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ABSTRACT

Federated learning is a useful framework for centralized learning

from distributed data under practical considerations of heterogene-

ity, asynchrony, and privacy. Federated architectures are frequently

deployed in deep learning settings, which generally give rise to non-

convex optimization problems. Nevertheless, most existing analysis

are either limited to convex loss functions, or only establish first-

order stationarity, despite the fact that saddle-points, which are first-

order stationary, are known to pose bottlenecks in deep learning. We

draw on recent results on the second-order optimality of stochas-

tic gradient algorithms in centralized and decentralized settings, and

establish second-order guarantees for a class of federated learning

algorithms.

1. INTRODUCTION

Federated learning pursues solutions to global optimization prob-

lems over distributed collections of agents by relying on the ex-

change of model updates in lieu of raw data. Federated architectures

are frequently deployed in highly heterogeneous environments,

where different agents have access to data of varying quality and

varying computational resources. Performance guarantees for fed-

erated architectures are generally limited to convex loss functions,

or to establishing limiting first-order stationarity on non-convex

losses. First-order stationary points include minima, but can be

saddle-points or local maxima as well. Saddle-points in particular

have been identified as bottlenecks for optimization algorithms in

many important applications, such as deep learning [2,3]. It is hence

desirable to devise algorithms and performance analyses that ensure

efficient escape from saddle-points despite high levels of asynchrony

and heterogeneity. Recent works have identified gradient perturba-

tions as playing a key role in guaranteeing efficient saddle-points

escape in centralized and fully decentralized architectures [4–10].

Here, we establish analogous results in the federated learning frame-

work, extending recent analysis from [1] to allow for multiple local

updates.

Specifically, we consider a collection of K agents, where each

agent k is equipped with a risk loss function Jk(w), which is defined

as the expectation of a loss Q(w;xk):

Jk(w) , Exk
Q(w;xk) (1)

Here, Q(w;xk) quantifies the fit of the model parametrization w to

the random data xk. Note that we allow for the data xk to vary

with the agent index k, resulting in different risk functions Jk(w)
at different agents. It is common in multi-agent settings to pursue a
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model wo that performs well on average by solving:

w
o
, argmin

w

K∑

k=1

pkJk(w) (2)

where the {pk}
K
k=1 denote non-negative weights, normalized to add

up to one without loss of generality. It is common to let pk = 1
K

,

hence giving equal weight to every agent k. In settings where agents

are heterogeneous, and exhibit varying amounts of data, or varying

computational capabilities, heterogeneous weights pk can result in

improved performance, which we allow for generality. Perhaps the

most straightforward approach to pursuing wo is by means of gradi-

ent descent, applied directly to (2), resulting in:

wi = wi−1 − µ

K∑

k=1

pk∇Jk(wi−1) = wi−1 − µ∇J(wi−1) (3)

where we defined J(·) ,
∑K

k=1 pkJk(·). This implementation has

two important drawbacks, which render it impractical in a feder-

ated learning setting. First, it requires full agent participation at

every iteration, by means of computation and communication of

∇Jk(wi−1) with a central aggregator. In federated learning appli-

cations, where agents may or may not be able to participate in the

update at any given iteration, this can cause bottlenecks. Second,

evaluation of the exact gradient ∇Jk(wi−1) may be infeasible or

costly, since it depends on the full distribution of xk through its ex-

pectation in (1).

1.1. Related Works

Distributed algorithms for solving aggregate optimization problems

similar to (2) can be broadly classified into those that involve com-

munication with a centralized parameter server [11–14], and those

that operate in a fully decentralized manner through peer-to-peer in-

teractions [15–19]. Federated Averaging (FedAvg) was introduced

in [20], and has sparked a number of studies and extensions, includ-

ing FedDane [21], FedProx [22], hierarchical FedAvg [23], and dy-

namic FedAvg [24]. While the pursuit of an optimal average model

as in (2) is most common, multi-task variations have been introduced

as well, both in a federated [25] and decentralized settings [26].

