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Blind Estimation of Eigenvector Centrality from
Graph Signals: Beyond Low-pass Filtering

T. Mitchell Roddenberry and Santiago Segarra

Abstract—This paper characterizes the difficulty of estimating
a network’s eigenvector centrality only from data on the nodes,
i.e., with no information about the topology of the network. We
model this nodal data as graph signals generated by passing
white noise through generic (not necessarily low-pass) graph
filters. Leveraging the spectral properties of graph filters, we
estimate the eigenvectors of the adjacency matrix of the un-
derlying network. To this end, a simple selection algorithm is
proposed, which chooses the correct eigenvector of the signal
covariance matrix with minimal assumptions on the underlying
graph filter. We then present a theoretical characterization of the
asymptotic and non-asymptotic performance of this algorithm,
thus providing a sample complexity bound for the centrality
estimation and revealing key elements driving this complexity.
Finally, we illustrate the developed insights through a set of
numerical experiments on different random graph models.

I. INTRODUCTION

The representation of data as graphs, or networks, has
become an increasingly prominent approach in science and
engineering [1], [2], allowing one to uncover community
structure [3], common connection patterns [4], and node
importance [5]. In many settings, there is an assumed network
structure lying underneath a set of interacting agents, but the
precise connections in this structure are unobserved. However,
we would still like to use graph-based analysis tools, such as
centrality measures [6]–[9], to draw conclusions about the role
of the agents in the unobserved interconnected structure.

As a motivating example, consider a social network where
the set of connections is not known precisely, but one has
measurements of opinion dynamics among all of the indi-
viduals. One then seeks to infer who the most influential
individual in the network is. In the network topology inference
framework, one would use this collection of opinions to infer
a graph structure, and then compute the eigenvector centrality
of the constructed network. This approach requires the costly –
both in the data and computational sense – construction of an
intermediate network, even though the ultimate interest is just
in the resulting centrality. This leads to the guiding question of
this work: How can we estimate the eigenvector centrality of
a graph with hidden edges directly from data supported on the
nodes? Working in the framework of graph signal processing,
we model this data as a set of graph signals, obtained via the
output of a graph filter applied to white noise. We then explore
the difficulty of this problem, characterized by the distribution
of centrality over the nodes as well as the spectral properties
of the graph and graph filter.
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Related work. One can frame the general problem of inferring
the complete set of edges of an underlying network from data
on the nodes under the concept of network topology inference.
This is commonly studied through a statistical lens, where
each node represents a random variable, and edges encode the
dependence structure between these random variables [10]–
[12]. Alternative approaches include those based on partial
correlations [10], structural equation models [13], [14], and
Granger causality [15]. Graph signal processing provides a
different view on network topology inference, where the nodal
data is assumed to be the output of a latent process on the
hidden graph [16]–[19]. These approaches solve the topology
inference problem by making different assumptions on the pro-
cess that generates the graph signals, e.g., kernel models [20],
signal smoothing [16], or consensus dynamics [21], [22].

Motivated by the high sampling and computational require-
ments of network topology inference, the framework of blind
network inference was proposed. More precisely, recent works
have considered the estimation of network characteristics –
such as community structure and centralities – directly from
nodal data, i.e., circumventing the intermediate step of con-
structing the network. In this context, [23] considers the ob-
servation of a simple finite-length diffusion process with white
noise input on a planted partition graph, and characterizes the
relationship between the diffusion time and the difficulty of
identifying the latent communities from the observed graph
signals. Alternatively, [24] models the observed signals as
being low-rank, while [25] models them as a function of a
latent time-series. Expanding on this, [26] considers the blind
community detection problem where there is no fixed graph,
but rather a family of graphs with shared latent partitions. Most
related to this work, [27], [28] implement this blind inference
approach for the estimation of eigenvector centralities from
graph signals. Both of these works assume that the graph
signals are smooth, and characterize the error between the
estimated and true centralities. We depart from this assumption
in the current paper.
Contributions. The contributions of this paper are three-
fold: 1) We provide a simple algorithm to select an estimate
of the eigenvector centrality from a set of graph signals,
2) We derive sampling requirements for this algorithm, and
3) We illustrate our theoretical findings through experiments
on different random graph models.

II. PRELIMINARIES

A. Graphs and eigenvector centrality
An undirected graph G consists of a set V of n := |V| nodes,

and a set E ⊆ V × V of edges, corresponding to unordered
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pairs of nodes. Networks can be represented by an adjacency
matrix A defined by first setting an arbitrary indexing of the
nodes with the integers 1, . . . , n, and then assigning Aij = 1
if (i, j) ∈ E and Aij = 0 otherwise.

