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ABSTRACT

Automatic 3D reconstruction of glia morphology is a pow-
erful tool necessary for investigating the role of microglia in
neurological disorders in the central nervous system. Cur-
rent glia skeleton reconstruction techniques fail to capture an
accurate tracing of the processes over time, useful for the
study of the microglia motility and morphology in the brain
during healthy and diseased states. We propose Hieroglyph,
a fully automatic temporal 3D skeleton reconstruction algo-
rithm for glia imaged via 3D multiphoton microscopy. Hiero-
glyph yielded a 21% performance increase compared to state
of the art automatic skeleton reconstruction methods and out-
performs the state of the art in different measures of consis-
tency on datasets of 3D images of microglia. The results from
this method provide a 3D graph and digital reconstruction of
glia useful for a myriad of morphological analyses that could
impact studies in brain immunology and disease.

Index Terms— 3D skeleton, graph theory, reconstruction

1. INTRODUCTION

Microglia are the tissue resident immune cells of the brain
parenchyma and play an active role in brain homeostasis. The
advancements made in the recent studies of microglia have
shifted our understanding of the impact of microglia not only
in development, but also its role in injury, diseases, and ag-
ing [1–4]. Microglia processes (thin ’legs’ that extend from
the cell body) are constantly in motion for surveillance un-
der homeostasis, which is predicted to allow for microglia to
sense and respond rapidly to their environment [5–8]. During
brain injury and disease this continual movement is altered as
microglia retract their processes and take on a more amoeboid
morphology. However, little is known about how the decrease
in microglia processes activity and their motility affect their
ability to perform surveillance functions in the brain.

The complexity of glia morphology makes it difficult to
automate the analysis of glia motility. Existing studies have
manually traced glial images or used heuristic image pro-
cessing methods to measure process length, extension and
retraction over time [9–11]. Researchers have developed au-
tomatic image analysis methods involving the reconstruction

Fig. 1. Hierarchy of a glial cell shown via color from violet to red
(left) and 3D skeleton of the cell (right).

of skeletons of the microglia processes [12, 13]. In [12],
the skeletonization was semi-automatic in that the user went
through many preprocessing tasks in ImageJ before achieving
a 2D skeleton. However, 2D skeletonization loses informa-
tion since the skeletons may overlap in the z direction, as
shown in our experimental results. ProMoIJ achieves an
automatic reconstruction of a 3D skeleton of glia, which is
then used to analyze microglia motility [13]. However, the
skeletonization is not accomplished for the entire cell, rather
each process of the glial cell is manually selected by the
user. Furthermore, the user must define a set of parameters to
heuristically preprocess the image and create a skeleton. This
reconstruction of the processes over time are manually as-
sisted. In this paper, we describe Hieroglyph – a hierarchical
glia graph skeletonization and matching system.

Morphological reconstruction is also an important tech-
nique for the analysis of neuron morphology. Yet even in
NeuroMorpho.org, the largest curated inventory of publicly
accessible 3D neuronal reconstructions, less than 5% of the
reconstructions are traced in a semi-automatic fashion, while
the remainder are manually traced [14]. State-of-the-art meth-
ods for automatic skeletonization include medial axis thin-
ning, which involves iteratively eroding the boundary of the
object until only a one-voxel-thick limb remains. The diffi-
culty in achieving an accurate skeleton still remains, as the
existing methods are dependent on the object shape or the
image intensity variations. Non-smooth and irregular struc-
ture can lead to spurious edges, false branches, discontinu-
ities, loops and other anatomical or structural inaccuracies in
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the skeleton reconstruction. Such methods typically require a
prior segmentation of the object of interest, which makes the
resulting skeleton extremely dependent on the segmentation.
The inaccuracies of the prior information can lead to incon-
sistent and erroneous skeletonization.

In this paper, we propose, Hieroglyph, a hierarchical algo-
rithm for an automatic 3D reconstruction of consistent skele-
tons over time using glial images. First, we provide an au-
tomatic tracing method of a glial cell that achieves an accu-
rate 3D skeleton without loops or discontinuities. Second,
we use the graph representation of the prior skeleton infor-
mation to achieve consistent 3D skeletons of a microglia over
time. Third, our 3D temporal reconstructions are represented
in digital and graph format that can be easily manipulated by
statistical and graphical morphology analysis.

