p is well-defined.

We adjust IRLS-p by adding a regularization term on the unobserved entries in each iteration, namely
a weighted `2 norm as proposed in [14] to induce sparsity. We define the corresponding weights at the

k-th iteration as wkq = (z2(Xk) + εk1)
q
2−1, where 0 < εk ≤ εk−1, and 0 ≤ q ≤ 1. Here z(Xk) denotes the

vector of missing entries of the the k-th approximation Xk, and recall that z2(Xk) denotes the vector
with entries squared. The algorithm is then designed to promote low-rank structure in the recovered
matrix with sparsity in the missing entries at each iteration. We give a description of the choice of
parameters in Section 4.1.

In many applications, missing values tend to be near a certain value, e.g. the maximum possible
value in the range, or alternatively the lowest possible value (“1 star” in movie ratings). In cases where
this value is nonzero, our objective function can be adjusted accordingly. We refer to the algorithm as
Structured IRLS ; it is outlined in Algorithm 1. Note that each iteration of Structured IRLS solves a
quadratic program, and for α = 0, the algorithm reduces to IRLS-p studied in [36].

Each iteration of Structured IRLS solves a quadratic program. The algorithm can be adjusted to have
the `2 norm for the regularization term on the unobserved entries by fixing the weights wkq = 1. Further,
we can impose nonnegativity constraints on the missing entries by thresholding all missing entries to be
nonnegative.

We now provide an analytic remark, similar to [37, Proposition 1], applied to the objective functions
for each iteration of IRLS [36] and Structured IRLS. We consider the simplified setting in which all of the
unobserved entries are exactly zero. We show that the approximation given by an iteration of Structured
IRLS will always perform at least as well as that of IRLS with the same weights assigned. This remark
is weaker than [37, Proposition 1] as it does not apply to the entire algorithm; instead it only bounds
the performance of a single iterative step.

1The method can be rescaled if there instead is a preference for the missing entries to be near a nonzero constant.
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Algorithm 1: Structured IRLS for Matrix Completion

input : PΩ, M

set : k = 1, α > 0, and 0 ≤ p, q ≤ 1

initialize: X0 = PΩ(M), W 0
p = I, w0

q = 1, γ1 > 0, ε1 > 0

while not converged do

Xk = argmin
X

{
‖(W k−1

p )1/2X‖2F + α‖z(X)‖2
`2(wk−1

q )
: PΩ(X) = PΩ(M)

}
compute: W k

p = ((Xk)>Xk + γkI)
p
2−1 and wkq = (z2(Xk) + εk1)

q
2−1

update : 0 < γk+1 ≤ γk, 0 < εk+1 ≤ εk

set : k = k + 1

end

Remark 1. Let

X̃ = argmin
X

{
‖W 1/2X‖2F : PΩ(X) = PΩ(M)

}
be the minimizer of the objective function of each iterate in IRLS [36]. Let

X̂ = argmin
X

{
‖W 1/2X‖2F + α‖PΩc(X)‖2 : PΩ(X) = PΩ(M)

}
be the minimizer of the objective function generalizing2 each iterate in Structured IRLS (with α > 0).

If PΩc(M) is the zero matrix and the same weights W are assigned, then ‖M − X̂‖ ≤ ‖M − X̃‖ for any
matrix norm ‖ · ‖.
Proof. By definition of X̂, we have ‖W 1/2X̂‖2F + α‖PΩc(X̂)‖2 ≤ ‖W 1/2X̃‖2F + α‖PΩc(X̃)‖2. Similarly,

by definition of X̃, we have ‖W 1/2X̃‖2F ≤ ‖W 1/2X̂‖2F . Therefore,

‖W 1/2X̂‖2F + α‖PΩc(X̂)‖2 ≤ ‖W 1/2X̃‖2F + α‖PΩc(X̃)‖2

≤ ‖W 1/2X̂‖2F + α‖PΩc(X̃)‖2.
Since α > 0, this implies ‖PΩc(X̂)‖2 ≤ ‖PΩc(X̃)‖2. We have

‖M − X̂‖ = ‖PΩc(X̂)‖ since PΩ(M) = PΩ(X̂) and PΩc(M) = 0

≤ ‖PΩc(X̃)‖
= ‖M − X̃‖ since PΩ(M) = PΩ(X̃) and PΩc(M) = 0.

�

3.3. Proposed Implementation: Structured sIRLS. In this section, we propose a gradient-
projection-based implementation of Structured IRLS, that we will refer to as Structured sIRLS. Indeed,
sIRLS stands for short IRLS (in analogy to [36]), the reason being we do not perform gradient descent
until convergence; instead we take however many steps desired. Further, calculating PΩ(X) is computa-
tionally cheap, so the gradient projection algorithm can be used to efficiently solve the quadratic program
in each iteration of Structured IRLS.

