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Abstract—We consider the problem of locating the source of
a network cascade, given a noisy time-series of network data.
Initially, the cascade starts with one unknown, affected vertex
and spreads deterministically at each time step. The goal is to
find an adaptive procedure that outputs an estimate for the source
as fast as possible, subject to a bound on the estimation error.
For a general class of graphs, we describe a family of matrix
sequential probability ratio tests (MSPRTs) that are first-order
asymptotically optimal up to a constant factor as the estimation
error tends to zero. We apply our results to lattices and regular
trees, and show that MSPRTs are asymptotically optimal for
regular trees. We support our theoretical results with simulations.

Index Terms—Network cascade, sequential estimation, asymp-
totic optimality, hypothesis testing

I. INTRODUCTION

Network cascades occur when the behavior of an individual
or a small group of individuals diffuses rapidly through a
network. Examples include the spread of epidemics in physical
or geographical networks [1]–[3], fake news in social networks
[4]–[6], and the propagation of viruses in computer networks
[7], [8]. In each of these cases, the network cascade compro-
mises the functionality of the network and it is of paramount
importance to locate the source of the cascade as fast as
possible.

This problem poses several interesting challenges. On one
hand, network cascades are typically not directly observable
even if one can monitor the network in real time. In the
example of an epidemic spreading through a network, an
individual’s sickness could be caused by the epidemic or by
exogenous factors (e.g., allergies). As the network is monitored
over time, one may be able to distinguish between these
possibilities at the cost of allowing the cascade to propagate
further. Thus there is a fundamental tradeoff between the
accuracy of the estimated cascade source and the amount
of vertices affected by the cascade. How can we design
algorithms that achieve the best possible tradeoff?

In this paper, we take the first steps towards formalizing
and solving the challenges addressed above. We begin by
reviewing a model for network cascades with real-time noisy
observations. We then study the problem of minimizing the
expected run time of a sequential estimation algorithm for the
cascade source subject to the estimation error being at most α,
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for some α ∈ (0, 1). We show that simple algorithms based on
cumulative log likelihood ratios are first-order asymptotically
optimal up to constant factors as we send the estimation error
to zero for a large class of networks. In certain cases we can
say more: the estimator we construct is first-order optimal in
regular trees.

A. A model of network cascades with noisy observations

Let G be a graph with vertex set V and let time be indexed
by an integer t ≥ 0. We assume that the cascade starts
from some vertex v such that at t = 0, v is the unique
vertex affected. For any t ≥ 1, a vertex u is affected if
and only if u ∈ Nv(t), where Nv(t) denotes the set of all
vertices within distance t from v in the graph, with respect
to the shortest path distance, denoted by d(·, ·). The cascade
is not directly observable, but the system instead monitors
public states {yu(t)}u∈V,t≥0. Conditioned on the source being
v, the public states are independent over all u and t, with
distributions given by

yu(t) ∼

{
Q0 u /∈ Nv(t);
Q1 u ∈ Nv(t),

where Q0, Q1 are two distinct mutually absolutely continuous
probability measures over R. We can think of yu(t) ∼ Q0

as typical behavior and yu(t) ∼ Q1 as anomalous behavior
caused by the cascade. This is a standard model which
has been previously used, for instance, in studying quickest
detection problems on networks [9]–[13].

B. Formulation as a sequential hypothesis testing problem

Let (Ω,F ,P) be a common probability space for all random
objects. For each vertex u, let Hu be the hypothesis that
u is the cascade source and let Pu := P(· | Hu) be the
associated measure. Any sequential estimator for the cascade
source can be represented by a pair (D,T ), where T is
a (data dependent) stopping time and D = {D(t)}∞t=0 is
a sequence of estimators such that D(t) ∈ V depends on
the observations y(0), . . . , y(t). The output of the sequential
estimation procedure is D(T ). Given a positive integer R
(which we will call the confidence radius), we say that the
sequential estimator (D,T ) succeeds if d(D(T ), v) ≤ R;
else it fails. We can then formalize the tradeoff between
estimator accuracy and number of infections as follows. Given
α ∈ (0, 1), we want to find the estimator which minimizes
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the worst-case expected runtime maxv∈V Ev[T ], subject to the
probability of failure being at most α.

A typical assumption in source estimation problems is that
the graph G has infinitely many vertices, is connected, and is
locally finite1 (see [14]). However, the infinite graph setting
corresponds to testing infinitely many hypotheses, and it is
unclear whether there exists a sequential estimator with small
error that will terminate in finite time. To remedy this situation,
we will consider the behavior of sequential tests on finite
restrictions of the graph. Formally, we fix a sequence {Vn}n
where Vn ⊂ V and |Vn| = n. In our analysis we will specify
n and assume that D(t) ∈ Vn; that is, the true source is an
element of Vn. We will assume that Vn is a neighborhood of
a given vertex v0 without loss of generality as the problem is
only harder when all vertices are close to each other.