The eigenvector centrality of a node i in a graph G is
given by the ith entry of the leading eigenvector of A,
which we denote u for convenience. The Perron-Frobenius
Theorem [29, Theorem 8.3.1] guarantees that every element
of u has the same sign. Due to this property, the set of all
possible eigenvector centralities (ignoring the stipulation of
having unit norm) can be characterized as a symmetric convex
cone C = C+ ∪ C− ∈ Rn where

C+ = {x ∈ Rn : xi ≥ 0} , C− = {x ∈ Rn : xi ≤ 0} .

The boundary of this set, then, is

∂C =

{
x ∈ C :

n∏
i=1

xi = 0

}
.

That is, ∂C consists of vectors with same-signed entries and at
least one entry that takes value 0, while C consists of vectors
with same-signed entries. In fact, for connected, undirected
graphs, the leading eigenvector of A lies in the interior of
C, since no node can have centrality exactly equal to 0. Of
interest in this work is the projection of a vector v onto C,
denoted by ΠC (v), which essentially takes the positive-signed
or negative-signed part of v, depending on which is closer to
v in the `2-norm.

B. Graph signals and graph filters

Graph signals, analogously to discrete time signals, are
functions mapping the nodes to the reals, i.e., x : V → R.
For an indexing of V with [n], a graph signal x is represented
as a vector in Rn, where xi = x (i). A graph filterH is a linear
map between graph signals representable as a polynomial of
the adjacency matrix1

H (A) =

T∑
k=0

γkA
k :=

T∑
k=0

H (λk)vkv
>
k , (1)

where γk are real-valued coefficients, H (λ) is the extension
of the polynomial H to scalar-valued arguments, and (λk,vk)
denote the eigenpairs of A.

C. Blind network inference

Recent works have considered the problem of blind network
inference, where one aims to infer coarse network descriptions,
such as the community structure [25], [26], [30] or eigenvector
centrality [27], [28] solely from graph signals, not knowing
the underlying graph structure. These works mostly rely on
an assumed model for the observed graph signals: in essence,
that the graph signals are the output of a low-pass filter applied
to white noise. That is, each observed graph signal y(`), 1 ≤
` ≤ m can be written as

y(`) := H (A)w(`), (2)

1Alternatively, graph filters can be defined in terms of other graph matrices,
such as the Laplacian matrix. We focus on adjacency-based filters.

whereH is a polynomial of the graph adjacency matrix A, and
the set

{
w(`)

}m
`=1

consists of i.i.d. samples from a zero-mean

distribution obeying Cov
(
w(`)

)
:= E

[
w(`)

(
w(`)

)>]
= I .

Unlike existing works, we do not assume the filter H in (2)
to be low-pass.

By considering (1), the covariance matrix of signals follow-
ing (2) shares a set of eigenvectors with the adjacency matrix.
Specifically,

Cy := Cov
(
y(`)

)
= H (A) Cov

(
w(`)

)
H (A)

= [H (A)]
2

=

T∑
k=0

[H (λk)]
2
vkv

>
k .

(3)

Consequently, one can study the eigenvectors of the covariance
matrix Cy to gain insights into the spectral structure of the
adjacency matrix A.

III. PROBLEM STATEMENT AND ALGORITHM

Consider a set of m graph signals obtained as the output
of an unknown graph filter, as in (2). Then, based on (3), one
can analyze the spectral structure of a graph strictly from the
observation of such signals, without knowledge of the graph
itself. More precisely, we aim to extract the best estimate of the
eigenvector centrality u from the eigenvectors of the sample
covariance. This leads to the eigenvector centrality selection
problem, stated next.

Problem 1 Given the observation of m graph signals follow-
ing the model in (2), estimate the eigenvector centrality u.

Based on the shared set of eigenvectors between Cy and A, it
makes intuitive sense to estimate the eigenvector centrality by
selecting an eigenvector from the sample covariance matrix.
However, due to noise induced by finite sampling and the
fact that H is unknown, it is not immediately clear which
eigenvector should be chosen.