In this implementation, we do not perform projected gradient descent on

‖(W k−1
p )1/2X‖2F + α‖z(X)‖2

`2(wk−1
q )

,

with PΩ(X) = PΩ(M) for each iteration k. Instead, we perform projected gradient descent on
‖z(X)‖2

`2(wk−1
q )

and ‖(W k−1
p )1/2X‖2F consecutively. This allows us to update the weights before each

alternating step, and to control how many gradient steps we would like to perform on each function.
We follow [36] for the derivation of the gradient step of ‖(W k−1

p )1/2X‖2F at the k-th iteration. Indeed,
we consider the smooth Schatten-p function, for p > 0:

fp(X) = Tr(X>X + γI)
p
2 =

n∑
i=1

(
σ2
i (X) + γ

) p
2 .

2Here ‖ · ‖ is an arbitrary matrix norm; one recovers Structured IRLS by choosing the norm `2(w).
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Note that fp(X) is differentiable for p > 0, and convex for p ≥ 1 [36]. For γ = 0 we have f1(X) = ‖X‖∗,
which is also known as the Schatten-1 norm. Again for γ = 0, we have fp(X)→ rank(X) as p→ 0 [36].
Further, for p = 0, we define

log det(X>X + γI),

a smooth surrogate for rank(X>X) (see e.g. [16, 17, 36, 40]). Thus, it is of interest to minimize fp(X)
subject to the set of constraints PΩ(X) = PΩ(M) on the observed entries.

The gradient projection iterates of Structured sIRLS are given by

Xk+1 = PΩc(Xk − sk∇fp(Xk)) + PΩ(M),

where sk denotes the gradient step size at the k-th iteration and ∇fp(Xk) = XkW k
p , where we iteratively

define W k
p as

W k
p = (Xk>Xk + γkI)

p
2−1,

with 0 < γk ≤ γk−1. This iterate describes our gradient step promoting low-rankness, where we preserve
the observed entries and update only the missing entries.

Further, we promote sparsity in the missing entries as follows. Instead of minimizing the `1 norm of
the vector of missing entries, we iteratively minimize a re-weighted `2 norm of missing entries as described
in [14]. Let z(Xk) denote the vector of missing entries of the the k-th approximation Xk. Define the
weighted `2 norm of z(X) as

gq(X) = ‖z(X)‖2`2(wq) =

mn−|Ω|∑
i=1

(wq)iz
2
i (X),

where (wq)i = (z2
i (X) + ε)q/2−1 (as done in [14]). The i-th entry of the gradient of gq(X) is given by

(∇gq(X))i = 2(wq)izi. Therefore, the gradient projection iterates are given by

z(Xk+1) = z(Xk)− ck∇gq(Xk),

where ck denotes the gradient step size at the k-th iteration. We iteratively define the weights wkq as

wkq = (z2(Xk) + εk1)
q
2−1,

where 0 < εk ≤ εk−1.
We outline in Algorithm 2 Structured sIRLS, a gradient-projection-based implementation of Struc-

tured IRLS.

Algorithm 2: Structured sIRLS for Matrix Completion

input: PΩ, M , r

set : k = 1, 0 ≤ p, q ≤ 1, ks > 0, kl > 0, ck > 0, sk > 0

initialize: X0 = PΩ(M), w0
q = 1, γ1 > 0, ε1 > 0

while not converged do

perform : take ks steps promoting sparsity, z(Xk) = z(Xk−1)− ck(wq
k−1 � z(Xk−1))

update : update the weights promoting low-rankness, W k
p = (Xk>Xk + γkI)

p
2−1

perform : take kl steps promoting low-rankness, Xk+1 = PΩc(Xk − skXkW k
p ) + PΩ(M)

update : update the weights promoting sparsity, wkq = (z2(Xk+1) + εk1)
q
2−1

update : update the regularizers, 0 < γk+1 ≤ γk, 0 < εk+1 ≤ εk

set : set k = k + 1

end

A rank estimate r of the matrix M is used as an input to truncate the singular value decomposition
(SVD) when computing the weights W k

p . In our implementation, we use a randomized algorithm for
SVD computation [24]. When the rank of the matrix is not estimated or provided, we instead choose r
to be min{rmax, r̂} at each iteration, where r̂ is the largest integer such that σr̂(X

k) > 10−2 · σ1(Xk),

and where rmax =

⌈
n

(
1−

√
1− |Ω|mn

)⌉
(as implemented in [36]).
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4. Numerical Experiments

In this section, we run numerical experiments to evaluate the performance of Structured sIRLS. We
compare Structured sIRLS to the performance of sIRLS (studied in [36]) and Structured NNM (studied
in [37]) on structured settings. Our code for Structured sIRLS is available at [1]. Further, we use the
publicly available code of sIRLS [34].

First, in Section 4.1, we explain the choice of parameters we use. We describe our experiments for
exact matrix completion in Section 4.2. For problems of varying degrees of difficulty in terms of the
sampling rate, degrees of freedom, and sparsity levels, we find that Structured sIRLS often outperforms
sIRLS and Structured NNM in the structured setting. In Section 4.3 we consider matrix completion
with noise, finding that Structured sIRLS improves upon sIRLS in the structured setting with low noise.
As the noise level increases, the performance of Structured sIRLS remains controlled, approximately the
same as the performance of sIRLS.