Most prior works on federated learning and the FedAvg algo-

rithm focus on convex risk functions [13, 14, 24], or establish first-

order stationarity in non-convex environments [21–23, 27–29]. On

the other hand, saddle points, which are first-order stationary, have

been identified as bottlenecks in many learning applications, includ-

ing deep learning [2]. This contrast to the empirical success of deep

learning has motivated a number of recent works to consider the abil-

ity of gradient descent algorithms to escape saddle-points and find

“good” local minima, both in centralized [4–8,30,31] and decentral-

ized settings [9, 10, 32, 33]. The broad take-away from these works

is that perturbations, either to the initialization or gradient updates,
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play a key role in pushing iterates away from strict-saddle points and

toward local minimizers. In this work, we extend these results to the

federated learning setting, where agents may take an arbitrary num-

ber of local steps before communicating with the central parameter

server.

2. ALGORITHM FORMULATION

2.1. The Federated Averaging Scheme

The need for full and exact agent participation in evaluating (3) in

a federated setting is addressed in the stochastic federated averaging

(FedAvg) framework [20]. To this end, the parameter server selects

at iteration i a subset of L agents, collected in the set Ni. We in-

troduce a random indicator variable 1k,i, which indicates whether

agent k participates at time i, i.e., 1k,i = 1 ⇐⇒ k ∈ Ni, and 0 oth-

erwise. We assume for simplicity that agents are sampled uniformly

at random, resulting in:

Pr {1k,i = 1} = E {1k,i} =
L

K
(4)

Then, the parameter server provides participating agents with the

current aggregate model wi−1. They use the model to initialize their

local iterate to wk,0 = wi−1 and then perform Ek local stochastic

update steps for e = 1, . . . , Ek:

wk,e = wk,e−1 −µK1k,i

pk

Ek

∇̂J
e

k(wk,e−1) (5)

Here, ∇̂J
e

k(wk,e−1) denotes a generic stochastic approximation

of the gradient ∇Jk(wk,e−1). Using realizations for the ran-

dom variable xk, it is common to construct ∇̂J
e

k(wk,e−1) ,

∇Q(wk,e−1,xk,e), resulting in stochastic gradient descent — we

will discuss other constructions and their advantages in Section 2.2

below. The updated models are then fused by the central aggregator

according to:

wi =
1

L

K∑

k=1

1k,i wk,Ek
(6)

2.2. A General Stochastic Approximation Framework

We now present a number of choices for the stochastic gradient ap-

proximation ∇̂J
e

k(wk,e−1) to illustrate the generality of (5).

Example 1 (Mini-Batch SGD). Given a collection of Bk samples

{xk,e,b}
Bk

b=1, constructing:

∇̂J
e

k(wk,e−1) =
1

Bk

Bk∑

b=1

∇Q(wk,e−1,xk,e,b) (7)

yields mini-batch stochastic gradient descent, or simply stochastic

gradient descent when Bk = 1.

Example 2 (Perturbed SGD). It has been observed, both empir-

ically and analytically, that adding additional perturbations to the

stochastic gradient update can improve the performance of the gra-

dient descent algorithm in non-convex settings [6]. In the presence

of privacy concerns, perturbations to update directions can also be

added in order to ensure differential privacy [34]. This corresponds

to constructing:

∇̂J
e

k(wk,e−1) = ∇Q(wk,e−1,xk,e) + vk,e (8)

where vk,e denotes i.i.d. perturbation noise with zero mean, follow-

ing for example a Gaussian or Laplacian distribution.

Example 3 (Straggling Agents). Consider a setting where agents

may be unreliable, in the sense that, despite being chosen by the

parameter server to participate at iteration i, they may fail to return

a locally updated model wk,Ek
by the time the server needs to re-

aggregate models in (6). Such a setting can be modeled via:

∇̂J
e

k(wk,e−1) =

{
1
δk

∇Q(wk,e−1,xk,e) with prob. δk,

0 otherwise.
(9)

Here, the scaling factor 1
δk

has been added to ensure unbiased gra-

dient approximations, by allowing agents who participate less fre-

quently to take larger steps. Alternative stochastic models for asyn-

chronous behavior are possible as well [35].

It can be readily verified, that all three constructions in Examples 1–

3 are unbiased approximations of the true gradient ∇Jk(wk,e−1),
i.e.:

E

{
∇̂J

e

k(wk,e−1)|wk,e−1

}
= ∇Jk(wk,e−1) (10)

Nevertheless, the stochastic nature of the approximation induces a

gradient noise into the evolution of the algorithm, which we denote

by:

sk,e(wk,e−1) , ∇̂J
e

k(wk,e−1)−∇Jk(wk,e−1) (11)

We impose the following general conditions on the stochastic gradi-

ent noise process, and hence the construction of the stochastic gradi-

ent approximation itself.