2. METHODS

Hieroglyph produces a consistent temporal digital reconstruc-
tion of a glia skeleton by using prior information from previ-
ous 3D acquisition. The skeleton from a previous acquisition
is evolved by representing the cell as a graph where the glia
process lengths are stored as edge information and each bi-
furcation is stored as a node. In Section 2.1, we describe the
use of the graph representation of the glia to achieve a skele-
ton tracing using a shortest path algorithm. In Section 2.2,
Hieroglyph evolves the previous skeleton to match the image
in the next time frame. Each generated skeleton is employed
to create another consistent 3D skeleton for the following glia
image in the time series.

Fig. 2. Overall methodology. A) The shortest path is take from
the end node to the soma to get the first skeleton. B-C) a skeleton
is morphed to another in an hierarchical manner D) the resulting
skeleton. (B-C) is repeated for the remaining images in the time
series.

2.1. 3D skeleton: shortest path in a graph

Let us consider a set of 3D time series images where the seg-
mentation of the image at time t=1 is represented as an ad-
jacency matrix of an undirected, weighted, rooted tree graph,
Adj(G). The graph consists of vertices and edges, G=(V,E),
where the vertices are initialized at every foreground pixel
in the segmented image and size of V equals the number of
foreground voxel in the segmented image. The edges are
weighted by the spatial Euclidean distance between the vox-
els, e = 1,

√
2, or
√
3 [15, 16]. The adjacency matrix is filled

with the weights of the edges between all the foreground vox-

els. The size of Adj(G) is N × N where N is the number
foreground pixels, or the number of vertices.

From a biological standpoint, we know that our recon-
structed graph is a simple graph which should not contain any
loops or discontinuities from the processes to the soma of the
glia. Thus, to construct our tracing of the cell, we use Di-
jkstra’s algorithm [17] to find the shortest path between the
terminal nodes of the processes to the soma of the glia. The
terminal nodes are extracted from the segmentation of the 3D
glia, and the soma vertex is the center of mass of the 3D soma
segment. The algorithm starts at terminal node and finds the
shortest route within the given adjacency matrix of the graph
to the soma, or root node. The route of the voxels between
the soma and the terminal nodes result in a 3D skeleton trac-
ing of the glia. The benefit of the graph representation is the
rich information provided that includes the hierarchy of the
processes, the bifurcation points, and the endpoints. These
properties are exploited in the creation a consistent skeleton
for the subsequent glia image in a time series.

2.2. Consistent 3D skeletons from temporal information

Acquiring glial skeletons solely from segmentation can result
in inconsistencies between acquisitions in time and is compu-
tationally burdensome. A single glia cell over time extends
and retracts the processes while keeping the same number of
branches that emerge from the soma. Thus the morphology
of a glial cell between subsequent acquisitions is consistent.
We propose a method that uses prior temporal information
combined with intensity information from the current image.
Hieroglyph seeks to drive the skeleton from a previous time
frame to the vessel-like information in the original image of
the current time stack.

The latter information is gathered by using the Hessian-
based vessel enhancement technique to distinguish tubular
structures in an image. This technique utilizes a multiscale
function according to three direction of the orthonormal
eigenvectors, ei(x), where x is the pixel position within
the image domain [19, 20]. These directional eigenvec-
tors are attained by computing the Hessian matrix of a
Gaussian smoothed 3D image and then ordering the eigen-
vectors by the increasing magnitudes of the eigenvalues
|λ1| ≤ |λ2| ≤ |λ3| >> 0. A vessel-enhanced image is
obtained with a low |λ1| value and high |λ2| and |λ3| magni-
tudes. We call the vessel enhanced image Iv .