4.1. Choice of parameters. In all the numerical experiments, we adopt the same parameters. However,
one can use different choices for parameters, or optimize some of the parameters. We normalize the input
data matrix M to have a spectral norm of 1 (as done in [36]).

We are particularly interested in the case p = q = 1. In our experiments, we set p = q = 1, but
generally, these parameters can be varied over the range 0 ≤ p, q ≤ 1. Each value of p and q define a
different objective function (see Sections 2.2 and 2.3).

For the implementation parameters, we set ks = 1 and kl = 10, which means that we take one gradient
step to promote sparsity and ten gradient steps to promote low-rankness, respectively. These parameters
can be varied based on the low-rankness of the matrix and on the expected sparsity of its missing entries.
Further, we set the regularizers γk = (1/2)k and εk = (9/10)k at the k-th iteration. However, there are
other possible choices for these regularizers, for example εk could depend on the (s+ 1)-th largest value
of z(Xk), where s is the sparsity of z(Xk) (as done in [14]). Similarly, γk could depend on the (r+ 1)-th
singular value of Xk, where r is the rank of M (as done in [18]).

Lastly, for all k we set the step size sk = (γk)1− p
2 to promote low-rankness and ck = 10−6 to promote

sparsity; however, these parameters could be scaled or varied. We define the relative distance between
two consecutive approximations as

d(Xk, Xk−1) = ‖Xk −Xk−1‖F /‖Xk‖F .
We say the algorithm converges if we obtain d(Xk, Xk−1) < 10−5. We set the tolerance 10−5 for both
sIRLS and Structured sIRLS in our comparison experiments,3 and we set the maximum number of
iterations for Structured sIRLS to be 1000 and for sIRLS to be 5000.

4.2. Exact Matrix Completion. We first investigate the performance of the Structured sIRLS algo-
rithm when the observed entries are exact, i.e. there is no noise in the observed values. We construct
m×n matrices of rank r as done in [37]. We consider M = MLMR, where ML ∈ Rm×r and MR ∈ Rr×n
are sparse matrices. Indeed, the entries of ML (resp. MR) are chosen to be zero uniformly at random
so that on average 70% (resp. 50%) of its entries are zero. The remaining nonzero entries are uniformly
distributed at random between zero and one. The sparsity level of the resulting matrix M cannot be
calculated exactly from the given sparsity levels of ML and MR. Thus for each of the following numerical
simulations, we indicate on average the sparsity level of M (we refer to the density of M as the fraction
of nonzero entries).

For each experiment with m, n, and r fixed, we choose twenty random matrices of the form M =
MLMR. We subsample from the zero and nonzero entries of the data matrix at various rates to generate
a matrix with missing entries. We define the relative error of Structured sIRLS as

‖M − X̂‖F /‖M‖F ,

where X̂ is the output of the Structured sIRLS algorithm. Similarly, we define the relative error of
sIRLS as

‖M − X̃‖F /‖M‖F ,

3In the original implementation of sIRLS provided by the authors [34, 36], the tolerance value is set to 10−3. However,

Structured sIRLS converges much faster per iteration, thus attaining the tolerance 10−3 with fewer iterations. To report
fair comparisons between the algorithms that do not overly benefit Structured sIRLS, we set the tolerance to 10−5 in

addition to increasing the maximum number of iterations for sIRLS.
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where X̃ is the output of the sIRLS algorithm. The average ratio is then defined as

‖M − X̂‖F /‖M − X̃‖F .
We say Structured sIRLS outperforms sIRLS when the average ratio is less than one, and vice versa
when the average ratio is greater than or equal to one. These two cases, when the average ratio is
strictly less than or greater than or equal to one, are visually represented by the white and black squares,
respectively, in the bottom right plots of Figures 1–3 and 5. We refer to this binary notion of average
ratio as binned average ratio. We report each of these error values in our numerical experiments.14 HENRY ADAMS AND LARA KASSAB AND DEANNA NEEDELL

Figure 1. We consider twenty 1000⇥1000 sparse random matrices
of rank 10 with average density equal to 0.66. The upper plots
display (left) the average relative error for sIRLS kM�X̃kF /kMkF ,
and (right) the average relative error for Structured sIRLS kM �
X̂kF /kMkF . The lower plots display (left) the average ratio kM �
X̂kF /kM � X̃kF , and (right) the binned average ratio where white
means the average ratio is strictly less than 1, and black otherwise.

entries is greater than 0.5), which covers the majority of the cases where there is
sparsity-based structure in the missing entries.

4.2.4. 100 ⇥ 100 matrices with no knowledge of the rank a priori. In Figure 4, we
construct twenty random matrices of size 100 ⇥ 100 and of rank 8, as described in
Section 3.3. For this experiment, we do not provide the algorithm with any rank
estimate, for either sIRLS or Structured sIRLS. Instead, we allow the algorithm to
estimate the rank at each iteration based on a heuristic described in Section 3.3.
We observe in the bottom right plot of Figure 4, where we zoom in on the cases
where the sampling rate of non-zero entries is at least 0.7, that Structured sIRLS
outperform sIRLS to some extent in this region. Indeed, Structured sIRLS does
particularly better when more entries are observed.