Assumption 1 (Gradient Noise Process). The gradient noise pro-

cess (11) satisfies:

E{sk,e(wk,e−1)|wk,e−1} = 0 (12)

E{‖ sk,e(wk,e−1)‖
4|wk,e−1} ≤ β

4
k‖∇Jk(wk,e−1)‖

4 + σ
4
k

(13)

for some β4
k, σ

4
k ≥ 0. It is assumed that the gradient noise process

is mutually independent over space and time, after conditioning on

the current iterate:

E

{
sk1,e1(w) sk2,e2(w)T|w

}
= 0 ∀ k1 6= k2 or e1 6= e2 (14)

and the gradient noise covariance:

Rs,k(wk,e−1) , E

{
sk,e(wk,e−1) sk,e(wk,e−1)

T|wk,e−1

}

(15)

is smooth:

‖Rs,k(x)−Rs,k(y)‖ ≤ βR‖x− y‖γ (16)

for some βR and 0 < γ ≤ 4, and there is a gradient noise compo-

nent (in the aggregate) in every direction:

Rs,k(x) ≥ σ
2
ℓ I, ∀ x (17)

Relation (12) ensures that the stochastic gradient approximation is

unbiased, while (13) imposes a relative bound on the fourth-order

moment [17]. In light of Jensen’s inequality, it is stronger than im-

posing a bound on the gradient noise variance, but will allow us

to more granularly study the impact of the gradient noise around

saddle-points; on the other hand, it is weaker than the more com-

mon conditions of bounded noise with probability one, or a sub-

Gaussian condition [6, 7]. Relation (16) ensures that the distribu-

tion of the stochastic gradient noise process is locally smooth, al-

lowing us to formulate an accurate short-term model around saddle-

points [8]. It has previously been utilized to analyze in detail the



steady-state behavior of stochastic gradient algorithms in convex en-

vironments [17]. The persistent noise condition (17) will allow re-

cursions to efficiently escape saddle-points by relying on the aggre-

gate effect of the noise coupled with the local instability of saddle-

points. It can be relaxed to only require a noise component to be

present in the subspace of local descent directions [5, 8]. Since (17)

can always be ensured by adding a small amount of isotropic pertur-

bations to the stochastic gradient update as in (8), it will be sufficient,

for simplicity, to impose (17) in this work.

3. PERFORMANCE ANALYSIS

3.1. A Perturbed Centralized Gradient Recursion

By iterating (5), we find for the final local update wk,Ek
sent back

to the parameter server:

wk,Ek
= wi−1 −µK1k,i

pk

Ek

Ek∑

e=1

∇̂J
e

k(wk,e−1) (18)

and after aggregation in (6):

wi = wi−1 −µ
K

L

K∑

k=1

1k,i

pk

Ek

Ek∑

e=1

∇̂J
e

k(wk,e−1) (19)

We can reformulate this recursion to resemble the deterministic re-

cursion (3) as:

wi = wi−1 −µ

K∑

k=1

pk∇Jk(wi−1)− µsi − µdi (20)

where si and di are perturbation terms:

si ,
K

L

K∑

k=1

1k,i
pk

Ek

Ek∑

e=1

∇̂J
e

k(wi−1)−∇J(wi−1) (21)

di ,
K

L

K∑

k=1

1k,i

pk

Ek

Ek∑

e=1

(
∇̂J

e

k(wk,e−1)− ∇̂J
e

k(wi−1)
)

(22)

Comparing (20) with (3), we observe that the FedAvg implementa-

tion can be viewed as a perturbed gradient descent recursion. Per-

turbations have recently been shown to be instrumental in allowing

local descent algorithms to escape from saddle-points and converge

to local minima of non-convex loss functions. However, those stud-

ies are generally limited to assuming unbiased perturbations. In con-

trast, employing (5) with Ek > 1 results in biased gradient perturba-

tions resulting from the term di, rendering current analyses inappli-

cable. In this work, we generalize recent results on the second-order

guarantees of stochastic gradient algorithms [8] to allow for biased

gradient perturbations, and recover second-order guarantees for the

FedAvg algorithm for heterogeneous agents. We describe and dis-

cuss the dependence of these guarantees on the various parameters

of the architecture, such as agent participation rate, levels hetero-

geneity, asynchrony, and computational capabilities.

