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Reinforcement Learning for Beam Pattern Design in
Millimeter Wave and Massive MIMO Systems

Yu Zhang, Muhammad Alrabeiah, and Ahmed Alkhateeb

Abstract—Employing large antenna arrays is a key character-
istic of millimeter wave (mmWave) and terahertz communication
systems. However, due to the adoption of fully analog or hybrid
analog/digital architectures, as well as non-ideal hardware or
arbitrary/unknown array geometries, the accurate channel state
information becomes hard to acquire. This impedes the design
of beamforming/combining vectors that are crucial to fully
exploit the potential of large-scale antenna arrays in providing
sufficient receive signal power. In this paper, we develop a novel
framework that leverages deep reinforcement learning (DRL) and
a Wolpertinger-variant architecture and learns how to iteratively
optimize the beam pattern (shape) for serving one or a small set
of users relying only on the receive power measurements and
without requiring any explicit channel knowledge. The proposed
model accounts for key hardware constraints such as the phase-
only, constant-modulus, and quantized-angle constraints. Fur-
ther, the proposed framework can efficiently optimize the beam
patterns for systems with non-ideal hardware and for arrays with
unknown or arbitrary array geometries. Simulation results show
that the developed solution is capable of finding near optimal
beam patterns based only on the receive power measurements.

I. INTRODUCTION

Leveraging the large bandwidth available at millimeter
wave (mmWave) frequency bands requires the deployment
of large antenna arrays. However, because of the high cost
and power consumption of the mixed-circuit components,
mmWave systems normally rely either fully or partially on
analog beamforming, where transmitters/receivers employ net-
works of quantized phase shifters [1], [2]. This makes the
basic MIMO signal processing functions, such as channel
estimation, challenging as the channels are seen only through
the RF lens. As a result, classical beamforming/combining
design approaches, e.g. [3], [4], may not be feasible because of
the unavailability of the channels as well as the new constraints
of the design problem. Besides, the hardware is possibly
not ideal due to the use of inexpensive and low-precision
radio components. In this case, the performance of the com-
monly used beams (such as the ones in classical beamsteering
codebooks) degrades drastically for their unawareness of the
environment and hardware/array geometry.

Prior Work: Designing efficient beamforming and com-
bining is essential for realizing the potential of MIMO com-
munications, and it has been an important research topic in
the literature of MIMO signal processing [1], [3]–[6]. For
MIMO systems with no hardware constraints, i.e., with fully-
digital processing and no constraints on the RF hardware,
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maximum ratio transmission and combining maximize the
achievable SNR with single-stream transmission/reception [3].
To realize these solutions, however, the MIMO system should
be able to control the magnitude and phase of the signal
at each antennas. When only the phase can be controlled,
equal-gain transmission solutions have been developed to
maximize the SNR or diversity gains [4]. This is particularly
interesting for mmWave and terahertz systems where the
beamforming/precoding processing is fully or partially done
in the RF domain using analog phase shifters [1]. In these
systems, however, the phase shifters can normally take only
quantized phase shift values. This associates the search over
the large space of quantized phase shift values with high
complexity (e.g., for a 32-element antenna array with 2-bit
phase shifters, there are 432 possible beamforming vectors)
[1], [5], [6]. Further, in analog beamforming architectures, the
channel is seen through the RF lens, which makes it hard to
acquire at the baseband, especially for systems with arbitrary
or unknown array geometries. To address these challenges,
this paper designs a reinforcement learning based approach to
efficiently learn the analog beamforming patterns that adapt to
the surrounding environment and the adopted hardware/array
geometry without requiring explicit channel knowledge.

Contribution: In this paper, we propose a deep reinforce-
ment learning based framework that can learn how to optimize
the beam pattern for serving a single user or a set of users
with similar channels. The developed framework relies only
on receive power measurements and does not require
any channel knowledge. This framework adapts the beam
pattern based on the surrounding environment and learns how
to compensate for the hardware impairments. This is done
by utilizing a novel Wolpertinger architecture [7] which is
designed to efficiently explore the large discrete action space.
The proposed model accounts for key hardware constraints
such as the phase-only, constant-modulus, and quantized-
angle constraints [1]. This is realized by defining the state
directly as the phases of the analog phase shifters and the
action as the change of phases within the quantized phase set.
Simulation results show that the proposed solution is capable
of finding the near optimal beam pattern and achieving a
beamforming/combining gain comparable to that of equal gain
combining.