4.2.5. 100 ⇥ 100 rank 20 matrices. We say a matrix completion problem is hard
when the degrees of freedom ratio FR is greater than 0.4 (as in [36]). In the
previous experiments, we considered a few cases where FR > 0.4, which occur
when the sampling rates of zero and nonzero entries are both relatively small. In
these cases, there is not necessarily high sparsity-based structure, which imposes
another challenge since the sampling rate of non-zero entries is approximately equal
to or only slightly greater than the sampling rate of zero entries. Therefore, in this
section, we consider hard cases (where FR > 0.4) with sparsity-based structure.

Figure 1. We consider twenty 1000 × 1000 sparse random matrices of rank 10 with
average density equal to 0.66. The upper plots display (left) the average relative error

for sIRLS ‖M−X̃‖F /‖M‖F , and (right) the average relative error for Structured sIRLS

‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio ‖M−X̂‖F /‖M−X̃‖F ,
and (right) the binned average ratio where white means the average ratio is strictly less
than 1, and black otherwise.

It is important to note that the setting we are interested in is the structured setting where the
submatrix of missing values is close to 0 in the L1 or L0 norm sense. This setting can be observed in the
upper left triangle of the images in Figures 1–7 (in particular, this is the region above the diagonal gray
line in the bottom rows of Figures 1–7). In this upper-left triangular region, the percentage of nonzero
entries that are sampled is greater than the percentage of zero entries that are sampled. Hence the region
above the diagonal gray lines is the structured setting that Structured sIRLS is designed for.

In general, algorithms obtain better accuracy as we move right along a row or up along a column in
Figures 1–7, since we are sampling more and more entries. In addition, it is important to note that in all
experiments we are using the same algorithm (with fixed parameters) for all the cases considered in our
computations, without any parameter optimization. The Structured sIRLS algorithm promotes sparsity
in all the cases, even in the unstructured settings. Omitting the sparsity promoting step would result in
an algorithm promoting only low-rankness.

4.2.1. 1000 × 1000 rank 10 matrices. In Figure 1, we construct twenty random matrices of size 1000 ×
1000 and of rank 10, as described in Section 4.2. Error ratios below one in the bottom left plot of
Figure 1 indicate that Structured sIRLS outperforms sIRLS. In this particular experiment, we observe
that Structured sIRLS outperforms sIRLS for most of the structured cases (the upper left triangle above
the gray line), and more. For this particular experiment, it turns out that this happens roughly when
the decimal percentage of sampled nonzero entries is greater than 0.2.

Note that in the case where all entries are observed (no longer a matrix completion problem), both
relative errors are 0 and thus the average ratio is 1. We only say that Structured sIRLS outperforms
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sIRLS when the average ratio is strictly less than 1, and this is why the upper right pixel in the bottom
right plot of Figure 1 is black. The same is true in later figures.ITERATIVE STRUCTURED MATRIX COMPLETION 15

Figure 2. We consider twenty 500⇥ 500 sparse random matrices
of rank 10 with average density equal to 0.66. The upper plots
display (left) the average relative error for sIRLS kM�X̃kF /kMkF ,
and (right) the average relative error for Structured sIRLS kM �
X̂kF /kMkF . The lower plots display (left) the average ratio kM �
X̂kF /kM � X̃kF , and (right) the binned average ratio where white
means the average ratio is strictly less than 1, and black otherwise.

In Figure 5, we construct twenty random matrices of size 100 ⇥ 100 and of rank
20, as described in Section 4.2. If the number of sampled entries is 90% of the entire
matrix, i.e. |⌦| = 0.9 · m · n, then

FR = r(m + n � r)/|⌦| = 20(200 � 20)/(0.9 ⇥ 1002) = 0.4.

So, even sampling 90% of the matrix is still considered to be a hard problem. In the
bottom row of Figure 5, the added red line separates the “hard” cases from those
that are not: all the cases below the red line are hard. Similarly, the matrices above
the gray line are those with missing entries are more likely to be zero than are the
observed entries; this is the structured setting. Note that in these hard regimes with
sparsity-based structure, Structured sIRLS outperform sIRLS more often than not.

4.2.6. Comparison with Structured NNM on 30 ⇥ 30 rank 7 matrices. In this sec-
tion, we run numerical experiments to compare the performance of Structured sIRLS
with Structured NNM, using the L1 norm on the submatrix of unobserved entries.
We use CVX, a package for specifying and solving convex programs [20, 21], to
solve Structured NNM. In the experiments of Figure 6, we construct twenty ran-
dom matrices of size 30⇥ 30 and of rank 7 as described in Section 4.2. We compare
the accuracy with Structured NNM on small-sized matrices due to computational
constraints of CVX: with this implementation of Structured NNM, it is di�cult

Figure 2. We consider twenty 500 × 500 sparse random matrices of rank 10 with
average density equal to 0.66. The upper plots display (left) the average relative error

for sIRLS ‖M−X̃‖F /‖M‖F , and (right) the average relative error for Structured sIRLS

‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio ‖M−X̂‖F /‖M−X̃‖F ,
and (right) the binned average ratio where white means the average ratio is strictly less
than 1, and black otherwise.