We may now put these ideas together more formally to
define a class of sequential estimators ∆G(Vn, R, α) for which
the probability of failure is at most α. Equations (1) and (2)
below present two natural formulations for this set.

∆′G := {(D,T ) : ∀v ∈ Vn,Pv(d(D(T ), v) > R) ≤ α} (1)

∆G :=

(D,T ) : max
u,v∈Vn:
d(u,v)>R

Pv(D(T ) = u) ≤ α

n

 . (2)

Formulation (1) directly bounds the probability of failure,
while formulation (2) provides finer information on the distri-
bution of the estimator outside of the confidence radius, and
is thus more mathematically convenient. It is easy to see that
∆G ⊂ ∆′G. For any (D,T ) ∈ ∆G and for any v ∈ Vn,

Pv(d(D(T ), v) > R) =
∑

u∈Vn\Nv(R)

Pv(D(T ) = u) ≤ α. (3)

In other words, (3) shows that Formulation (2) is stronger
than Formulation (1). We believe that in certain cases, the two
formulations are equivalent if R is sufficiently large and G
satisfies some symmetry properties (e.g., vertex-transitivity).
While we use (2) in this paper, we will study the relationship
between (1) and (2) in future work.

Putting everything together, our goal will be to characterize

T ∗(Vn, Rn, α) := min
(D,T )∈∆G(Vn,Rn,α)

max
v∈Vn

Ev [T ] . (4)

For a fixed sequential estimator (D,T ), the inner maximum
is the worst-case expected runtime of the estimator over all
possible sources. The outer minimum is over all (D,T ) which
meet the requirements of ∆G(Vn, Rn, α). In general sequential
multi-hypothesis testing problems, characterizing the optimal
test is intractable. We therefore study the asymptotics of (4)
first as n→∞ then as α→ 0. We consider confidence radii
Rn that may be fixed with respect to all other parameters, or
may grow with n.

1A graph is locally finite if the degree of each vertex is finite.

C. Related work

Although we are, to the best of our knowledge, the first to
study this variant of the cascade source estimation problem,
our work has close connections to several bodies of work.

Shah and Zaman gave the first systematic study of esti-
mating the source of a network cascade [14], [15], which
spawned several follow-up works, see for example [16]–[21].
In their setup, they assume that the network cascade evolves
according to a probabilistic model, and that at some future time
a snapshot of the cascade is perfectly observed. The problems
we address surrounding network cascades are complementary
to this approach, and are more appropriate for the setting
where one may monitor the state of the network in real time.

Our work falls under the growing body of literature on
sequential detection and estimation in networks. Recently Zou,
Veeravalli, Li, Towsley and Rovatsos studied the problem of
quickest detection of a network cascade [9]–[12], which is
similar in nature to our work. The objective of their work
is to detect with minimum delay when a cascade has started
propagating in a network. They derive tests based on cumula-
tive log-likelihood ratios that are shown to be asymptotically
optimal when the growth rate of the cascade becomes very
small. The detection problem with other cascade models were
studied by Zhang, Yao, Xie and Qiu [13]. Our work, on the
other hand, studies problems of estimation. We assume simple
cascade dynamics for ease of exposition, and extensions to
other cascade dynamics is an important future direction.

II. ASYMPTOTIC BEHAVIOR OF OPTIMAL TESTS

At the core of the analysis is a characterization of the rate
of convergence of the log-likelihood ratios. It is well known
that tests based on log-likelihood ratios are optimal for distin-
guishing between two hypotheses [22] and are asymptotically
optimal as the Type I error tends to 0 in the general multi-
hypothesis testing problem [23]–[25]. Thus, to motivate our
results, we begin by studying some basic properties of the
log-likelihood ratios that arise from our problem structure.

For a positive integer s, define the shorthand y(s) :=
{yu(s)}u∈V to be the collection of public states at time s.
We are interested in the cumulative log-likelihood ratio

Zvu(t) :=

t∑
s=0

log
dPv
dPu

(y(s)).