II. SYSTEM AND CHANNEL MODELS

In this section, we introduce in detail our adopted sys-
tem and channel models. We also describe how the model
considers arbitrary array geometries with possible hardware
impairments.
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A. System Model

We consider the system model where a mmWave massive
MIMO base station (BS) with M antennas is communicating
with a single-antenna user. Further, given the high cost and
power consumption of mixed-signal components, we consider
a practical system where the BS has only one radio frequency
(RF) chain and employs analog-only beamforming/combining
using a network of r-bit quantized phase shifters. Therefore,
the beamforming/combining vector can be written as

w =
1√
M

[
ejθ1 , ejθ2 , . . . , ejθM

]T
, (1)

where each phase shift θm is selected from a finite set Θ with
2r possible discrete values drawn uniformly from (−π, π]. In
the uplink transmission, if a user u transmits a symbol x ∈ C
to the base station, where the transmitted symbol satisfies the
average power constraint E

[
|x|2
]

= Px, the received signal at
the base station after combining can be expressed as

yu = wHhux+ wHn, (2)

where hu ∈ CM×1 is the uplink channel vector between the
user u and the base station antennas and n ∼ NC

(
0, σ2

nI
)

is
the receive noise vector at the base station.

B. Channel Model

We adopt a general geometric channel model for hu.
Assume that the signal propagation between the user u and the
base station consists of L paths. Each path ` has a complex
gain α` and an angle of arrival φ`. Then, the channel vector
can be written as

hu =

L∑
`=1

α`a(φ`), (3)

where a(φ`) is the array response vector of the base station.
The definition of a(φ`) depends on the array geometry and
hardware impairments. Next, we discuss that in more detail.

C. Hardware Impairments Model

Most of the prior work on mmWave signal processing has
assumed uniform antenna arrays with perfect calibration and
ideal hardware [1], [2], [8], [9]. In this paper, we consider a
more general antenna array model that accounts for arbitrary
geometry and hardware impairments, and target learning beam
pattern that mitigates the influence of those unknown factors.
While the beam pattern learning solution that we develop in
this paper is general for various kinds of array geometries and
hardware impairments, we evaluate the proposed solution in
Section V with respect to two main characteristics of interest,
namely non-uniform spacing and phase mismatch between the
antenna elements. For linear arrays, the array response vector
can be modeled to capture these characteristics as follows

a(φ`) =
[
ej(kd1 cos(φ`)+∆θ1), ej(kd2 cos(φ`)+∆θ2), . . . ,

ej(kdM cos(φ`)+∆θM )
]T
, (4)

where dm is the position of the m-th antenna, and ∆θm is
the additional phase shift incurred at the m-th antenna (to
model the phase mismatch). Without loss of generality, we
assume that dm and ∆θm are fixed yet unknown random
realizations drawn from the distributions N

(
(m− 1)d, σ2

d

)
and N

(
0, σ2

p

)
respectively, where d is the ideal antenna

spacing, σd and σp model the standard deviations of the
random antenna position and phase mismatch. Besides, we
impose an additional constraint d1 < d2 < · · · < dM to make
sure the generated antenna positions physically meaningful.

III. PROBLEM DEFINITION

In this paper, we investigate the beam pattern design prob-
lem for mmWave and massive MIMO system with unknown
array geometry and hardware impairment. Given the system
and channel models described in Section II, the SNR after
combining for user u can be written as

SNRu =

∣∣wHhu
∣∣2

‖w‖2
ρ =

∣∣wHhu
∣∣2 ρ, (5)

where ‖w‖2 = 1 is implicitly used and ρ = Px
σ2
n

. Besides, we
define the beamforming/combining gain of adopting w as a
transmit/receive beamformer for user u as

gu =
∣∣wHhu

∣∣2 . (6)

