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Abstract—Power consumption is one of the major issues in
massive MIMO (multiple input multiple output) systems, causing
increased long-term operational cost and overheating issues. In
this paper, we consider per-antenna power allocation with a
given finite set of power levels towards maximizing the long-
term energy efficiency of the multi-user systems, while satisfying
the QoS (quality of service) constraints at the end users in terms
of required SINRs (signal-to-interference-plus-noise ratio), which
depends on channel information. Assuming channel states to vary
as a Markov process, the constraint problem is modeled as an
unconstraint problem, followed by the power allocation based
on Q-learning algorithm. Simulation results are presented to
demonstrate the successful minimization of power consumption
while achieving the SINR threshold at users.

I. INTRODUCTION

Massive MIMO systems are the central part of 5G and
next generation wireless networks. Due to large number of
antennas in the array, the increased power consumption i.e.
reduced energy efficiency (EE), causes increased operational
cost and overheating problems which leads to reduced lifespan
of the array. The power allocation problem has been widely
investigated in literature via different schemes such as antenna
selection schemes [1]–[11], machine/deep learning (ML/DL)
schemes [12]–[14], convex approximation based [15], [16],
etc. In massive MIMO systems, transmit correlation with mu-
tual coupling is studied in [17], while with hybrid precoding,
power consumption cost is minimized in [18]. The antenna
selection methods require NP-hard non-convex problem to be
solved, and power allocation step is still needed, which reduces
its preference of usage in practice. The drawback of ML/DL
approaches is that they require the huge data for training and
the optimal solution is not guaranteed. Convex-approximation
based approaches approximate the non-convex EE expressions
into convex ones and obtain sub-optimal power allocation.
Therefore, a unified power allocation and antenna selection
approach is essential in improving the energy efficiency.

In this paper, we present the discrete power allocation
scheme using reinforcement Q-learning for downlink multi-
user massive MIMO system towards that maximization of the
long-term energy efficiency subject to the total power con-
straint, per-antenna power constraint, and the quality of service
(QoS) constraints at the end users in terms of SINR. Discrete
power allocation can also be considered as a generalization
of antenna selection schemes, which has only two power
levels. Assuming the channel changes as a Markov process in
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the time-slotted model with unknown transition probabilities,
the long term energy efficiency maximization problem is
presented subjected to total power constraint and per-antenna
power constraint. This constraint problem is formulated as
an unconstraint problem and Q-learning is used to obtain
the solution. Simulation results demonstrate that Q-learning
algorithm converges and minimizes the power consumption,
while satisfying the QoS constraint at users.

II. SYSTEM MODEL

Consider a downlink multi-user system, where a base station
(BS) is equipped with a large number of antennas (M ).
The BS serves simultaneously a set of K users indexed by
K = {1, . . . ,K}. The transmitted signal from the BS can be
expressed as

x = P1/2
∑
k∈K

vksk = P1/2Vs, (1)

where s = [s1, . . . , sK ]
T is K × 1 symbol vector to be trans-

mitted such that for each kth user, E {sk} = 0, E
{
sks
∗
j

}
=

1
K δkj and E

{
ss†
}

= 1
K I with δkj being the Kronecker delta

having value 1 when k = j and 0 otherwise; the matrix
V = [v1, . . . ,vK ] is an M × K orthonormal precoder such
that V†V = IK ; the quantity P = D (p1, . . . , pM ) is an
M ×M diagonal power allocation matrix with non-negative
entries. Using the above, the per-antenna and the total power
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constraints at the BS can be obtained as

Tper(pm) =
[
E
{
xxH

}]
m,m

(2)

=
pm
K

[
VVH

]
m,m
≤ P̄m,∀m (3)

Ttot(P) = E ‖x‖2 =
1

K
tr(PVVH) ≤ P̄T , (4)

where P̄m and P̄T are the mth antenna and the total power
constraints. For simplicity, we assume equal power constraint
per antenna i.e. P̄m = P̄per,∀m = 1, . . . ,M . Towards discrete
power control, let the set P =

{
p(1), . . . , p(|P|)} denote all the

power levels for each antenna i.e. pm ∈ P,∀m and P ∈ PM
such that 0 = p(1) ≤ · · · ≤ p(|P|) = P̄per, where P̄per also
denotes the maximum power transmitted by a single antenna.
Let hk denote the channel state information (CSI) from BS
at origin to the kth user. Through this channel, the received
signal at the kth user can be written as

yk = hHk x + nk, (5)