The initial skeleton from the previous time frame, St−1 is
broken into hierarchies, where the root node is equal to 0 and
the hierarchy increases towards the terminal branches. Every
bifurcation of a process separates the process into another hi-
erarchy H , where H = h1, h2, ...hi is a set of hierarchies,
length i. Every segment belongs to a cluster hi within the set.
The algorithm morphs the skeleton, one segment at a time,
starting from the lowest hierarchy until it achieves the max-
imum response with the vessel enhanced image. This is re-
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Fig. 3. Segmentation results of 3D microglia images.

peated for all segments of the skeleton in H . The final skele-
ton at time t is given by

St = max

i∑
h=1

St=1(h
∗)× Iv (1)

Iv =

{
x x > 0,

−xavg x ≤ 0.
(2)

where h∗ is the morphed segment from the previous skeleton
and x is the voxel value in Iv . The morphing of the segments
are changes in the 26 cardinal directions. The morphed seg-
ments are bounded by the following conditions: 1) The first
hierarchy must start at the root node. 2) Segments may not
overlap with each other (no loops). 3) The bifurcation points
are regularized so they do not drastically move.

The zero intensity values in Iv are set to the negative value
of the average pixel intensity to penalize morphing beyond
vessels in the Hessian map. Once a new segment is created,
the tree is rerouted resulting in an updated graph representa-
tion of the skeleton so that the routes and bifurcation nodes
are updated.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Imaging and fluorescence technique

The dataset consists of 3D images of microglia from living
mice using multiphoton microscopy. To label microglia in the
mouse brain, we used mice with an inducible Cre recombi-
nase under the control of the CX3CR1 promoter crossed to the
Ai6 fluorescent reporter mouse (Jackson Laboratories, Bar

Harbor, ME) to generate CX3CR1creERT2/+ X Ai6ZsGreen
[21, 22]. At post-natal day (P23) 23, mice were given 10uL/g
body weight of a 20mg/mL Tamoxifen (Sigma) solution in
corn oil to induce recombination of the floxed stop codon
leading to ZsGreen expression in microglia. All procedures
adhered to guidelines of the Institutional Animal Care and
Use Committee (ACUC) at the University of Virginia. Mi-
croglia of adult mice (7-10 weeks old) were imaged using
a Leica TCS SP8 multiphoton microscopy system equipped
with a Coherent Chameleon Ti:Sapphire laser and a 25x 0.95
NA immersion lens. ZsGreen was excited with a wavelength
of 880 nm.

3.2. Dataset

The 3D movies of microglia were imaged over 13 minutes
with z-stacks taken at one minute intervals, containing single
or multiple microglia per field of view. Some of the images
were cropped from a larger field of view containing about 10
different cells and two images were imaged from a zoomed
in view of one individual cell. The images ranged from a
horizontal pixel width of .01 µm and a vertical pixel width
of .01 µm to horizontal pixel width of .2 µm and a vertical
pixel width of .2 µm. In the 3D images, there is variation
in the intensity contrast throughout the cell, non-structural
noise, and fluorescence bleeding through z-stack due to the
lengthy imaging technique which makes it difficult to visu-
alize and process. The images were preprocessed using his-
togram equalization, which increased the intensity throughout
the cell but further increased noise in the background.

In our experiments, the segmentation at time t = 1 was
attained using the coupled tubularity flow field and blob flow



field (Tuff-Bff) algorithm [23].

3.3. Performance Evaluation

We use a dataset consisting of 3D images of microglia over a
time of 13 minutes, as described in Section 3.2 . We compare
our reconstruction of temporal skeleton results with an auto-
matic skeleton reconstruction method called Skel2Graph3D,
which requires a 3D segmentation of the original image at
each time and was used to reconstruct osteocyte cells [18].
This was done as a comparison, because osteocytes are sim-
ilar in morphology to microglia. Their 3D skeletonization
function is based on a medial axis thinning algorithm [24,25],
but the Skel2Graph3D algorithm iteratively prunes the skele-
ton and converts it into graph representation. The ground
truth was attained using the Simple Neurite Tracer in ImageJ,
which is a semi-automatic tracing software [26]. We compare
the accuracy of the Hieroglyph results and the state-of-the-
art comparisons with the ground truth. We note that even the
ground truth may have user error due to background noise and
intensity inhomogeneity throughout the object of interest.