We introduce the following smoothness conditions to ensure that

the impact of the perturbations (21)–(22) is limited.

Assumption 2 (Smoothness). The local costs Jk(w) are assumed

to be smooth:

‖∇Jk(x)−∇Jk(y)‖ ≤ δ ‖x− y‖ (23)
∥∥∇2

Jk(x)−∇2
Jk(y)

∥∥ ≤ ρ ‖x− y‖ (24)

Heterogeneity between agents is quantified by their gradient dis-

agreement:

‖∇Jk(x)−∇Jℓ(x)‖ ≤ G (25)

Furthermore, the costs themselves are assumed to be Lipschitz, im-

plying uniformly bounded gradient:

‖∇Jk(x)‖ ≤ U (26)

and the stochastic approximations of the gradient are Lipschitz in

the mean-fourth sense:

E

{∥∥∥∇̂J
e

k(x)− ∇̂J
e

k(y)
∥∥∥
4

|x,y

}
≤ δ̂

4 ‖x−y‖4 (27)

3.2. Perturbation Bounds

Under the conditions on the stochastic gradient construction in As-

sumption 1, and the smoothness conditions in Assumption 2 we can

bound the perturbations (21)–(22).

Lemma 1 (Perturbation Bounds). The perturbations to recur-

sion (20) are bounded as:

E {si |wi−1} = 0 (28)

E
{
‖ si ‖

4|wi−1

}
≤ β

4
‖∇J(wi−1)‖

4 + σ
4

(29)

E
{
‖di‖

4|wi−1

}
≤ µ

4
K∑

k=1

p
5
k

K6

L2
δ̂
48
(
U

4 + β
4
kU

4 + σ
4
k

)
(30)

where we introduced the constants:

β
4
,

K∑

k=1

pkβ
4

k (31)

σ
4
,

K∑

k=1

pkσ
4
k (32)

β
4

k , 192
K3

L3

β4
k

E2
k

+ 64
L

K

(
K − L

L

)4

+ 64
K − L

K
(33)

σ
4
k ,

(
192

K3

L3

β4
k

E2
k

+ 64
L

K

(
K − L

L

)4

+ 64
K − L

K

)
G

4

+ 24
K3

L3

σ4
k

E2
k

(34)

The covariance of the aggregate gradient noise si evaluates to:

E

{
si s

T

i |wi−1

}

=
K

L

K∑

k=1

p2k
Ek

Rs,k(wi−1) +
K

L

K − L

K − 1

K∑

k=1

t(wi−1)t(wi−1)
T

≥ σ
2
ℓI ,

(
K∑

k=1

p2k
Ek

)
σ
2
ℓ I (35)

where t(wi−1) denotes the deviation:

t(wi−1) , pk∇Jk(wi−1)−
1

K
∇J(wi−1) (36)

Proof. Appendix A.



3.3. Second-Order Guarantees

Examination of the bounds (28)–(30) reveals that the aggregate zero-

mean component si arising from the use of stochastic gradient ap-

proximations continues to be bounded in a manner similar to the

local approximations (13), where the aggregate constant bounds are

determined by the quality of local approximations {β4
k, σ

4
k}

K
k=1, the

participation rate L
K

, the weights {pk}
K
k=1, the level of heterogene-

ity G, and number of local updates taken Ek. The bias di induced by

employing multiple local updates, on the other hand, does not have

zero-mean. The bound on its fourth-order moment (30), however,

is proportional to µ4, causing its effect to be small for small step-

sizes when compared to si, which is independent in µ. The fact that

di is biased renders traditional second-order analysis of stochastic

gradient algorithms [1, 4–6, 8] inapplicable to this setting, while the

fact that its fourth-order moment is small compared to si makes it

possible to extend the arguments of [1, 8].

