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Abstract

A Quantum Key Distribution (QKD) protocol describes how two remote parties can establish a secret

key by communicating over a quantum and a public classical channel that both can be accessed by an

eavesdropper. QKD protocols using energy-time entangled photon pairs are of growing practical interest

because of their potential to provide a higher secure key rate over long distances by carrying multiple

bits per entangled photon pair. We consider a system where information can be extracted by measuring

random times of a sequence of entangled photon arrivals. Our goal is to maximize the utility of each

such pair. We propose a discrete time model for the photon arrival process, and establish a theoretical

bound on the number of raw bits that can be generated under this model. We first analyse a well known

simple binning encoding scheme, and show that it generates significantly lower information rate than

what is theoretically possible. We then propose three adaptive schemes that increase the number of raw

bits generated per photon, and compute and compare the information rates they offer. Moreover, the

effect of public channel communication on the secret key rates of the proposed schemes is investigated.

I. INTRODUCTION

A Quantum Key Distribution (QKD) protocol describes how two parties, commonly referred to as

Alice and Bob, can establish a secret key by communicating over a quantum and a public classical

channel that both can be accessed by an eavesdropper Eve. For the widespread adoption of QKD, it is

mandatory to provide high key rates over long distances (see a related survey [1]). What has appeared

as a bottleneck in practice is the inability to maximize the utility of information-bearing quantum states
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that are communicated over the quantum channel [2]–[4]. QKD based on energy-time entangled photons

has emerged as a promising technique primarily because each entangled photon pair can carry multiple

raw key bits, and thus potentially provide a higher secure key rate over long distances [5], [6]. Moreover,

it has been shown that higher dimensional quantum states are more sensitive to eavesdropping and are

also more robust to certain types of noise [7]–[10].

Timing information extraction in energy-time entanglement based QKD schemes is commonly achieved

through a method known as time-bin encoding [11], [12]. The time-bin encoding method is essentially a

Pulse-Position Modulation (PPM) scheme, which is a common technique that converts the binary time-

pulse sequences into large-alphabet sequences of fixed alphabet size. Alice and Bob timestamp their

photon arrivals, and then map the timestamps to bit strings. Under ideal conditions, Alice and Bob are

supposed to receive identical sequences. The bit strings obtained in this case constitute the raw key. The

objective of this paper is to maximize the length of the raw key.

Due to errors such as timing jitter, transmission loss and low detection efficiency, there are disparities

between the received sequences in practical implementations [13]–[15]. In order to systematically increase

the correlation between their key strings, while reducing Eves acquired information, Alice and Bob

perform information reconciliation followed by privacy amplification, which reduces the key length [13]–

[16]. Note that achieving long raw keys does not necessarily imply long secret keys. A modulation scheme

with a higher raw key might be more susceptible to noise and eavesdropping, and thus result in a relatively

short secret key. Such considerations are beyond the scope of the current paper as we here are concerned

only with the raw key rate.

A simple PPM scheme was proposed in [17]. Although the simple PPM scheme eliminates the effect

of photon transmission losses, it is not efficient for preserving useful information. In [18], a generalized

version of the simple PPM scheme, called adaptive PPM, was proposed which utilizes a good portion of

the information discarded by the simple PPM scheme.

In this work, our goal is to show that carefully modeled modulations can offer substantial raw key rate

improvements, and also to pave the way for further exploration of high rate, low latency quantum-secure

networks. We propose a new photon arrival model, a discrete time model for the photon arrival process

with geometric distribution replacing the Poisson, and establish a theoretical bound on the number of

secret bits that can be generated under this model (see Sec. II). Inspired by [17], [18], we first propose

a simple binning scheme and show that this scheme generates significantly lower information rate than

what is theoretically possible. We then propose three adaptive schemes that increase the number of raw

bits generated per photon, and compute and compare the information rates they offer. Unlike the schemes

in [17], [18], we not only use the single occupied bins but also utilize the single empty bins to generate
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Fig. 1: Five frames consisting of 8 time units with bins consisting of 2 time units.

secret bits (see Sec. III). Furthermore, we investigate the effect of public channel communication on the

secret key rates of the proposed schemes (see Sec. IV).