Given certain assumptions on the graph filter H, one could
select the leading eigenvector of the empirical covariance
matrix

Ĉm
y =

1

m

m∑
`=1

(y(`) − ȳ)(y(`) − ȳ)> (4)

as an estimate of u, as done in [27], [28]. In this work, we
make no assumptions on the structure of the graph or the
graph filter, hence, the position of the optimal estimate û in
the spectrum of Ĉm

y is unknown a priori. To this end, we
propose Algorithm 1 for the eigenvector selection task. This
algorithm leverages the property that the eigenvector centrality
must lie in C by choosing the eigenvector of Ĉm

y that is either
in or closest to C.

IV. THEORETICAL RESULTS

Before characterizing the behavior of Algorithm 1, we
establish the following results on the sample covariance matrix
for signals following (2).

Proposition 1 If, for some r > 0, ‖y(`)‖2 ≤ r holds for
a collection of signals

{
y(`)

}m
`=1

observed according to (2),
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Algorithm 1 Eigenvector selection algorithm

1: INPUT: Set of m graph signals {y(`)}m`=1

2: Compute the covariance matrix Ĉm
y as in (4)

3: Compute the eigenvectors of Ĉm
y , yielding {v̂i}ni=1

4: for i ∈ [n] do
5: si = cos θ (v̂i,ΠC (v̂i))
6: end for
7: j = arg maxi si
8: û = v̂j

9: OUTPUT: Estimated eigenvector centrality û

their sample covariance matrix Ĉm
y satisfies the following with

probability at least 1− η:

‖Ĉm
y −Cy‖2 ≤ C0

√
log

(
1

η

)
r

m
,

where C0 ∈ Θ (‖Cy‖2).

Proposition 1 is stated in [31, Corollary 5.52], and character-
izes the rate of convergence of the sample covariance matrix to
the population covariance matrix. Although this relies on the
assumption that the norm ‖y(`)‖ is bounded, these results can
easily be generalized to the case where y(`) has a subgaussian
distribution, following [31, Corollary 5.50]. Next, we describe
the alignment of the eigenspaces of Ĉm

y and Cy .

Proposition 2 Under the same conditions as Proposition 1,
for two corresponding eigenvectors vj , v̂j of Cy, Ĉ

m
y , respec-

tively, the following holds with probability at least 1− η:

sin θ (vj , v̂j) ≤ 2
C0

δ

√
log

(
1

η

)
r

m
,

where δ = min {λj − λj−1, λj+1 − λj} is the population
eigengap for vj .

Proposition 2 follows from Proposition 1 and [32, Theorem 2].
With these results gathered, we now proceed to the statement
and proof of our main result.

A. Eigenvector centrality selection guarantees

Based on Proposition 2, it is clear that as m → ∞,
the eigenvectors of Ĉm

y align perfectly with those of A,
so Problem 1 will be solved perfectly by simply selecting
the only eigenvector that lies in C, corresponding to the
eigenvector centrality. However, due to noise in Ĉm

y , we aim
to characterize how much data is needed to ensure correct
selection of û.

Theorem 1 (Selection in the finite-sample regime) Let j ∈
[n] be such that the jth eigenvector of Cy is equal to u. Define
δ = min {λj − λj−1, λj+1 − λj}, as in Proposition 2. Then,
if

m ∈ Ω

(
max
i∈[n]

1

δ2u2i

)
, (5)

then Algorithm 1 will select v̂j with high probability.

Proof: For convenience, assume that the nodes are in-
dexed such that for u ∈ C+, ui ≤ ui+1 for i ∈ [n− 1]. Then,
the distance from u to ∂C using the `2 − norm is equal to
u1. Thus, for some perturbation ε ⊥ u and α > 0 such that
û = αu + ε and ‖ε‖2 =

√
1− α2, we require ‖ε‖2 < αu1

to ensure that û ∈ C+.
By Proposition 2, for some constant C1, one can see that

α = cos θ (u, û) >

√
1− C2

1

δ2m
.

Then, if α2/(1− α2) > 1/u21, the desired bound on ‖ε‖2 is
attained. This condition is equivalent to

δ2m

C2
1

> 1 +
1

u21
.

Noting that the term 1/u21 > n dominates, applying Proposi-
tion 2 yields the sampling requirement (5).