Theorem 1. Suppose the aggregate loss J(w) is bounded from be-

low by J(w) ≥ Jo. Then, with probability 1− 2π:

‖∇J(wio)‖
2 ≤ µ

δσ2

1− 2µδ(1 + β
2
)

(
1 +

1

π

)
+O(µ2) (37)

and λmin

(
∇2J(wio)

)
≥ −τ in at most io iterations, where

i
o ≤

2 (J(w0)− Jo)

µ2δσ2
i
s

(38)

and is denotes the saddle-point escape time:

i
s =

log
(
2M σ2

σ2

ℓ

+ 1 +O(µ)
)

log (1 + 2µτ )
(39)

Proof. The argument is an adjustment of [8] by bounding away the

effect of di. Details omitted due to space limitations.

This result ensures that, with probability 1 − 2π, the FedAvg algo-

rithm will return a second-order stationary point with ‖∇J(wio)‖
2 ≤

O(µ) and λmin

(
∇2J(wio)

)
≥ −τ in at most io iterations, where

io scales polynomially with all problem parameters. Every second-

order stationary point, in light of ‖∇J(wio)‖
2 ≤ O(µ) is also first-

order stationary, but the additional condition λmin

(
∇2J(wio)

)
≥

−τ allows for the exclusion of strict saddle-points by choosing τ

sufficiently small.

4. NUMERICAL RESULTS

We illustrate the ability of the FedAvg algorithm to escape saddle-

points for:

Q(w1,W2;γ,h) , log
(
1 + e

−γwT

1
W2h

)
(40)

J(w1,W2) , EQ(w1,W2;γ,h) +
ρ

2
‖w1‖

2 +
ρ

2
‖W2‖

2
(41)

This loss arises when training a neural network with a single, linear

hidden layer to predict the class label γ from h using cross-entropy,

and exhibits a strict saddle-point at w1 = W2 = 0, making it suit-

able as a simplified benchmark — see [9] for a discussion and mo-

tivation. For a total of K = 100 agents, we vary the rate of partici-

pation from L = 1 to L = 100. Agents are chosen uniformly, and

Fig. 1: Evolution of the aggregate model for various choices of the

participation rate L
K

. All implementations escape the saddle-point

and find a local minimum.

Fig. 2: Evolution of the gradient norm for varying participation rates.

participating agents perform E = 10 local updates constructed as a

combination of Examples 2 and 3, namely:

∇̂J
e

k(wk,e−1) =
1

δk
(∇Q(wk,e−1,xk,e)− ρwk,e−1) (42)

with probability pk = 0.5, and ∇̂J
e

k(wk,e−1) = 0 otherwise. Evo-

lution of iterates and the gradient norm are shown in Figures 1 and 2

respectively.

5. CONCLUSION

In this work, we considered a highly heterogeneous and asyn-

chronous variant of the Federated Averaging (FedAvg) algorithm,

where agents may be using varying, potentially unreliable, stochas-

tic gradient approximations with varying quality, and take a different

number Ek of local update steps, and established convergence to

second-order stationary points. Despite high levels of heterogeneity

and asynchrony, the algorithm continues to escape saddle-points and

return second-order stationary points in polynomial time, shedding

light on the success of deep learning, which is frequently employed

in federated learning settings.
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[16] A. Nedić and A. Ozdaglar, “Distributed subgradient methods

for multi-agent optimization,” IEEE Trans. Automatic Control,

vol. 54, no. 1, pp. 48–61, Jan 2009.
[17] A. H. Sayed, “Adaptation, learning, and optimization over net-

works,” Foundations and Trends in Machine Learning, vol. 7,

no. 4-5, pp. 311–801, July 2014.
[18] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE,

vol. 102, no. 4, pp. 460–497, April 2014.
[19] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual aver-

aging for distributed optimization: Convergence analysis and

network scaling,” IEEE Transactions on Automatic Control,

vol. 57, no. 3, pp. 592–606, March 2012.
[20] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
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A. PROOF OF LEMMA 1

We begin by establishing that si has conditional zero-mean:

E {si |wi−1}

(21)
=

K

L

K∑

k=1

pk

Ek

Ek∑

e=1

E

{
1k,i∇̂J

e

k(wi−1)|wi−1

}
−∇J(wi−1)
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(b)
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K
∇Jk(wi−1)−∇J(wi−1)

=

K∑

k=1

pk∇Jk(wi−1)−∇J(wi−1) = 0 (43)

where (a) follows because participation 1k,i is independent of wi−1

and the data available at time i, and hence ∇̂J
e

k(wi−1). Step (b)
follows from E {1k,i} = L

K
and (12). We now proceed to evaluate

the aggregate gradient noise covariance. For brevity, we define:

gk,i ,
1
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Ek∑
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e

k(wi−1) (44)