II. SYSTEM MODEL

Throughout the paper the base of log is 2, unless explicitly noted otherwise. Consider a scenario

wherein two parties, referred to as Alice and Bob, desire to generate a secret key using a quantum and

a public channel. There is a third party, Eve, who has access to both channels. A source (possibly co-

located with Alice) emits entangled photon pairs to Alice and Bob, with one photon being sent to Alice,

and the other to Bob. We consider a system where information can be extracted by measuring random

times of a sequence of photon arrivals. We assume that time is measured in units such that at most one

photon can arrive in a single time unit (See Fig. 1). The length of a time unit equals the minimum time

that a photon detector needs to successfully detect a single photon. We assume that a photon arrives in

each time unit with probability p independently of other arrivals. The value of p depends on the number

of photons generated per second by the source. A similar model was adopted in [4], [18]. Photons are

not fully utilized unless the arrival time of each received photon can be used to contribute information.

Theorem 1. The maximum number of bits per time unit that can be extracted from the timestamps of

photon arrival times equals the binary entropy with parameter p.

h(p) = −p log p− (1− p) log(1− p) (1)

All the proofs can be found in the Appendix. Observe that this result implies that (under the assumed

model) the photon timing information gives us as much information as would the binary sequence

indicating the photon arrival times.

III. PROPOSED SCHEMES

Considering the ideal case wherein all the incoming photons are transmitted and detected successfully,

Alice and Bob receive their shares of the entangled pairs at random but identical time units. Alice and

Bob timestamp their photon arrivals, and map these timestamps to bit strings, which they subsequently

process to generate their common key. In this section, we ignore the effect of communication over the

public channel on the raw key rate of a scheme.
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A. Simple Binning

In simple binning , time is partitioned in frames consisting of n time units. We take n to be a power

of two. Fig. 1 shows an example where n = 8. Each frame is divided into n/k bins, each consisting of

k ≤ n time units, and we are free to choose k. Note that k also needs to be a power of two in order

for n to be divisible by k. Bins are labeled by log(n/k) bit strings. A bin is called occupied if there is

at least one photon present in the bin. Alice and Bob are able to generate a common random sequence

based on the position of a single occupied bin or a single empty bin in the frames.

Information is extracted from a sequence of frames as follows: All frames are discarded except those

containing either a single occupied bin or a single empty bin. Each frame with a single occupied bin

contributes log(n/k) key bits identifying the single occupied bin since all positions of the occupied bin

are equally likely. Similarly, each frame with a single empty bin contributes log(n/k) key bits. When

there is one occupied bin and one empty bin, Alice and Bob consider the bit string label of the occupied

bin as their common random sequence. Note that communication over the public channel is not needed

here.

In the example of Fig. 1, if the bin size is chosen to be 2, then the first 2 frames would contribute

2 bits each since there is only one occupied bin among the four bins in each frame. The third and the

fourth frames would be discarded since one is empty and the other one consists of two occupied and

two empty bins. The fifth frame also contributes 2 bits of information since it contains only one empty

bin among its four bins. If, on the other hand, the bin size is chosen to be 1, then all but the first frame

would be discarded, and we would be left with 3 bits of information.

The probability that a bin consisting of k time units is occupied is given by πk , 1− (1− p)k. Let

the probability that a bin consisting of k time units is empty be given by π̄k , (1− p)k. We define the

raw key rate of a scheme as the expected number of raw key bits per time unit.

Theorem 2. Let n be the number of time units in a frame, and let each frame be divided into n/k bins,

each consisting of k ≤ n time units. The raw key rate of the simple binning scheme is given by

rSB =


0, k = n,

1
kπkπ̄k, k = n

2 ,

1
k

[
πkπ̄

n

k
−1

k + π
n

k
−1

k π̄k

]
log n

k , otherwise.