Given the discussion in Section II-A establishing u ∈ C,
it is intuitive that an eigenvector that is well-centered in C is
unlikely to be perturbed beyond ∂C. Hence, one would antici-
pate the sample complexity of selecting the correct eigenvector
to be large whenever u contains small entries (in absolute
value). Theorem 1 reveals that this is indeed the case, unveiling
the specific functional form of this dependence. Putting it
differently, one expects a delocalized eigenvector centrality
where ui ≈ 1/

√
n for all i ∈ [n] to be ideal for Problem 1,

while one with many nodes taking small centrality values –
i.e., a localized eigenvector centrality – to yield a difficult
instance of Problem 1. Additionally, Theorem 1 displays
the relation between the sample complexity and the relevant
eigengap δ. This is as expected, since an eigenvector that
is poorly separated from its neighboring eigenvectors in the
spectral domain should require more signals for estimation.

Remark 1 Theorem 1 characterizes the difficulty of Prob-
lem 1 in terms of the minimum entry of u, providing the
sampling requirement to ensure û ∈ C+. Although this
condition guarantees that Algorithm 1 will select û, it is not a
necessary condition. That is, if none of the eigenvectors of Ĉm

y

lie in C, Algorithm 1 will pick the one nearest to ∂C. Hence,
considering the distributions of node centralities within u and
{vi}ni=2 could yield a more precise version of (5). We draw a
practical connection between the difficulty of Problem 1 and
the localization of u in Section V-B.

V. NUMERICAL EXPERIMENTS

We illustrate the behavior of Algorithm 1 via numerical
experiments on two different models of random graphs. We
begin by demonstrating the relationship between sample size
and the performance of Algorithm 1 on an Erdős-Rényi graph,
then proceed to investigate the influence of the underlying
graph structure on the difficulty of Problem 1 via simulations
on Watts-Strogatz graphs.

For both experiments, a graph filter is excited with m sam-
ples of white, Gaussian noise to generate the observed graph
signals. The probability of selecting the optimal eigenvector
centrality estimate over several trials is evaluated. For this



4

0 20 40 60 80 100

0

0.1

0.2

0.3

Node index

E
ig

en
ve

ct
or

ce
nt

ra
lit

y

102 103
0

0.2

0.4

0.6

0.8

1

Sample size

Pr
ob

ab
ili

ty
of

co
rr

ec
t

se
le

ct
io

n

Square root, LPF
Square root, HPF
Squared, LPF
Squared, HPF

103 104 105 106
0

0.2

0.4

0.6

0.8

1

Sample size

Pr
ob

ab
ili

ty
of

co
rr

ec
t

se
le

ct
io

n

p = 0
p = 0.001
p = 0.01
p = 0.1
p = 1

A B C

Fig. 1. Ranking algorithm for Erdős-Rényi (A,B) and Watts-Strogatz (C) random graphs, for Sections V-A and V-B. (A) Eigenvector centrality of drawn
Erdős-Rényi graph with n = 100, p = (logn)/n. (B) Rate of optimal eigenvector selection on Erdős-Rényi graph for m ∈ {100, . . . , 1000}. (C) Empirical
probabilities of selecting the optimal estimate of the eigenvector centrality for 100 Watts-Strogatz random graphs with n = 500, k = 4.

evaluation, we define the optimal choice as the eigenvector
of Ĉm

y that has the greatest inner product with the true eigen-
vector centrality u. The graph filters used include a “square-
root” filter, where H (λ) =

√
λ, and a “squared” filter, where

H (λ) = λ2, both applied to the spectrum of the adjacency
matrix, previously scaled and shifted to lie in the interval
[0, 1]. The square-root filter tends decreases the gap between
the dominant eigenvalue and the lower spectrum, leading to a
more difficult instance of Problem 1, while the squared filter
widens this gap, making selection easier. Additionally, we
consider high-pass versions of these filters, where the spectrum
is reversed, i.e., HHPF (λ) = 1−HLPF (λ).

A. Effect of different graph filters

To demonstrate the relationship between the number of
samples m and the performance of Algorithm 1 for different
graph filters, we consider an Erdős-Rényi graph with n = 100
and p = (logn)/n. The distribution of centralities in this
sparse graph is shown in Figure 1A.

We excite the previously described square-root and squared
filters, along with their high-pass variants, with white, Gaus-
sian noise. For each sample size m we evaluate if the optimal
estimate of u was selected. The minimum centrality in this
graph is small, as shown in Figure 1A, indicating a difficult in-
stance of Problem 1 as expressed by Theorem 1. However, the
dominance of the leading eigenvalue of Erdős-Rényi graphs
lends itself to a large eigengap δ = λ1−λ2 in this setting. The
influence of this eigengap is demonstrated by the difference
in performance between the square-root and squared filters
shown in Figure 1B: the larger value of δ from the squared
filter results in an easier selection problem. Additionally, as
mentioned in Remark 1, the minimum centrality only dictates
the number of samples needed to ensure that the perturbation
of u remains in C. For the purpose of optimal selection, this
is overly restrictive, since we only require the perturbation of
u to be closer to C than any other eigenvector of Ĉm

y . Since
u is not highly localized, it is expected that Algorithm 1 will
perform well in this scenario for reasonably large values of δ.