4.2.2. 500 × 500 rank 10 matrices. In Figure 2, we construct twenty sparse random matrices of size
500 × 500 and of rank 10, as described in Section 4.2. We observe that Structured sIRLS outperforms
sIRLS not only in the majority of the structured cases, but also in many of the other cases where the
submatrix of unobserved entries is not necessarily sparse.

4.2.3. 100×100 rank 10 matrices. In Figure 3, we construct twenty random matrices of size 100×100 and
of rank 10, as described in Section 4.2. We observe in Figure 3 that Structured sIRLS outperforms sIRLS
when the sampling rate of the nonzero entries is high (roughly speaking, when the decimal percentage
of sampled nonzero entries is greater than 0.5), which covers the majority of the cases where there is
sparsity-based structure in the missing entries.

4.2.4. 100 × 100 matrices with no knowledge of the rank a priori. In Figure 4, we construct twenty
random matrices of size 100 × 100 and of rank 8, as described in Section 3.3. For this experiment, we
do not provide the algorithm with any rank estimate, for either sIRLS or Structured sIRLS. Instead, we
allow the algorithm to estimate the rank at each iteration based on a heuristic described in Section 3.3.
We observe in the bottom right plot of Figure 4, where we zoom in on the cases where the sampling
rate of non-zero entries is at least 0.7, that Structured sIRLS outperform sIRLS to some extent in this
region. Indeed, Structured sIRLS does particularly better when more entries are observed.

4.2.5. 100 × 100 rank 20 matrices. We say a matrix completion problem is hard when the degrees of
freedom ratio FR is greater than 0.4 (as in [36]). In the previous experiments, we considered a few
cases where FR > 0.4, which occur when the sampling rates of zero and nonzero entries are both
relatively small. In these cases, there is not necessarily high sparsity-based structure, which imposes
another challenge since the sampling rate of non-zero entries is approximately equal to or only slightly
greater than the sampling rate of zero entries. Therefore, in this section, we consider hard cases (where
FR > 0.4) with sparsity-based structure.
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Figure 3. We consider twenty 100⇥ 100 sparse random matrices
of rank 10 with average density equal to 0.66. The upper plots
display (left) the average relative error for sIRLS kM�X̃kF /kMkF ,
and (right) the average relative error for Structured sIRLS kM �
X̂kF /kMkF . The lower plots display (left) the average ratio kM �
X̂kF /kM � X̃kF , and (right) the binned average ratio where white
means the average ratio is strictly less than 1, and black otherwise.

to handle significantly larger matrices. Similar experiments are considered in [37],
where Structured NNM is compared to NNM. Comparing our iterative algorithm
to Structured NNM is important since Structured NNM adapts nuclear norm min-
imization and `1 norm minimization, which are common heuristics for minimizing
rank and inducing sparsity, respectively. We define the relative error of Structured
NNM as kM � X̄kF /kMkF , where X̄ is the output of the Structured NNM algo-

rithm. The average ratio is then defined as kM � X̂kF /kM � X̄kF , where X̂ is the
output of the Structured sIRLS algorithm.

For all sampling rates, the degrees of freedom ratio is greater than 0.4, i.e. all the
problems are considered to be “hard” matrix completion problems. In Figure 6, we
provide Structured sIRLS with the rank of the matrices.

In Figure 6, we give Structured NNM an advantage by optimizing for each
matrix and combination of sampling rates the regularization parameter ↵ 2
{10�4, 10�3, 10�2, 10�1} for Structured NNM. However, for Structured sIRLS
(again with p = q = 1) we do not optimize the gradient step sizes or the num-
ber of step sizes. Varying the number or sizes of the gradient steps controls how
much we would like to promote low-rankness versus sparsity in the submatrix of
missing entries. In the experiments of Figure 6, we observe that for the most part
where the sampling rate of nonzero entries is between 0.6 and 0.9, Structured sIRLS

Figure 3. We consider twenty 100 × 100 sparse random matrices of rank 10 with
average density equal to 0.66. The upper plots display (left) the average relative error

for sIRLS ‖M−X̃‖F /‖M‖F , and (right) the average relative error for Structured sIRLS

‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio ‖M−X̂‖F /‖M−X̃‖F ,
and (right) the binned average ratio where white means the average ratio is strictly less
than 1, and black otherwise.
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Figure 4. We consider twenty 100⇥ 100 sparse random matrices
of rank 8 with density equal to 0.58, but we do not input any rank
guess. The upper plots display (left) the average relative error for

sIRLS kM � X̃kF /kMkF , and (right) the average relative error for

Structured sIRLS kM �X̂kF /kMkF . The lower plots display (left)

the average ratio kM � X̂kF /kM � X̃kF , and (right) the average
ratio when the sampling rate of non-zero entries is at least 0.70 (a
zoomed in version of part of the lower left plot).

performs better than Structured NNM. Furthermore, for the remainder of the struc-
tured settings, Structured sIRLS performs approximately the same as Structured
NNM or only slightly worse. We note that in a couple of cases where the sampling
rate of nonzero entries is 1, and where the relative error for both algorithms is close
to zero, Structured NNM performs much better. This is in part because we optimize
Structured NNM over ↵ 2 {10�4, 10�3, 10�2, 10�1}; see [37] where the relationship
between the choice of ↵ and the accuracy of Structured NNM is studied.