It can be seen that maximizing (6) is equivalent to maximizing
the SNR in (5). Therefore, the objective of this paper is to
design (learn) the beamformer w that maximizes the beam-
forming/combining gain given by (6) for a single user or a set
of users with similar channels. Therefore, the beam pattern
learning problem can be formulated as

wopt = arg max
w

1

|H|
∑

hu∈H

∣∣wHhu
∣∣2 , (7)

s. t. wm =
1√
M
ejθm , ∀m = 1, ...,M, (8)

θm ∈ Θ, ∀m = 1, ...,M, (9)

where wm is the m-th element of the beamforming vector
and H is the channel set that is supposed to contain a single
channel or multiple similar channels. It is worth mentioning
that the constraint in (8) is imposed to uphold the adopted
analog-only system model, and the constraint in (9) is to
respect the quantized phase-shifters hardware constraint.

Due to the unknown array geometry as well as possible
hardware impairments, the accurate channel state informa-
tion is generally hard to acquire. This means that all the
channels hu ∈ H in the objective function are possibly
unknown. Instead, the base station may only have access to the
beamforming/combining gain gu, or equivalently the Received
Signal Strength Indicator (RSSI). Therefore, problem (7) is
hard to solve in a general sense for the unknown parameters
in the objective function as well as the non-convex constraint
(8) and the discrete constraint (9). Given that this problem
is essentially a search problem in a dauntingly huge
yet finite and discrete space, we consider leveraging the
powerful exploration capability of deep reinforcement learning
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Fig. 1. The proposed beam pattern design framework with deep reinforcement learning. The schematic shows the agent architecture, and the way it interacts
with the environment.

to efficiently search over the space to find the optimal or near-
optimal solution.

IV. BEAM PATTERN LEARNING

In this section, we present our proposed DRL-based algo-
rithm for addressing the beam pattern design problem (7). It
is worth mentioning that when viewing the problem from a
reinforcement learning perspective, it features a finite yet very
high dimensional action space. This makes the traditional
learning frameworks (such as deep Q-learning, deep determin-
istic policy gradient, etc.) hard to apply. Therefore, we adopt
a novel architecture called Wolpertinger to enable the efficient
search in a large discrete action space, the details of which
can be found at [7].

1) Reinforcement Learning Setup: To solve the problem
with reinforcement learning, we first specify the corresponding
building blocks of the learning algorithm as follows:
• State: We define the state st as a vector that consists of

the phases of all the phase shifters at the t-th iteration,
that is, st = [θ1, θ2, . . . , θM ]

T . This phase vector can be
converted to the actual beamforming vector by applying
(1). Since all the phases in st are selected from Θ, and all
the phase values in Θ are within (−π, π], (1) essentially
defines a bijective mapping from the phase vector to
the beamforming vector. Therefore, for simplicity, we
will use the term “beamforming vector” to refer to both
this phase vector and the actual beamforming vector (the
conversion is given by (1)), according to the context.

• Action: We define the action at as the element-wise
changes to all the phases in st. Since the phases can
only take values in Θ, a change of a phase means that
the phase shifter selects a value from Θ. Therefore, the
action is directly specified as the next state, i.e. st+1 = at.

• Reward: We define a ternary reward mechanism, i.e. the
reward rt takes values from {+1, 0,−1}. We compare the
beamforming gain achieved by the current beamforming
vector, denoted by gt, with two values: (i) an adaptive

threshold βt, and (ii) the previous beamforming gain
gt−1. The reward is computed using the following rule

– gt > βt, rt = +1;
– gt ≤ βt and gt > gt−1, rt = 0;
– gt ≤ βt and gt ≤ gt−1, rt = −1.

It is important to note that the adopted adaptive threshold
mechanism does not rely on any prior knowledge of the
channel distribution. The threshold value starts from zero and
whenever the BS tries a new beam and the resulting beamform-
ing gain surpasses the current threshold, the system updates the
threshold by the value of this new beamforming gain. Besides,
since the update of threshold also marks a successful detection
of a new beam that achieves the best beamforming gain so far,
the BS also records this beamforming vector. As can be seen
in the reward definition, in order to calculate the reward, the
system always tracks two quantities, which are the previous
beamforming gain and the best beamforming gain achieved so
far (i.e. the threshold).