B. Interplay between eigengap and localization

We evaluate the performance of Algorithm 1 on graphs
drawn from the Watts-Strogatz random graph model. The
parameter p, indicating the rewiring probability, has a strong

TABLE I
EIGENGAPS OF POPULATION COVARIANCE MATRICES FOR

WATTS-STROGATZ GRAPHS

p Mean [δ] Var [δ]

0 1.97× 10−4 0
1× 10−3 2.29× 10−3 4.54× 10−6

1× 10−2 4.31× 10−3 7.93× 10−6

1× 10−1 2.03× 10−2 2.90× 10−5

1 1.27× 10−1 1.12× 10−4

impact on the eigenvector centrality, as illustrated in Figure 2.
When p = 0, the Watts-Strogatz is a deterministic, k-regular
graph, and thus has a constant eigenvector centrality. The
constant vector lies “in the center” of C, and thus should
be the most robust to perturbations due to finite sampling
[cf. Remark 1], disregarding the influence of the eigengap δ
in (5). When 0 < p � 1, we observe a distinct localization
phenomena. That is, the nodes attached to rewired edges have
high centrality, while the centrality of nodes far from a rewired
edge have low centrality. As p→ 1, the average distance from
rewired connections diminishes, leading to the nodes generally
having centrality close to 1/

√
n. The extreme case of this

occurs when p = 1, where the complete randomness of the
graph model yields a highly delocalized eigenvector centrality.

We evaluate the joint influence of the centrality structure and
the relevant eigengap on the performance of Algorithm 1. We
generate our samples through the square-root filter previously
described. Given a collection of m such graph signals, we
evaluate the performance of Algorithm 1 in selecting the
optimal eigenvector centrality estimate. The results for Watts-
Strogatz graphs drawn 100 times each from models with
n = 500, k = 4, and p ∈ {0, 0.001, 0.01, 0.1, 1} are shown
in Figure 1C. Notably, except for the scenario where the
sample size is small, the models with p ∈ {0.1, 0} had the
highest rates of correct selection. This can be explained by
two factors: 1) A sufficiently large rewiring probability yields
a delocalized eigenvector, which is better centered in C than
a localized one, and is thus less likely to be perturbed beyond
∂C due to finite sampling effects, and 2) An eigengap δ
that increases with p, reducing the sampling requirement (5).
This second characteristic explains the performance of Al-
gorithm 1 when p = 0. Despite the eigenvector centrality
being as well-suited to the selection problem as possible, a
small eigengap yields an ambiguous selection problem when
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Fig. 2. Eigenvector centralities of Watts-Strogatz random graphs with n = 500, k = 4, and p ranging from 0.0 to 1.0. Nodes are arranged on a circular grid
and the centrality values are plotted around this circle for varying probabilities of rewiring p. For reference, the constant centrality of 1/

√
n is plotted with

a red dashed line for each graph.

confronted with finite sampling noise. Furthermore, the models
with p ∈ {0.001, 0.01} fare even worse, since they have
both small eigengaps and localized eigenvector centralities.
We record the eigengaps of Cy in Table I, where this trend of
an increasing eigengap with p can be readily observed.

VI. DISCUSSION

In this work, we considered the blind centrality selection
problem, where we seek to estimate the eigenvector centrality
of a graph without knowledge of the graph itself. Rather,
we observe a set of graph signals shaped by the network
structure via a generic linear graph filter. Leveraging the
shared eigenspaces of the covariance of these signals and the
network’s adjacency matrix, we propose a simple algorithm
for selecting an estimate of the eigenvector centrality from
the eigendecomposition of the sample covariance matrix. We
characterize the sampling requirements for correctness of this
algorithm in terms of the true eigenvector centrality of the
graph. This is then illustrated through numerical experiments.

This work has many avenues for future research. The blind
inference approach forms a rich paradigm for incorporation
of statistical and signal processing techniques for problems in
network science. This could include looking at robust estima-
tion procedures, algorithms that incorporate prior knowledge
of the graph structure, and applying blind inference methods
to other problems, such as graph matching.
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