= hHk P1/2Vs + nk, (6)

= hHk P1/2vksk + hHk P1/2V−ks−k + nk, (7)

where nk ∼ CN (0, σ2) is the circularly symmetric complex
Gaussian noise; V−k = [v1, . . . ,vk−1,vk+1, . . . ,vK ] and
s−k = [s1, . . . , sk−1, sk+1, . . . , sK ]

T . At the kthuser, the
resultant SINR can be given as

ξk(P|H) =

∣∣hHk P1/2vk
∣∣2 1

K

tr
(
hHk P1/2V−kVH

−kP
1/2hk

)
1
K + σ2

, (8)

which depends on CSI H = [h1, . . . ,hK ]. Thus, stacking all
the received signals gives y = HHP1/2Vs + n. If the CSI
variations follow a Markov process, the resultant SINR process
will also be Markov. In other words, the power in the elements
of P needs to be adjusted according to CSI to satisfy QoS
constraints at the kth user. Further, the achievable sum-rate is
given as

R(P|H) =
∑
k∈K

log2 (1 + ξk(P|H)) . (9)

The resultant energy efficiency can be defined as the ratio of
the sum rate over the total power incurred in the transmission
as

η(P|H) =
R(P|H)

Ttot(P)
, (10)

where the circuit power is ignored as it is a constant. In the
following, we simplify the sum rate for two popular precoding
schemes based on ZF (zero-forcing) and MRT (maximal ratio
transmission).

A. Zero-forcing
For zero forcing transmission, to find the precoder satisfying

hHk P1/2vj = 0,∀k 6= j, we normalize the columns of V′ =

P1/2H
(
HHPH

)−1
to be unit norm columns. The above

precoder results in the received signal yk = hHk P1/2vksk+nk,
resulting into the sum rate

RZF (P|H) =
∑
k∈K

log2

(
1 +

∣∣hHk P1/2vk
∣∣2

σ2K

)
. (11)

B. Maximal ratio transmission

For MRT based precoding, the precoder is set as vk =
P1/2hk√
hHk Phk

. Note that MRT precoding is used for low complex-

ity operations, thus, the precoding vectors are not orthonor-
malized. The sum rate can be simplified as

RMRT (P|H) =
∑
k∈K

log2

1 +
hHk Phk∑

j 6=k
hHk PhjhHj Phk

hHj Phj
+Kσ2

 .

C. Problem formulation

Our goal is to maximize the energy efficiency of transmis-
sions via discrete power allocations. However, note that in
each time slot, finding discrete power levels for each antenna
in the massive MIMO system is an NP-hard search problem
and a non-convex problem. Moreover, the estimation of CSI
in massive MIMO consumes resources. Therefore, for faster
operations, utilizing the CSI correlation via Markov process,
reinforcement learning is utilized to obtain these power levels.
Thus, assuming the channel information varies as a finite
state Markov chain, our objective to find the discrete power
allocation to maximize the long term efficiency subject to the
QoS constraints satisfied for each user, can be expressed as

max
P(t)

∞∑
τ=t

γτ−tη(P(t)|H(t)) (12)

subject to Ttot(P(t),H(t)) ≤ P̄T ,P(t) ∈ PM ,
ξk(P(t)|H(t)) ≥ ξ̄k,∀k ∈ K, (13)

where ξ̄k represents the SINR requirements for QoS at kth

user, and (t) denotes their time dependent behavior. Note
that the total power is also considered here a function of H.
It is due to the fact that the precoders are computed using
channel information H. This makes the problem non-convex
and difficult to solve.

III. REINFORCEMENT LEARNING

A. Dynamics of EEPA

We consider time varying channel across time slots. Within
a time slot, the channel remains constant. The CSI in a cellular
network varies if the user is walking, running or in a vehicle. In
literature [19], [20], the time varying channel is modeled using
a finite state Markov chain, where the ergodic channel in each
time slot takes value in one of the Markov states. Let H ={
H(1), . . . ,H(|H|)} denote the states in the Markov chain.

The transition probability between channel states is fixed and
unknown1.