From the cascade dynamics defined in Section I-A, we can
write the log-likelihood ratio log dPv

dPu (y(s)) as

log

∏
w∈Nv(s)

dQ1(yw(s)) ·
∏

w/∈Nv(s)

dQ0(yw(s))∏
w∈Nu(s)

dQ1(yw(s)) ·
∏

w/∈Nu(s)

dQ0(yw(s))

=
∑

w∈Nv(s)\Nu(s)

log
dQ1

dQ0
(yw(s)) +

∑
w∈Nu(s)\Nv(s)

log
dQ0

dQ1
(yw(s)).

(5)



Under Pv , all observed variables yw(s) are independent, with
distributions given by

yw(s) ∼

{
Q0 w ∈ Nu(s) \ Nv(s);
Q1 w ∈ Nv(s) \ Nu(s).

(6)

To simplify the analysis we assume that for each u, v ∈ V
and t ≥ 0, Nv(t) \Nu(t) is nonempty, and |Nv(t) \Nu(t)| =
|Nu(t) \ Nv(t)|. This assumption holds for a large class of
graphs (e.g., vertex-transitive graphs such as regular trees and
lattices). For u, v ∈ V define

fvu(t) :=

t∑
s=0

|Nv(s) \ Nu(s)|.

Equations (5) and (6) imply Ev [Zvu(t)] = D̃(Q0, Q1)fvu(t),
where D̃(Q0, Q1) is the symmetrized Kullback-Leibler diver-
gence between Q0 and Q1, given explicitly by

D̃(Q0, Q1) :=

∫
log

(
dQ1

dQ0

)
dQ1 +

∫
log

(
dQ0

dQ1

)
dQ0.

Before stating our first main result on lower bounds for T ∗,
we will introduce some useful asymptotic notation. For two
functions g(n, α) and h(n, α), we write, whenever it is well-
defined,

g(n, α) &n,α h(n, α) ⇐⇒ lim inf
α→0

lim inf
n→∞

g(n, α)

h(n, α)
≥ 1.

The orderwise comparison operator .n,α is analogously de-
fined, but with limsups instead of liminfs. We also write
g(n, α) ≈n,α h(n, α) if and only if g(n, α) &n,α h(n, α)
and g(n, α) .n,α h(n, α).

Theorem 1. Let Fvu be the inverse function of fvu and
suppose log |Nv(Rn)| � log n. Then

T ∗(Vn, Rn, α) &n,α max
u,v∈Vn:d(u,v)>2Rn

Fvu

(
log n/α

D̃(Q0, Q1)

)
.

Proof of Theorem 1. We briefly discuss the high-level proof
strategy. The term on the right hand side involving Fvu is the
time it takes for Ev[Zvu(t)] to cross the threshold log n/α,
since Fvu is the inverse function of the log-likelihood growth
rate fvu. Using a change of measure argument, we show
Ev[Zvu(t)] must cross this threshold to achieve the guarantees
of ∆G(Vn, Rn, α).

To show this formally, fix any (D,T ) ∈ ∆G(Vn, Rn, α) as
well as a vertex v ∈ Vn. Define the event Ωv,L := {D(T ) ∈
Nv(Rn)} ∩ {T ≤ L}, where L is a positive integer to be
chosen later. By a change of measure,

Pu(D(T ) ∈ Nv(Rn)) = Ev
[
1{D(T )∈Nv(Rn)}e

−Zvu(T )
]
.

For any positive integer B,

Pu(D(T ) ∈ Nv(Rn)) ≥ Ev
[
1Ωv,L∩{Zvu(T )<B}e

−Zvu(T )
]

≥ e−BPv
(

Ωv,L ∩
{

max
t≤L

Zvu(t) < B

})
≥ e−B

(
Pv(Ωv,L)− Pv

(
max
t≤L

Zvu(t) ≥ B
))

Noting that Pv(Ωv,L) ≥ Pv(D(T ) ∈ Nv(Rn)) − Pv(T > L)
and substituting this in place of Pv(Ωv,L) gives

Pv(T > L) ≥ Pv(D(T ) ∈ Nv(Rn))

− eBPu(D(T ) ∈ Nv(Rn))− Pv
(

max
t≤L

Zvu(t) ≥ B
)

From (2), Pv(D(T ) ∈ Nv(Rn)) ≥ 1 − α and
Pu (D(T ) ∈ Nv(Rn)) ≤ α|Nv(Rn)|

n for u ∈ Vn \ Nv(2Rn).
It follows that

Pv(T > L) ≥ 1− α

− eB · α|Nv(Rn)|
n

− Pv
(

max
t≤L

Zvu(t) ≥ B
)
. (7)

Let ε > 0, and set

L := Fvu

(
1− ε

D̃(Q0, Q1) + ε
log

n

α|Nv(Rn)|

)
B := (1− ε) log

n

α|Nv(Rn)|
.