(2)

We define the photon utilization of a scheme as the ratio between its raw key rate and the rate of the

ideal scheme given by (1). Fig. 2 depicts the performance of the simple binning scheme. Two crucial

parameters in simple binning encoding are the bin width and the frame size, which have to be carefully
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selected in order to maximize the photon utilization. The choice of these parameters also affects certain

type of errors. It is therefore essential to understand the limitations that the system and physics impose

on these parameters. Under no constraints, smaller bins and larger frames would maximize the photon

utilization. However, physical constraints on energy-time entangled photons prevent the bin widths from

becoming infinitely small. The minimum bin width is limited to the length of a time unit and the maximum

frame size is limited by the coherence time of the entangled photon pair, which is determined by the

spontaneous parametric down-conversion bandwidth [4], [12]. Observe that, under restrictive conditions,

the highest photon utilization achievable by the simple binning scheme will be limited, e.g., it is about

0.5 for the frames of n = 64 time units. This low efficiency is due to discarding a large fraction of

frames. We next propose three more efficient schemes which use all or at least a large fraction of the

frames.

B. Adaptive Binning

The idea here is to not fix the size of the bins in advance, but instead adapt it to the photons observations

for each frame. The size of the bins in a given frame is chosen by Alice and Bob deterministically based

on the number and the locations of the photons observed in the frame as follows. Each bin is constructed

using a collection of k consecutive time units. The bin construction starts from the first time unit and

ends at the last time unit in the frame. Alice and Bob choose the minimum k that satisfies the following

conditions: 1) the bins in a frame form a partition for the set of time units in the frame, and 2) either

only one bin is occupied by photons among all the bins, or only one bin is empty among all the bins.

We refer to these two conditions as the binning conditions. The rest follows the same steps as in the

simple binning scheme.

In this scheme, communication over the public channel is not required because the bin construction is

done deterministically. In the example of Fig. 1, for the first frame, the minimum bin size that satisfies the

binning conditions is 1. Hence, the first frame contributes 3 bits of information. The proper bin size for

the second frame is 2, and it contributes 2 bits of information. The third frame is discarded. Let the time

units in the fourth frame be labeled 1, . . . , 8. If we consider k = 2, the bins will be {1, 2}, {3, 4}, {5, 6},
and {7, 8}. It is easy to see that the second and the third bins are occupied and the first and the fourth

bins are empty. Thus, k = 2 does not satisfy the binning conditions. If we let the bin size be k = 4, we

will be left with two occupied bins, and thus k = 4 also does not satisfy the binning conditions. Hence,

the minimum bin size for the fourth frame that satisfies the binning conditions is k = 8. That is, the

fourth frame consists of only one occupied bin. Thus, using this scheme, no information can be extracted

from the fourth frame. The minimum bin size for the fifth frame that satisfies the binning conditions is 2.
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There would be only one empty bin (third bin) among all four bins. Thus, the fifth frame also contributes

2 bits of information.

Theorem 3. Let n be the number of time units and ` the number of photons in a frame. The raw key

rate of the adaptive binning scheme is given by

rAB =

n/2∑
`=1

log(n/2)∑
i=dlog `e

1

2i

(
2i

`

)
p`(1− p)n−` +

log(n/4)∑
i=0

1

2i
π

n

2i
−1

2i π̄2i(log n− i). (3)

C. Adaptive Aggregated Binning

In this scheme, the size of the bins in individual frames depends only on the number of photons

observed in the frame. When a frame is occupied with ` ≤ n/2 photons, Alice partitions the set of

time units in the frame into m = n/2dlog `e bins of size k = 2dlog `e, denoted by B1, B2, . . . , Bm. Then,

Alice chooses a bin randomly, say Bi, and assigns all the ` time units carrying a photon to this bin.

Also, from the remaining time units, k − ` randomly chosen time units will be assigned to Bi. After

this step, from the remaining time units, k randomly picked time units will be assigned to each bin Bj

for j ∈ {1, 2, · · · ,m} \ i. Note that there exists only one occupied bin and the position of this bin is

uniformly distributed.

Otherwise, when ` > n/2 photons have been observed in a frame, Alice partitions the set of the time

units in the frame into m = n/2blog(n−`)c bins of size k = 2blog(n−`)c, denoted by B1, B2, . . . , Bm. Then,

Alice chooses a bin randomly, say Bi, and assigns k randomly picked empty time units to this bin. From

the remaining time units, Alice assigns k randomly chosen to each bin Bj for j ∈ {1, 2, · · · ,m}\ i. Note

that there exists only one empty bin and the position of this bin is uniformly distributed. After forming

the bins, Alice sends the binning information to Bob over the public channel.