B. States, Actions and Rewards

For the above system dynamics, let s(t) be the state at time
t, which is given as the CSI of the same slot as s(t) = H(t) ∈
H. An action in the system corresponds to discrete power

1In some literature, first order auto-regressive process is used to model the
channel variations due to the mobility, where the resulting channel model
provides continuous state Markov process, rather than finite state chain.
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control i.e. a(t) = P(t) ∈ PM . The action chosen is evaluated
using the reward which is defined as the energy efficiency i.e.

r(s(t), a(t)) =
1(∑

k∈K
∣∣ξk(P(t)|H(t))− ξ̄k

∣∣)Ttot(P(t),H(t))
,

(14)
where |·| ensures that the resulting SINR does not achieve
values far from ξ̄k.

Here, the learner seeks the optimum action a(t) based on
the previous observation H(t− 1) = s(t− 1) by interactively
making sequential decisions and observing the corresponding
costs. In this way, the agent learns the best action policy
against the random Markov chain transitions. Let the policy
function be π : H → PM , which maps a state to an action.
Under policy π(·), the power allocation is carried out via
action a(t + 1) = π(s(t)), dictating the allocation policy at
time t+1. For the reward rπ (s(t)) = r (s(t), π (s(t))), power
consumption performance is measured through the state value
function as

Vπ(s(t)) =

∞∑
τ=t

γτ−T rπ(s(t)), (15)

which is the total average cost incurred over an infinite time
horizon. The objective of this paper is to find the optimal
policy π∗ such that the average cost of any state is maximized

π∗ = arg max
π

Vπ(S).

C. Action set reduction

For the BS equipped with M antennas, there are huge
number of |P|M possible actions. However, not all actions are
valid actions. Valid actions are those actions which satisfy the
power constraint in (4). The total power Ttot(P,H) depends
on the normalized precoder V. To simplify the constraint in
order to reduce the valid action set, we approximate the total
power constraint as

1

K
tr(PVVH) ≈ 1

K
tr
(
PE

{
VRV

H
R

})
=

1

M
tr (P) ≤ P̄T ,

(16)
where VR is any random orthonormal precoder; the equality
on the right follows from [21, Lem. 1]. Further, at least K
actions should be non-zero i.e. pik > 0,∀k ∈ K that excludes∑K−1
k=1

(
M
k

)
actions in PM . To get the minimum transmission

power constraint to reduce huge number of possibilities, we
approximate the QoS constraint as

ξk(P|H) =

∣∣hHk P1/2vk
∣∣2

tr
(
hHk P1/2V−kVH

−kP
1/2hk

)
+Kσ2

,

(a)
≈

tr
(
Pvkv

H
k

)
tr
(
PV−kVH

−k
)

+Kσ2
,

(b)
≈

tr (P) 1
M

tr (P) K−1
M +Kσ2

=
1

(K − 1) +KM σ2

tr(P)

,

where (a) follows from the massive MIMO channel hard-
ening effect hkh

H
k → IM ; and (b) follows similarly from

(16). For ZF precoding, we have 1

KM σ2

tr(P)

≥ ξ̄k =⇒

tr (P) ≥ KMσ2ξ̄k. Let P̄min denote this lower bound on

Algorithm 1 Q-learning algorithm.
Input: state s(0) randomly and Q0(s, a) = 0∀s, a

1: for t = 1, 2, . . ., do
2: For given profile s(t− 1), take action a(t) as

a(t) =

{
arg maxaQt−1(s(t), a) w.p. 1− ε
random a ∈ P̄ w.p. ε

3: Observe s(t) and compute r(s(t), a(t))
4: Update

Qt(s(t), a(t)) = (1− βt)Qt−1(s(t), a(t)) (21)

+ βt

[
r(s(t), a(t)) + γmax

a
Qt−1(s(t), a)

]
.

5: end for

the transmission power. The new action space can now be
expressed as

P̄M =


 p1

...
pM

 :
P̄min ≤ tr(P(t)) ≤MP̄T ,

pik > 0,∀k ∈ K

 , (17)

where P̄M ⊂ PM . Note that the above approximations are
to reduce the possible actions, and thus, it does not affect the
optimal power allocations.