As observed in Figure 6, our proposed method is often comparable to Structured
NNM on small-sized matrices, with certain regions where Structured sIRLS results
in improved accuracy. In addition, iterative methods are well-known to o↵er ease of
implementation and reduced computational resources, making our approach attrac-
tive not only in the setting of small-sized matrices, but also large-sized matrices.

4.3. Matrix Completion with Noise. In this section, we investigate the perfor-
mance of Structured sIRLS when the observed entries are corrupted with noise. In
particular, we compare the performance of Structured sIRLS with the performance
of sIRLS. We adapt sIRLS and Structured sIRLS for noisy matrix completion by
replacing the observed entries P⌦(M) with the noisily observed entries P⌦(B) in
the constraints, where M is an unknown low-rank matrix that we wish to recover,

Figure 4. We consider twenty 100×100 sparse random matrices of rank 8 with density
equal to 0.58, but we do not input any rank guess. The upper plots display (left) the

average relative error for sIRLS ‖M−X̃‖F /‖M‖F , and (right) the average relative error

for Structured sIRLS ‖M − X̂‖F /‖M‖F . The lower plots display (left) the average ratio

‖M−X̂‖F /‖M−X̃‖F , and (right) the average ratio when the sampling rate of non-zero
entries is at least 0.70 (a zoomed in version of part of the lower left plot).

In Figure 5, we construct twenty random matrices of size 100 × 100 and of rank 20, as described in
Section 4.2. If the number of sampled entries is 90% of the entire matrix, i.e. |Ω| = 0.9 ·m · n, then

FR = r(m+ n− r)/|Ω| = 20(200− 20)/(0.9× 1002) = 0.4.
12



So, even sampling 90% of the matrix is still considered to be a hard problem. In the bottom row of
Figure 5, the added red line separates the “hard” cases from those that are not: all the cases below
the red line are hard. Note that in these hard regimes with sparsity-based structure, Structured sIRLS
outperform sIRLS more often than not.

Figure 5. We consider twenty 100 × 100 sparse random matrices of rank 20 with
average density equal to 0.88. The upper plots display (left) the average relative error

for sIRLS ‖M−X̃‖F /‖M‖F , and (right) the average relative error for Structured sIRLS

‖M−X̂‖F /‖M‖F . The lower plots display (left) the average ratio ‖M−X̂‖F /‖M−X̃‖F ,
and (right) the binned average ratio where white means the average ratio is strictly less
than 1, and black otherwise. The red line separates the hard cases from those that are
not: all the cases below the red line are hard.

4.2.6. Comparison with Structured NNM on 30 × 30 rank 7 matrices. In this section, we run numeri-
cal experiments to compare the performance of Structured sIRLS with Structured NNM, using the L1

norm on the submatrix of unobserved entries. We use CVX, a package for specifying and solving convex
programs [20, 21], to solve Structured NNM. In the experiments of Figure 6, we construct twenty ran-
dom matrices of size 30 × 30 and of rank 7 as described in Section 4.2. We compare the accuracy with
Structured NNM on small-sized matrices due to computational constraints of CVX: with this implemen-
tation of Structured NNM, it is difficult to handle significantly larger matrices. Similar experiments are
considered in [37], where Structured NNM is compared to NNM. Comparing our iterative algorithm to
Structured NNM is important since Structured NNM adapts nuclear norm minimization and `1 norm
minimization, which are common heuristics for minimizing rank and inducing sparsity, respectively. We
define the relative error of Structured NNM as ‖M − X̄‖F /‖M‖F , where X̄ is the output of the Struc-

tured NNM algorithm. The average ratio is then defined as ‖M − X̂‖F /‖M − X̄‖F , where X̂ is the
output of the Structured sIRLS algorithm.

For all sampling rates, the degrees of freedom ratio is greater than 0.4, i.e. all the problems are
considered to be “hard” matrix completion problems. In Figure 6, we provide Structured sIRLS with
the rank of the matrices.