In the example of Fig. 1, the first frame contributes 3 bits of information. The second and the fourth

frames contribute 2 bits of information each since Alice is able to form 4 bins of size 2 where only

one of the bins is occupied. The third frame would be discarded. The fifth frame contributes 1 bit of

information since the time units in the frame can be partitioned into 2 bins of size 4 while only one of

the bins is occupied.

Theorem 4. Let n be the number of time units and ` the number of photons in a frame. The raw key

rate of the adaptive aggregated binning scheme is given by

rAAB =
1

n

[
n/2∑
`=1

(
n

`

)
p`(1−p)n−`

(
log n−dlog `e

)
+

n−1∑
`=n

2
+1

(
n

`

)
p`(1−p)n−`

(
log n−blog(n− `)c

)]
.

(4)
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D. Adaptive Framing

Unlike the other schemes, in this scheme, the bin size do not vary from frame to frame and for

all the frames is k = 1. Having observed ` ≤ n/2 photons in a frame, the set of time units in the

frame will be partitioned into ` subframes by Alice. It should be noted that a subframe does not consist

of adjacent time units necessarily. Let F1, F2, . . . , F` denote these subframes, and let i1, i2, . . . , i` be

the indices of the time units carrying a photon. At the beginning, Alice assigns the time unit ij to

the subframe Fj for j ∈ {1, 2, · · · , `}. Then, starting from the first subframe, each subframe randomly

picks an unassigned time unit. The previous step will be done repeatedly until all the time units have

been assigned. In each subframe, there is exactly one bin occupied with a photon and its position

is uniformly distributed. This procedure results in r subframes of size m + 1 and ` − r subframes

of size m, where n = m`+ r and 0 ≤ r < `. Hence, each frame occupied with ` ≤ n/2 photons

contributes ρ = r log(m+ 1) + (`− r) logm bits of information. The following lemma shows that this

is the maximum information that can be extracted from a frame of size n containing ` ≤ n/2 photons

using the adaptive framing scheme.

Lemma 1. Let n be the size of a frame consisting of ` ≤ n/2 photons. Alice constructs ` sets and

assigns one each of the occupied time units to the respective sets. The remaining time units are assigned

at random to the sets. Let di ≥ 1 denote the number of elements in set i. The total information that can

be extracted from the frame is therefore I =
∑`

i=1 log di. It holds that

I =
∑̀
i=1

log di ≤ r log(m+ 1) + (`− r) logm,

where n = m`+ r and 0 ≤ r < `.

On the other hand, when the number of photons observed in a frame is ` > n/2, Alice partitions

the set of time units in the frame into n − ` subframes. Let F1, F2, . . . , Fn−` denote these subframes,

and let i1, i2, . . . , in−` be the indices of the empty time units. First, the time unit ij is assigned to

the subframe Fj for j ∈ {1, 2, · · · , n − `} by Alice. Then, each subframe chooses an unassigned time

unit at random starting from the first subframe. This step will be repeated until all time units have

been assigned. In the end, there are r̄ subframes of size m̄ + 1 and n − ` − r̄ subframes of size m̄,

where n = m̄(n− `) + r̄ and 0 ≤ r̄ < n − `. There is exactly one empty time unit in each subframe,

and its position is uniformly distributed. Thus, each frame occupied with ` > n/2 photons contributes

ρ̄ = r̄ log(m̄+ 1) + (n− `− r̄) log m̄ bits of information. Using the following lemma, we show that this

is the maximum information that can be extracted from a frame of size n containing ` > n/2 photons

using the adaptive framing scheme.
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Lemma 2. Let n be the size of a frame consisting of ` > n/2 photons. Alice constructs n− ` sets and

assigns one each of the empty time units to the respective sets. The remaining time units are assigned

at random to the sets. Let di ≥ 1 denote the number of elements in set i. The total information that can

be extracted from the frame is therefore I =
∑n−`

i=1 log di. It holds that

I =

n−∑̀
i=1

log di ≤ r̄ log(m̄+ 1) + (n− `− r̄) log m̄,

where n = m̄(n− `) + r̄ and 0 ≤ r̄ < n− `.