D. Bellman’s Equations and Q-learning

Let Pr(s, s′|a) be the probability of transition from the
current state s to the next state s′ under action a. Bellman
equations express the state value functions in a recursive
fashion as

Vπ(s) =rπ(s) + γ
∑
s′∈ΞK

Pr(s, s′|π(s))Vπ(s′),∀s (18)

Qπ(s, a) =rπ(s) + γ
∑
s′∈ΞK

Pr(s, s′|a)Vπ(s′),∀s, a. (19)

The above equations can be used to obtain the optimal policy
by minimizing Q-function as

π∗ = arg max
a

Qπ(s, a),∀s, (20)

where under π∗, Vπ∗(s) = maxaQπ(s, a) and it gives the
solution

Qπ(s, a) = rπ(s) + γ
∑
s′∈ΞK

Pr(s, s′|a) max
a

Qπ(s, a),

=
∑
s′∈ΞK

Pr(s, s′|a)

[
r(s, a) + γmax

a
Qπ(s, a)

]
.

The above solution demands an iterative solution for Q-
function, which is given in Algorithm 1.

In a time slot t, after observing the state s(t), the ε-greedy
action a(t) is taken and instantaneous cost r(s(t), a(t)) +
γmaxaQ(s(t), a) is incurred. Under mean squared error
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Fig. 2. Progress of average rewards, average SINR at users, and average
transmit power at BS for different iterations for M = 16 and |P| = 3 levels
with per-antenna constraint, total transmit power constraint and user-SINR
constraint of 30 dB, 28 dB and 20 dB (green lines) respectively.

(MSE) criteria, the MSE expression for the estimated Q-
function values can be written as

ε(s(t), a(t)) =

[
r(s(t), a(t))+

γmax
a

Q(s(t), a)−Q(s(t), a(t))

]2

.

Minimizing the above error expression for Q-values using
gradient descent method yields the following

Qt(s(t), a(t)) = (1− βt)Qt−1(s(t), a(t)) (22)

+ βt

[
r(s(t), a(t)) + γmax

a
Qt−1(s(t), a)

]
,

where Qt is estimated Q-values at time t. It can be noted
that the convergence of the algorithm depends on the values
of βt. Choosing βt such that

∑
t βt < ∞ guarantees the

convergence. These cases of convergence and several other
related algorithms has been thoroughly studied in [22].

Note that the cardinality of action space is increased ex-
ponentially for increase in the number of antennas and the
number of power levels. Therefore, to make it scalable, deep
reinforcement learning based methods will be investigated as
a part of future work.

IV. SIMULATION RESULTS

The following values are assumed for Q-learning parame-
ters: M = 8, 16 antennas; K = 4 downlink users |P| = 3, 5;
1000 number of episodes for Q-learning with each episode
having 2000 iterations; exploration decay factor per episode
0.1; transmit power constraint 28 dB; per-antenna maximum
power constraint 30 dB; QoS constraint for SINR 20 dB; num-
ber of channel states |H| = 128. Zero-forcing based precoding
is assumed since M is not high enough and the present Q-
learning algorithm is computationally time consuming.
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Fig. 3. Progress of average rewards, average SINR at users, and average
transmit power at BS for different iterations for M = 8 and |P| = 5 levels
with per-antenna constraint, total transmit power constraint and user-SINR
constraint of 30 dB, 28 dB and 20 dB respectively. .

Figure 2 shows the plots for the progresses of average re-
ward over iterations, average SINR across users and iterations,
and average transmit power across iterations, respectively for
M = 16 antennas at BS and |P| = 3 power levels for each
antenna. The action set is reduced from 316 to around 12000
entries. It can be seen that the Q-learning learns the optimum
power allocation in terms of reward, and the learned actions
provide SINR greater than the QoS constraint for each user,
keeping the transmit power within the constraint. Due to larger
size of Q-matrix, it takes around 750 iterations to learn the
optimum converging action. Similar trends can be seen for the
case, when five power levels are assumed as shown in Figure
3. It shows the successful application of Q-learning in quickly
finding the optimum power allocation among such a large set
of possibilities 316 ≈ 4× 107.

V. CONCLUSION

In this paper, we have presented reinforcement learning
solution for discrete power allocation, which is a combina-
torial optimization problem and is NP-hard. By leveraging the
correlation between channels for slowing moving scenarios in
wireless cellular networks, we model the channel variations as
a finite state Markov chain and presented the RL formulation
where the constraints are transmit power constraint and the
Quality of service guarantee in terms of received SINR at each
user with an objective of maximizing the energy efficiency
at the transmitter. Typically, to handle the constraints in Q-
learning, primal-dual approaches are used. However, we model
the reward function to incorporate these constraints, without
needing any additional dual variables in design. Simulations
shows the successful application of the power allocation while
satisfying these constraints.

The future work is to make the algorithm scalable for larger
number of power levels and larger number of antennas.
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