2) Environment Interaction: As mentioned in Sections I
and III, due to the possible hardware impairments, accurate
channel state information is generally unavailable. Therefore,
the base station can only resort to the beamforming/combining
gain to adjust its beam pattern in order to achieve a better
performance. Upon forming a new beam w̃, the base station
uses this beam to receive the pilots transmitted from every
user. Then, it averages all the beamforming gains

ḡ =
1

|H|
∑

hu∈H

∣∣w̃Hhu
∣∣2 , (10)

where H represents the targeted user channel set. Recall that
(10) is the same as evaluating the objective function of (7) with
the current beamforming vector w̃. Depending on whether or
not the new average beamforming gain surpasses the previous
one as well as the current threshold, the base station gets either
reward or penalty, based on which it can judge the “quality”
of the current beam and decide how to move.
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Algorithm 1 DRL Based Beam Pattern Learning
1: Initialize actor network µ(s|θµ) and critic network
Q(s,a|θQ) with random weights θµ and θQ

2: Initialize target networks µ′ and Q′ with the weights of
actor and critic networks’ θµ

′ ← θµ and θQ
′ ← θQ

3: Initialize the replay memory D, minibatch size B
4: Initialize adaptive threshold β = 0 and the previous

average beamforming gain g1 = 0
5: Initialize a random process N for action exploration
6: Initialize a random phase vector as the initial state s1

7: for t = 1 to T do
8: Receive a predicted action from actor network with

exploration noise ât = µ(st|θµ) +Nt
9: Quantize the predicted action to a valid beamforming

vector at according to (11)
10: Execute action at, observe reward rt and update state

to st+1 = at
11: Update the threshold β and previous gain gt
12: Store the transition (st,at, rt, st+1) in D
13: Sample a random mini batch of B transitions

(sb,ab, rb, sb+1) from D
14: Calculate target yb = rb + γQ′(sb+1, µ

′(sb+1|θµ
′
)|θQ′

)

15: Update the critic network by minimizing the mean
squared loss L = 1

B

∑
b(yb −Q(sb,ab|θQ))2

16: Update the actor network using the sampled policy
gradient given by
− 1
B

∑B
b=1∇aQ(s,a)|s=sb,a=µ(sb|θµ)∇θµµ(s|θµ)|s=sb

17: Update the target networks every C iterations
18: end for

3) Exploration: The exploration happens after the actor
network predicts the action ât+1 based on the current state
(beam) st. Upon obtaining the predicted action, an additive
noise is added element-wisely to ât+1 for the purpose of
exploration, which is a customary way in the context of
reinforcement learning with continuous action spaces [10],
[11]. In our problem, we use temporally correlated noise
samples generated by an Ornstein-Uhlenbeck process [12],
which is also used in [7]. It is worth mentioning that a
proper configuration of the noise generation parameters has
significant impact on the learning process. Normally, the extent
of exploration (noise power) is set to be a decreasing function
with respect to the iteration number, which is commonly
known as exploration-exploitation tradeoff [10]. Furthermore,
the exact configuration of noise power should relate to specific
applications. In our problem, for example, the noise is directly
added to the predicted phases. Thus, at the very beginning, the
noise should be strong enough to perturb the predicted phase
to any other phases in Θ. By contrast, when the learning
process approaches to the termination (the learned beam
already performs well), the noise power should be decreased to
a smaller level that is only capable of perturbing the predicted
phase to its adjacent phases in Θ.

4) Quantization: The predicted beam (with exploration
noise added) should be quantized in order to be a valid new
beam that can be implemented by the discrete phase-shifters.
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Fig. 2. The top view of the considered communication scenario.

Therefore, each quantized phase in the new vector can be
calculated as

[st+1]m = arg min
θ∈Θ

|θ − [̂st+1]m| ,∀m = 1, 2, . . . ,M, (11)

which is essentially a nearest neighbor lookup (i.e. a KNN
classifier with k = 1).

5) Forward Computation and Backward Update: The cur-
rent state st and the new state st+1 (recall that we directly
set st+1 = at) are then fed into the critic network to
compute the Q value, based on which the targets of both actor
and critic networks are calculated. This completes a forward
pass. Following that, a backward update is performed to the
parameters of the actor and critic networks. A pseudo code of
the algorithm can be found in Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
solution. We first describe the adopted scenario and dataset
used in our simulations and then discuss the results.