The subframes information will be sent to Bob over the public channel by Alice. In the example of

Fig. 1, the first frame contributes 3 bits of information. The second and the fourth frames contribute 4

bits of information each. For instance, consider the second frame. Let index the time units in the second

frame using the numbers 1 to 8. The time units 3 and 4 are occupied with photons. Alice forms two

subframes denoted by F1 and F2, and assigns the time units 3 and 4 to these two subframes, respectively.

Then, from the remaining time units, Alice assigns 3 time units to each subframe randomly as it was

explained before, and sends the subframes information to Bob over the public channel. Thus, Alice and

Bob have information about two subframes containing four time units while only one time units carries a

photon in each subframe. These two subframes contribute 2 bits of information each. The third frame is

discarded, and the fifth frame contributes 4 bits of information since it can be partitioned into 4 subframes

of size 2 where there is one occupied time unit in each subframe.

Theorem 5. Let n and ` denote the number of time units and the number of photons in a frame,

respectively. The raw key rate of the adaptive framing scheme is given by

rAF =
1

n

[
n/2∑
`=1

(
n

`

)
p`(1− p)n−`ρ+

n−1∑
`=n

2
+1

(
n

`

)
p`(1− p)n−`ρ̄

]
. (5)

IV. EFFECT OF PUBLIC CHANNEL COMMUNICATION

In this section, we investigate the effect of public channel communication on the raw key rate. For

the simple binning and the adaptive binning, communication over the public channel is not required.

However, in the adaptive aggregated binning and adaptive framing, after each time frame, Alice needs

to form bins or subframes and send the information to Bob over the public channel. Thus, for these two

schemes, we partition time into a number of windows, which we further split into two phases: sensing

phase and communication phase. In the sensing phase, which consists of n time units, Alice and Bob

observe photon arrival times ,and in the communication phase, they talk over the public channel. Let D
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Fig. 2: Average photon utilization of the simple binning scheme vs. the time unit occupancy probabilities

(cf. (1) and (2)), for: a) frames of n = 8 time units and three different bin sizes k ∈ {1, 2, 4}, b) frames of

n = 16 time units and three different bin sizes k ∈ {1, 2, 4}, and c) frames of n = 64 time units and three different

bin sizes k ∈ {1, 2, 4}.

and T denote the communication time over the public channel and the length of a time unit, respectively.

Hence, the length of a window is nT + D and the number of raw secret bits that a scheme generates

in a window is given by n×(raw key rate of the scheme). We define the effective raw key rate of a

scheme as the expected number of raw key bits per time unit considering the effect of public channel

communication. The raw key rates and the effective raw key rates of the simple binning and the adaptive

binning schemes are the same. The effective raw key rate of the adaptive aggregated binning and adaptive

framing schemes are given as follows

r̃AAB =
nT

nT +D
rABB,

r̃AF =
nT

nT +D
rAF .

Note that the typical length of a time unit is about tens of picoseconds (10−12 seconds) [5], [12].

V. COMPARISON RESULTS

In this section, we evaluate and compare the performance of the proposed schemes. Fig. 2 illustrates the

performance of the simple binning scheme. It can be observed that for all three different frame sizes, the

maximum photon utilization is achieved when the bin size is set to 1. It can also be seen that increasing

the frame size improves the highest achievable photon utilization for all three different bin sizes. Note

that, for some range of the time unit occupancy probability, bin sizes k = 2 and k = 4 result in a higher

photon utilization in comparison to bin size k = 1.
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Fig. 3: Average photon utilization of the simple binning (SB) for bin size k = 1 (cf. (2)), the adaptive binning

(AB) (cf. (3)), the adaptive aggregated binning (AAB) (cf. (4)), and the adaptive framing (AF) (cf. (5)) schemes

vs. the time unit occupancy probability, for: a) frames of n = 8 time units, b) frames of n = 16 time units, and c)

frames of n = 64 time units.