In Figure 6, we give Structured NNM an advantage by optimizing for each matrix and combination of
sampling rates the regularization parameter α ∈ {10−4, 10−3, 10−2, 10−1} for Structured NNM. However,
for Structured sIRLS (again with p = q = 1) we do not optimize the gradient step sizes or the number
of step sizes. Varying the number or sizes of the gradient steps controls how much we would like
to promote low-rankness versus sparsity in the submatrix of missing entries. In the experiments of
Figure 6, we observe that for the most part where the sampling rate of nonzero entries is between 0.6
and 0.9, Structured sIRLS performs better than Structured NNM. Furthermore, for the remainder of
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Figure 6. We consider twenty 30⇥ 30 sparse random matrices of
rank 7, with average density equal to 0.53. We provide Structured
sIRLS with the rank of the matrices. We optimize for each matrix
and combination of sampling rates the regularization parameter
↵ 2 {10�4, 10�3, 10�2, 10�1} for Structured NNM. The upper plots
display (left) the average relative error for Structured NNM kM �
X̄kF /kMkF , and (right) the average relative error for Structured

sIRLS kM�X̂kF /kMkF . The lower plots display (left) the average

ratio kM � X̂kF /kM � X̄kF , and (right) the average ratio when
the sampling rate of non-zero entries is at most 0.90 (a zoomed in
version of part of the lower left plot).

0.3, which covers the majority of the cases where there is sparsity-based structure
in the missing entries, Structured sIRLS performs better than sIRLS.

For a higher noise level ✏ = 10�3, we observe that sIRLS and Structured sIRLS
algorithms perform roughly the same. This suggest that both sIRLS and Structured
sIRLS are robust to noise, with the improvements of Structured sIRLS from the
structure diminishing as the noise grows.

5. Conclusion. In this paper, we consider the notion of structured matrix com-
pletion, studied in the recent paper [37]. In particular, we are interested in sparsity-
based structure in the missing entries whereby the vector of missing entries is close
in the `0 or `1 norm sense to the zero vector (or more generally, to a constant vector).
For example, a missing rating of a movie might indicate the user’s lack of interest in
that movie, thus suggesting a lower rating than otherwise expected. In [37], Molitor
and Needell propose adjusting the standard nuclear norm minimization problem by
regularizing the values of the unobserved entries to take into account the structural
di↵erences between observed and unobserved entries.

Figure 6. We consider twenty 30× 30 sparse random matrices of rank 7, with average
density equal to 0.53. We provide Structured sIRLS with the rank of the matrices. We
optimize for each matrix and combination of sampling rates the regularization parameter
α ∈ {10−4, 10−3, 10−2, 10−1} for Structured NNM. The upper plots display (left) the
average relative error for Structured NNM ‖M − X̄‖F /‖M‖F , and (right) the average

relative error for Structured sIRLS ‖M−X̂‖F /‖M‖F . The lower plots display (left) the

average ratio ‖M − X̂‖F /‖M − X̄‖F , and (right) the average ratio when the sampling
rate of non-zero entries is at most 0.90 (a zoomed in version of part of the lower left
plot).

the structured settings, Structured sIRLS performs approximately the same as Structured NNM or only
slightly worse. We note that in a couple of cases where the sampling rate of nonzero entries is 1, and
where the relative error for both algorithms is close to zero, Structured NNM performs much better.
This is in part because we optimize Structured NNM over α ∈ {10−4, 10−3, 10−2, 10−1}; see [37] where
the relationship between the choice of α and the accuracy of Structured NNM is studied.

As observed in Figure 6, our proposed method is often comparable to Structured NNM on small-sized
matrices, with certain regions where Structured sIRLS results in improved accuracy. In addition, iterative
methods are well-known to offer ease of implementation and reduced computational resources, making
our approach attractive not only in the setting of small-sized matrices, but also large-sized matrices.

4.3. Matrix Completion with Noise. In this section, we investigate the performance of Structured
sIRLS when the observed entries are corrupted with noise. In particular, we compare the performance
of Structured sIRLS with the performance of sIRLS. We adapt sIRLS and Structured sIRLS for noisy
matrix completion by replacing the observed entries PΩ(M) with the noisily observed entries PΩ(B) in
the constraints, where M is an unknown low-rank matrix that we wish to recover, where PΩ(Z) is the
measurement noise, and where the noisy matrix B satisfies PΩ(B) = PΩ(M) + PΩ(Z). The algorithms
for matrix recovery do not update the noisily observed entries, only the missing entries. We define our
noise model such that ‖PΩ(Z)‖F = ε‖PΩ(M)‖F for a noise parameter ε. We do so by adding noise of
the form

Zij = ε · ‖PΩ(M)‖F
‖PΩ(N)‖F

·Nij ,

where Nij are i.i.d. Gaussian random variables with the standard distribution N (0, 1). We define the

relative error of Structured sIRLS as ‖B − X̂‖F /‖B‖F , where X̂ is the output of the Structured sIRLS

algorithm. Similarly, we define the relative error of sIRLS as ‖B − X̃‖F /‖B‖F , where X̃ is the output
of the sIRLS algorithm.
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Figure 7. We consider twenty 100⇥100 random matrices of rank
3 with noise parameter ✏ = 10�4. The upper plots display (left) the

average relative error for sIRLS kB � X̃kF /kBkF , and (right) the

average relative error for Structured sIRLS kB � X̂kF /kBkF . The

lower plots display (left) the average ratio kB � X̂kF /kB � X̃kF ,
and (right) the average ratio when the sampling rate of non-zero
entries is at least 0.35 (a zoomed in version of part of the lower left
plot).