Then:
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For the aggregate gradient noise covariance, we have:
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(46)

where (a) follows after multiplying and simplifying cross-terms by

noting that:

E

{
K
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}
(43)
= ∇J(wi−1) (47)

The challenge in evaluating (46) lies in the fact that, while the ap-

proximations gk,i and gℓ,i are mutually independent by Assump-

tion 1, the same does not hold for the participation indicators 1k,i

and 1ℓ,i, since agents are sampled without replacement. We can

nevertheless evaluate:
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where (a) follows from Bayes’ theorem and (b) is due to the fact

that 1k,i and wi−1 are independent, (c) separates cross-terms and

(d) results from E {1ℓ,i|1k,i = 1} = L−1
K−1

. We return to (46):
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where (a) multiplies
(∑K

k=1 pk∇Jk(wi−1)
)(∑K

ℓ=1 pℓ∇Jℓ(wi−1)
)
T

and separates cross-terms, (b) combines terms using the fact that

E
{
gk,i|wi−1

}
= ∇Jk(wi−1), (c) follows from (44), (15) and

the fact the gk,i are mutually independent. Step (d) completes the

square to obtain ∇J(wi−1)∇J(wi−1)
T and (e) can be verified by

multiplying out the result. For the fourth-order moment, we have

following the argument in [1, Example 7]:
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where (a) follows by Jensen’s inequality. We proceed with the indi-

vidual terms of the sum:
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where (a) and (f) follow from Jensen’s inequality, (b) uses the fact

that 1k,i is independent of ∇̂J
e

k(wi−1), (c) applies Bayes’ theorem

and (d) uses Pr {1k,i = 1} = E {1k,i} = L
K

. Step (e) follows

from (13) and:
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which can be verified by induction over Ek [1]. Next, we bound the

fourth-moment of the term di, arising from the fact that agents take

Ek > 1 local gradient steps before returning the updated estimate

to the parameter server. We introduce dk,e−1 , ∇̂J
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k(wi−1) for brevity. Then, we have:
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where (a) and (d) follow from Jensen’s inequality, (b) applies

a Bayes’ decomposition and (c) follows form Pr {1k,i = 1} =
L
K

. We now bound the deviation of estimates over one epoch.

For e = 1, we have wk,e−1 = wk,0 = wi−1 and hence
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|wi−1





= µ
4
p
4
kK

4 L

K

(e− 1)4

E4
k

E





∥∥∥∥∥
1

e− 1

e−1∑

j=1

∇̂J
e

k(wk,j−1)

∥∥∥∥∥

4

|wi−1





(c)

≤ µ
4
p
4
kK

4 L

K

(e− 1)3

E4
k
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j=1

E

{∥∥∥∇̂J
e

k(wk,j−1)
∥∥∥
4

|wi−1

}

(d)

≤ µ
4
p
4
kK

4 L

K

1

Ek

e−1∑

j=1

E

{∥∥∥∇̂J
e

k(wk,j−1)
∥∥∥
4

|wi−1

}

(e)

≤ µ
4
p
4
kK

4 L

K

1

Ek

e−1∑

j=1

8E
{
‖∇Jk(wk,j−1)‖

4|wi−1

}

+ µ
4
p
4
kK

4 L

K

1

Ek

e−1∑

j=1

8E
{
‖sk,j−1(wk,j−1)‖

4|wi−1

}

(f)

≤ µ
4
p
4
kK

4 L

K
8U4 + µ

4
p
4
kK

4 L

K
8
(
β
4
kU

4 + σ
4
k

)

= µ
4
p
4
kK

4 L

K
8
(
U

4 + β
4
kU

4 + σ
4
k

)
(54)

where (a) and (b) follow from Bayes’ theorem and Pr {1k,i = 1} =
L
K

, (c) and (e) follows from (11) and Jensen’s inequality, (d) follows

from e − 1 ≤ Ek, and (f) follows from (13) and (26) and the fact

that e− 1 ≤ Ek. Returning to (53), we have:

E
{
‖di‖

4|wi−1

} (53)

≤ µ
4

K∑

k=1

p
5
k

K6

L2
δ̂
48
(
U

4 + β
4
kU

4 + σ
4
k

)
(55)
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