The photon utilization of the simple binning (SB) for bin size k = 1, the adaptive binning (AB), the

adaptive aggregated binning (AAB), and the adaptive framing (AF) schemes as a function of the time

unit occupancy probability is depicted in Fig. 3. Observe that the AF outperforms the other three schemes

for all range of the time unit occupancy probability. For all four schemes, the highest photon utilization

is obtained when the time unit occupancy probability is either close to 0 or close to 1. Moreover, the

performances of all the schemes are identical when time unit occupancy probability is very small or very

large, since almost all the occupied frames carry 1 photon or n − 1 photons, respectively. Note that,

although the AF and the AAB have a superior performance in comparison to the SB and the AB, they

require public channel communication.
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APPENDIX

PROOF OF LEMMAS AND THEOREMS

Proof of Theorem 1: The photon inter-arrival times are geometrically distributed. Thus, the maximum

information that can be extracted from an observed photon is equal to the entropy of a geometric random

variable with parameter p, which is given by [−p log p− (1− p) log(1− p)]/p. In the period of n time

units, the average number of observed photons is equal to np, and thus the average number of bits that

can be extracted in the period of n time units is n[−p log p− (1− p) log(1− p)]. Hence, the number of

bits per time unit that can be obtained on average is given by h(p) = −p log p− (1− p) log(1− p).

11



Proof of Theorem 2: Let A denote the event that there is only one occupied bin in a frame. The

probability of event A is given by P (A) =
(
n/k
1

)
πkπ̄

n/k−1
k . Also, let the event that only one empty bin

exists in a frame be denoted by B. The probability of event B is given by P (B) =
(
n/k
1

)
π
n/k−1
k π̄k. The

raw key rate of the simple binning scheme is given by rSB = 1
nP (A ∪B) log(n/k). For the case k = n,

we have log(n/k) = 0 and consequently rSB = 0. The case k = n/2 indicates that there are two bins

of size n/2 in a frame. One can readily confirm that the events A and B are equivalent for this case.

Thus, we have P (A) = P (B) = P (A ∩B). Note that log(n/k) = 1 and P (A ∪ B) = P (A) = n
kπkπ̄k

when k = n/2. Therefore, rSB = 1
kπkπ̄k for the case k = n/2. For the cases where k ≤ n/4, we

have P (A ∩ B) = 0 and consequently P (A ∪ B) = P (A) + P (B) = n
k

[
πkπ̄

n

k
−1

k + π
n

k
−1

k π̄k

]
. Thus,

rSB = 1
k

[
πkπ̄

n

k
−1

k + π
n

k
−1

k π̄k

]
log n

k when k ≤ n/4.

Proof of Theorem 3: Given that ` photons have been observed in a frame, the probability that bins

of size k satisfy the binning conditions such that there is only one occupied bin in the frame is given by

pk(`) =
(
n/k
1

)(
k
`

)
p`(1− p)n−`. When k < `, it is assumed that pk(`) = 0. Note that k is not necessarily

the minimum bin size that satisfy the binning conditions, and thus pk(`) includes all the cases that k/2i,

i ∈ {0, 1, · · · , log k}, is the minimum bin size that satisfies the binning conditions. Hence, the probability

that k is the minimum bin size that satisfies the binning conditions such that there is only one occupied

bin in the frame is given by pk(`)− pk/2(`). The number of bits obtained by the cases wherein there

is only one occupied bin in the frame is given by
∑n/2

`=1

∑log(n/2)
i=dlog `e

(
p2i(`) − p2i−1(`)

)
(log n − i). We

can simplify
∑log(n/2)

i=dlog `e

(
p2i(`) − p2i−1(`)

)
(log n − i) by expanding it as follows. Let x , dlog `e and

y , log n. Note that p2x−1(`) = 0 since 2x−1 < `.

y−1∑
i=x

(
p2i(`)− p2i−1(`)

)
(y − i) = (((((((

p2x(`)(y − x)

((((((((((
+p2x+1(`)(y − x− 1)((((((((−p2x(`)(y − x) + p2x(`)

((((((((((
+p2x+2(`)(y − x− 2)

((((((((((
−p2x+1(`)(y − x− 1) + p2x+1(`)

...