From Figure 3, Hieroglyph has a consistent structure over
time. The algorithm maintains consistency by its working
principle. But the spatiotemporal localization of the consis-
tent skeletons are obtained within a margin of error. Our tem-
poral results are based on the result of the prior image but
we can see that the skeleton over time changes as the cell
changes. We use a hierarchical weighting method to com-
pare the accuracy scores. The branches in each hierarchy are
counted and the true and false count is attained by compar-
ing with the ground truth and the accuracy TP

TP+FP+FN is at-
tained for each hierarchy. The final accuracy is found by giv-
ing a higher weight to the hierarchies closest to the soma, or
the primary branches. The weight is established with the fac-
torial of the maximum number of hierarchies times the accu-
racy at each hierarchy given by Atotal = Hgt

max!
∑i

n=0AHn

where Hgt is the number of hierarchies in the ground truth
and i is the total number of hierarchies in the test image. This
final accuracy for Hieroglyph for the first time stack is 55%
for Hieroglyph, and 34% for Skel2Graph. Since the accuracy
of the skeleton over time is dependent on the accuracy of the
first skeleton, we consider additional measurements for com-
parison.

We measure the number of bifurcation points and number
of terminal nodes as well as the distance between the results
and the ground truth, as shown in Figure 4. The number of
bifurcation points and terminal points in Hieroglyph results
remain consistent with the number of bifurcation points in the
skeletons from the ground truth. The Skel2Graph has a sig-
nificantly greater number of bifurcation points and endpoints
due to the loops. The distance between the bifurcation points
and endpoints of the ground truth’s and that of Hieroglyph
and Skel2Graph are calculated. The measurements show how
structurally similar the resulting skeletons are compared to

Fig. 4. Structural measurements compared to the ground truth.

the ground truth skeleton. Figure 5 shows that a 3D skeleton
rotated to make processes extending in the z-direction more
visible. Some processes described may not be visible or be
accurately distinguished in a 2D image. This proves the ne-
cessity of a 3D skeleton for morphological and motility anal-
ysis.

Fig. 5. A skeletonization of a glial cell in one orientation (left) and
a 3D rotation of the same (right). The rotated view reveal branches
not shown in the original view motivating 3D analysis.

4. CONCLUSION

In this paper, we proposed an automatic temporal 3D skele-
tonization method for glia images. We are able to use the a
priori information from preceding skeletons to derive subse-
quent ones. The method is hierarchical since the skeletoniza-
tion and graph matching are performed in segments starting
at the soma and extending to the endpoints of the processes.
Hieroglyph attained consistent skeleton structures over time.
While our method performed better than the state of the art,
it could be further improved to account for the addition and
deletion of glia processes over time. Hieroglyph does provide
rich information for the analysis of glia motility in homeosta-
sis and also in impaired states.
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S. Kohsaka, R. M. Bryan, and D. Attwell, “Microglial rami-
fication, surveillance, and interleukin-1β release are regulated
by the two-pore domain k+ channel thik-1,” Neuron, 2017.

[9] A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Resting
microglial cells are highly dynamic surveillants of brain
parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–
1318, 2005.

[10] L.-J. Wu and M. Zhuo, “Resting microglial motility is inde-
pendent of synaptic plasticity in mammalian brain,” Journal of
neurophysiology, vol. 99, no. 4, pp. 2026–2032, 2008.

[11] D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo, S. Jung,
D. R. Littman, M. L. Dustin, and W.-B. Gan, “Atp mediates
rapid microglial response to local brain injury in vivo,” Nature
Neuroscience, vol. 8, no. 6, p. 752, 2005.

[12] K. Young and H. Morrison, “Quantifying microglia morphol-
ogy from photomicrographs of immunohistochemistry pre-
pared tissue using imagej,” Journal of visualized experiments:
JoVE, no. 136, 2018.

[13] I. Paris, J. C. Savage, L. Escobar, O. Abiega, S. Gagnon, C.-
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