Then by the strong law of large numbers (see Lemma 2.1
in [23]), Pv (maxt≤L Zvu(t) ≥ B) goes to 0 as n → ∞.
Plugging in these values to (7) gives the following lower bound
on Pv(T > L):

1− α−
(
α|Nv(Rn)|

n

)ε
− Pv

(
max
t≤L

Zvu(t) ≥ B
)
.

Take n→∞ and then α→ 0 to obtain

lim inf
α→0

lim inf
n→∞

Pv

(
T > Fvu

(
(1− ε) log n

α|Nv(Rn)|

D̃(Q0, Q1) + ε

))
≥ 1.

We conclude from Markov’s inequality and by considering
only the first-order terms (see Lemma 2.1 in [23]). �

Next we establish an upper bound on T ∗ by considering
families of matrix sequential probability ratio tests (MSPRTs)
[23]–[25]. Define the stopping time

Tv := min

{
t ≥ 0 : min

u∈Vn\Nv(Rn)
Zvu(t) ≥ log

n

α

}
,

and define the pair (Dn, Tn) via

Tn := min
v∈Vn

Tv, Dn(t) := arg max
v∈Vn

min
u∈Vn\Nv(Rn)

Zvu(t)

so that Dn(Tn) := arg minv∈Vn Tv . It is simple to verify
(Dn, Tn) ∈ ∆G(Vn, Rn, α). For u ∈ Vn \ Nv(Rn),

Pv(Dn(Tn) = u) ≤ Pv (Tu <∞) = Eu
[
1{Tu<∞}e

−Zuv(Tu)
]

= e− logn/αEu
[
1{Tu<∞}e

−(Zuv(Tu)−logn/α)
]
.

Since Zvu(Tu) ≥ log n/α by the definition of Tu, we have an
upper bound of α/n as desired. The following theorem gives
us an upper bound for the expectation of Tn.

Theorem 2. Let α ∈ (0, 1) be fixed. There exists a constant
C(Q0, Q1) ∈ (0, D̃(Q0, Q1)) such that for every v ∈ Vn,

Ev [Tn] ≤ max
u∈Vn:d(u,v)>Rn

Fvu

(
log n

C(Q0, Q1)

)
(1 + on(1)),



where on(1)→ 0 as n→∞.

Proof. We begin by upper bounding Pv(Tv > t). We can write

Pv (Tv > t) ≤ Pv
(

min
u∈Vn\Nv(Rn)

Zvu(t) < log
n

α

)
≤

∑
u∈Vn\Nv(Rn)

Pv
(
Zvu(t) < log

n

α

)
. (8)

Fix ε > 0 and suppose that, for all u ∈ Vn \ Nv(Rn),

log n/α ≤ (D̃(Q0, Q1)− ε)fvu(t).

To deal with the terms in the summation, we will use Chernoff
bounds for Zvu(t). Suppose that X,Y are independent random
variables with X ∼ Q1 and Y ∼ Q0, and define

I(x) := sup
λ≥0

{
λx+ logE

[(
dQ0

dQ1
(X)

)λ(
dQ1

dQ0
(Y )

)λ]}
.

Furthermore, we have the strict inequality I(x) > 0 for x ≤
D̃(Q0, Q1) since the λ-moments of dQ0

dQ1
(X) and dQ1

dQ0
(Y ) exist

for λ ∈ [0, 1]. Since Zvu(t) can be written as a sum of i.i.d.
random variables under Pv , we have the bound

Pv(Zvu(t) ≤ xfvu(t)) ≤ e−fvu(t)I(x) for x ≤ D̃(Q0, Q1).

Hence we can bound the summation (8) by

exp

(
log n− min

u∈Vn\Nv(Rn)
fvu(t)I(D̃(Q0, Q1)− ε)

)
. (9)

Set C(Q0, Q1) := min{D̃(Q0, Q1) − ε, I(D̃(Q0, Q1) − ε)}
and define

tn,ε := max
u∈Vn:d(u,v)>Rn

Fvu

(
log n/α

C(Q0, Q1)

)
.

Next, write Ev[Tv] =
∑∞
t=0 Pv(Tv > t) and apply (9) to

bound Ev[Tv] by

tn,ε +

∞∑
t=tn,ε+1

exp

log n−min
u∈Vn:

d(u,v)>Rn

fvu(t)I(D̃(Q0, Q1)− ε)


which is tn,ε(1 + on(1)) where on(1) → 0 as n → ∞. The
desired result follows from considering only first-order terms.