+ p2y−1(`)(y − y + 1)
((((((((((
−p2y−2(`)(y − y + 2) + p2y−2(`)

= p2x(`) + p2x+1(`) + · · ·+ p2y−2(`) + p2y−1(`) =

y−1∑
i=x

p2i(`)
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The probability that k is the minimum bin size that satisfies the binning conditions such that there

is only one empty bin in the frame is given by
(
n/k
1

)
π

n

k
−1

k π̄k, where k < n/2. Note that k = n/2 has

already been addressed as it is the same for the case that there is only one occupied bin in the frame.

The number of bits obtained by the cases wherein there is only one empty bin in the frame is given by∑log(n/4)
i=0

(
n/2i

1

)
π

n

2i
−1

2i π̄2i log( n
2i ). Thus, the raw key rate of the adaptive binning scheme is given by

rAB =
1

n

[
n/2∑
`=1

log(n/2)∑
i=dlog `e

p2i(`) +

log(n/4)∑
i=0

(
n/2i

1

)
π

n

2i
−1

2i π̄2i log(
n

2i
)

]
.

Proof of Theorem 4: In the adaptive aggregated binning scheme, when a frame contains ` ≤ n/2
photons, the time units in the frame are partitioned into m = n/2dlog `e bins of size 2dlog `e such

that only one of the bins is occupied. Thus, each frame containing ` ≤ n/2 photons contributes

logm = log n− dlog `e bits of information. The probability that ` photons are observed in a frame

is given by
(
n
`

)
p`(1 − p)n−`. Using a similar argument, one can show that each frame consisting of

` > n/2 photons contributes log n− blog(n− `)c bits of information. Thus, it is easy to see that (4)

gives the raw key rate of the adaptive aggregated binning scheme.

Proof of Lemma 1: If r = 0, this inequality is an immediate consequence of Jensens inequality and

the concavity of the log function. Hence, suppose r > 0. There must be at least one i such that di ≤ m
as otherwise n < `(m+ 1) ≤∑`

i=1 log di which contradicts that the di’s sum to n. Similarly, there is

an i such that di ≥ m + 1. We will now show that if there is an i such that di < m or di > m + 1,

then I can be strictly increased. First, suppose that there is an ij such that dij < m, and an ih such that

dih > m+ 1. We may suppose these correspond to the largest and the smallest sets. Then, take an empty

time unit from a set of size dih and place it in one of the sets of size dij . Since the log function is strictly

increasing and strictly concave, we gain (log(dij + 1)− log dij )− (log dih − log(dih − 1)) > 0. Clearly,

such exchanges can continue until either all sets have at least m members or no set has more than m+ 1

members. If all sets are of size m or m+ 1, then the argument is complete. Now, suppose that there is a

set with more than m+ 1 time units with the remaining sets having m. Then, the number of sets of size

m must be equal to `− r + f with f > 0 as the total number of time units is equal to n. Now, take an

empty time unit from the set with largest size and place it in a set of size m, which gives an increase in

information as before. Repeat this until f becomes 0 so that I becomes r log(m+ 1) + (`− r) logm. A

similar argument applies if there is a set di < m, and the remaining sets all have m+ 1 time units.

Proof of Lemma 2: The proof is similar to the proof of Lemma 1, and thus omitted for the purpose

of brevity.
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Proof of Theorem 5: It has been already shown that, in the adaptive framing scheme, each frame

occupied with ` ≤ n/2 photons contributes ρ = r log(m+ 1) + (`− r) logm bits of information, where

n = m`+ r and 0 ≤ r < `. Also, it has been shown that each frame occupied with ` > n/2 photons

contributes ρ̄ = r̄ log(m̄+ 1) + (n− `− r̄) log m̄ bits of information, where n = m̄(n− `) + r̄ and

0 ≤ r̄ < n− `. The probability that ` photons are observed in a frame is given by
(
n
`

)
p`(1 − p)n−`.

Thus, it is easy to see that (5) gives the raw key rate of the adaptive framing scheme.
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