To our knowledge, we develop the first iterative algorithm that addresses the
structured low-rank matrix completion problem, for which Structured NNM has
been proposed. We adapt an iterative algorithm, called Structured IRLS, by ad-
justing the IRLS algorithm proposed in [36]. We also present a gradient-projection-
based implementation, called Structured sIRLS that can handle large-scale matrices.
The algorithms are designed to promote low-rank structure in the recovered matrix
with sparsity in the missing entries.

We perform numerical experiments on various structured settings to test the per-
formance Structured sIRLS compared to sIRLS and Structured NNM. We consider
problems of various degrees of freedom and rank knowledge. To generate matrices
with sparsity-based structure in the missing entries, we subsample from the zero
and nonzero entries of a sparse data matrix at various rates. Indeed, we are inter-
ested in the structured cases, when the sampling rate of the zero entries is lower
than the sampling rate of the nonzero entries.

Our numerical experiments show that Structured sIRLS often gives better re-
covery results than sIRLS in structured settings. Further, for small enough noise
our proposed method often performs better than sIRLS in structured settings, and
as noise gets larger both converge to the same performance. Further, our numeri-
cal experiments show that Structured sIRLS is comparable to Structured NNM on

Figure 7. We consider twenty 100×100 random matrices of rank 3 with noise parameter
ε = 10−4. The upper plots display (left) the average relative error for sIRLS ‖B −
X̃‖F /‖B‖F , and (right) the average relative error for Structured sIRLS ‖B−X̂‖F /‖B‖F .

The lower plots display (left) the average ratio ‖B − X̂‖F /‖B − X̃‖F , and (right) the
average ratio when the sampling rate of non-zero entries is at least 0.35 (a zoomed in
version of part of the lower left plot).

In Figure 7, we consider twenty random 100 × 100 rank 3 matrices with noise parameter ε = 10−4,
where we construct our matrices in the same fashion as in Section 4.2. We consider analogous structured
settings as in the prior experiments, and observe that for the cases where the sampling rate of nonzero
entries is greater than 0.3, which covers the majority of the cases where there is sparsity-based structure
in the missing entries, Structured sIRLS performs better than sIRLS.

For a higher noise level ε = 10−3, we observe that sIRLS and Structured sIRLS algorithms perform
roughly the same. This suggest that both sIRLS and Structured sIRLS are robust to noise, with the
improvements of Structured sIRLS from the structure diminishing as the noise grows.

5. Conclusion

In this paper, we consider the notion of structured matrix completion, studied in the recent paper [37].
In particular, we are interested in sparsity-based structure in the missing entries whereby the vector of
missing entries is close in the `0 or `1 norm sense to the zero vector (or more generally, to a constant
vector). For example, a missing rating of a movie might indicate the user’s lack of interest in that movie,
thus suggesting a lower rating than otherwise expected. In [37], Molitor and Needell propose adjusting
the standard nuclear norm minimization problem by regularizing the values of the unobserved entries to
take into account the structural differences between observed and unobserved entries.

To our knowledge, we develop the first iterative algorithm that addresses the structured low-rank
matrix completion problem, for which Structured NNM has been proposed. We adapt an iterative
algorithm, called Structured IRLS, by adjusting the IRLS algorithm proposed in [36]. We also present a
gradient-projection-based implementation, called Structured sIRLS that can handle large-scale matrices.
The algorithms are designed to promote low-rank structure in the recovered matrix with sparsity in the
missing entries.

We perform numerical experiments on various structured settings to test the performance Structured
sIRLS compared to sIRLS and Structured NNM. We consider problems of various degrees of freedom and
rank knowledge. To generate matrices with sparsity-based structure in the missing entries, we subsample
from the zero and nonzero entries of a sparse data matrix at various rates. Indeed, we are interested in
the structured cases, when the sampling rate of the zero entries is lower than the sampling rate of the
nonzero entries.
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Our numerical experiments show that Structured sIRLS often gives better recovery results than sIRLS
in structured settings. Further, for small enough noise our proposed method often performs better than
sIRLS in structured settings, and as noise gets larger both converge to the same performance. Further,
our numerical experiments show that Structured sIRLS is comparable to Structured NNM on small-sized
matrices, with Structured sIRLS performing better in various structured regimes.

In future work, we hope to extend the theoretical results for Structured IRLS to more general settings.
In the simplified setting, in which all of the unobserved entries are exactly zero, we show that the
approximation given by an iteration of Structured IRLS will always perform at least as well as that
of IRLS with the same weights assigned. However, we empirically observe the stronger result that
Structured sIRLS often outperforms sIRLS in structured settings (in which algorithms are run until
convergence, and in which not all missing entries are zero). Another extension is to explore Structured
IRLS for different values of p and q, both empirically and theoretically. Furthermore, a possible direction
for future work is to extend sparsity-based structure in the missing entries to a more general notion of
structure, whereby the probability that an entry is observed or not may depend on more than just the
value of that entry. For example, one could imagine that columns in a matrix corresponding to popular
movies would have many entries (user ratings) filled in. In this context, an entry might be more likely
to be observed if many entries in its same column are also observed.
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