III. APPLICATIONS TO REGULAR TREES AND LATTICES

To apply Theorems 1 and 2, it suffices to compute Fvu
for the graphs of interest. The following result shows that
(Dn, Tn) is asymptotically optimal as n → ∞ and α → 0
in regular trees.

Corollary 1. Let G be the infinite k-regular tree. If Rn �
log n, then the MSPRT is asymptotically optimal, and

T ∗(Vn, Rn, α) ≈n,α
log log n

log(k − 1)
.

The idea behind the proof is that for k ≥ 3, fvu(t) �
(k − 1)t and Fvu(z) ∼ log z

log(k−1) . This follows from simple
counting arguments so we do not include it here. In particular,

Fig. 1. Numerical results for the MSPRT in regular trees for R = 0.

the first-order asymptotics of Fvu do not depend on d(u, v);
hence the first-order behavior of T ∗ does not depend on R.

To generate the numerical results in Figure 1, we let G
be a balanced, k-regular tree with height hk and root vertex
v0, where we set h3 = 15 (32,767 vertices), h4 = 11
(29,524 vertices) and h5 = 9 (87,381 vertices). In each case
we enumerated the vertices by positive integers so that if
vertex u is assigned a larger number than vertex v, then
d(u, v0) ≥ d(v, v0). We set Vn to be the set of vertices with
label at most n, and allowed n to range between 1,000 and
16,000. We set the root vertex v0 to be the cascade source and
also set α = 0.1, R = 0, Q0 ≡ N(0, 1) and Q1 ≡ N(2, 1).
An estimate of Ev0 [Tn] was obtained by averaging over 50
simulations per data point.

Next we consider optimal source estimation in lattices. We
establish rigorous results in the one-dimensional case and
discuss how things change in higher dimensions. Interestingly,
the performance of the optimal estimator depends strongly on
the confidence radius.

Corollary 2. Let G be the infinite line graph. If Rn � n,
then (Dn, Tn) is asymptotically optimal up to a constant factor
depending on Q0 and Q1. Let C(Q0, Q1) be the constant from
Theorem 2. If Rn �

√
log n,

log n

2RnD̃(Q0, Q1)
.n,α T

∗(Vn, Rn, α) .n,α
log n

RnC(Q0, Q1)
.

If Rn �
√

log n and logRn � log n,√
log n

D̃(Q0, Q1)
.n,α T

∗(Vn, Rn, α) .n,α

√
log n

C(Q0, Q1)
.

We sketch the derivation of Fvu. If r = d(u, v) is even,
then simple counting arguments show that

fvu(t) =

{
(t+ 1)2 t < r

2 ;
r
2

(
2t+ 2− r

2

)
t ≥ r

2 .
(10)

Let λ > 0 be any constant. As n→∞, (10) implies

Fvu(λ log n) ∼

{
λ logn
Rn

Rn �
√

log n
√
λ log n Rn �

√
log n.

(11)



Fig. 2. Numerical results for the MSPRT in the infinite line graph for Rn =
0, 5 logn,

√
n.

Applying Theorems 1 and 2 proves the corollary.
To generate the numerical results in Figure 2 we let G

be a line graph with 1,000 vertices where we enumerate
vertices from left to right from 1 to 1,000. We set Vn to
be the set of n vertices closest to the vertex labelled 500
(where we chose odd values of n) and we let n vary between
25 and 500. We studied the performance of the MSPRT
when the cascade source is the vertex labelled 500 and set
α = 0.2, Q0 ≡ N(0, 1) and Q1 ≡ N(0.5, 1). To estimate
E500[Tn] we average each data point over 50 simulations. We
plot our results for R = 0, 5 log n,

√
n.

Computing fvu and Fvu in higher-dimensional lattices re-
quires more involved combinatorial arguments, but Corollary
2 gives us a strong intuition of what to expect. The size of
|Nv(s)| in the k-dimensional lattice is of order sk, so for
t < d(u,v)

2 , fvu(t) should be on the order of tk+1. Inverting
fvu, we expect that T ∗(n,Rn, α) will increase as (log n)

1
k+1

when Rn � (log n)
1
k+1 .

IV. CONCLUSION

In this paper, we studied the problem of estimating the
source of a network cascade given noisy time-series data.
We found that if minv∈Vn |Nv(Rn)| � n, the MSPRT is
asymptotically optimal as α → 0 in the case of regular
trees, and is asymptotically optimal up to a constant factor
in general. We have discussed many avenues for future work,
including a study of non-asymptotic optimality, closing the
gap between the upper and lower bounds of Theorems 1 and
2, and investigating the relationship between the formulations
(1) and (2) for ∆G.
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