A. Scenario and Dataset

In our simulations, we consider the outdoor scenario
‘O1 60’ which is offered by the DeepMIMO dataset [13] and
is generated based on the accurate 3D ray-tracing simulator
Wireless InSite [14]. This scenario comprises two streets and
one intersection with three uniform x-y user grids, as shown
in Fig. 2. To generate the channels from the users to the base
station, we adopt the following DeepMIMO parameters: (1)
Scenario name: O1 60, (2) Active BSs: 3, (3) Active users:
Row 1200 to 1200, (4) Number of BS antennas in (x, y, z): (1,
32, 1), (5) System bandwidth: 1 GHz, (6) Number of OFDM
sub-carriers: 1 (single-carrier), (7) Number of multipaths: 5.
From the generated dataset, we further select the user at row
1200 and column 181 in the scenario. The locations of both
the selected user and the base station are marked in Fig. 2.

B. Performance Evaluation

We first evaluate our proposed DRL-based beam pattern
learning solution on learning a single beam that serves a single
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Fig. 3. The beam pattern learning results for a single user with LOS connection to the base station. The base station employs a perfect uniform linear array
with 32 antennas and 3-bit phase shifters. In this figure, we show the learning process and the beam patterns learned at three different stages during the
iterations. The learned beam patterns are plotted using solid red line, and the equal gain combining/beamforming vector is plotted using dashed black line.

user with LOS connection to the base station. In Fig. 3, we
compare the performance of the learned single beam with a
32-beam classical beamsteering codebook. As it is commonly
known, classical beamsteering codebook normally performs
very well in LOS scenario. However, our proposed method
achieves higher beamforming gain than the best beam in the
classical beamsteering codebook, with negligible iterations.
More interestingly, with less than 4 × 104 iterations, the
proposed solution can reach more than 90% of the EGC
upper bound. It is worth mentioning that the EGC upper
bound can only be reached when the user’s channel is known
and unquantized phase shifters are deployed. By contrast, our
proposed solution can finally achieve almost 95% of the EGC
upper bound with 3-bit phase shifters and without any channel
information.

We also plot the learned beam patterns at three different
stages (iteration 1000, 5000, and 100000) during the learning
process, which helps understand how the beam pattern evolves
over time. As shown in Fig. 3, at iteration 1000, the learned
beam pattern has very strong side lobes, weakening the main
lobe gain to a great extent. At iteration 5000, the gain of the
main lobe becomes stronger. However, there are still multiple
side lobes with relatively high gains. Finally, at iteration
100000, it can be seen that the main lobe has quite strong
gain compared to the other side lobes, having at least 10 dB
gain over the second strongest side lobe. And most of the side
lobes are below −20 dB. Besides, the learned beam pattern
captures the EGC beam pattern very well, which explains
the good performance it achieves. The slight mismatching is
mainly caused by the use of quantized phase shifters. With
3-bit resolution, each phase shifter can only realize 8 different
values of phase shifts drawn uniformly from (−π, π].

The proposed beam pattern learning solution is also eval-
uated on a system where hardware impairments exist (with
the same user considered above). This is a more realistic
and interesting scenario, for mmWave systems are susceptible
to hardware mismatches like antenna spacing mismatch and
phase mismatch. The wavelength in mmWave bands is so
small that even slight mismatching can lead to a drastic
degradation of the performance. This for sure calls for an
intelligent design process that is capable of adapting the beam
pattern to the hardware, mitigating the loss caused by hardware
mismatches. The simulation results confirm that our proposed
solution is competent to learn such optimized beam pattern
for a system with hardware impairments.

Fig. 4 (a) shows the beam patterns for both equal gain com-
bining/beamforming vector (plotted in black) and the learned
beam (plotted in red). At the first glance, the learned beam ap-
pears distorted and has multiple low-gain lobes. However, the
performance of such beam is excellent. This can be explained
by comparing the beam patterns of the learned beam and the
equal gain combining/beamforming vector. As can be seen
from the learned beam patterns, our proposed solution
intelligently approximates the optimal beam, where all
the dominant lobes are well captured. By contrast, the
classical beamsteering codebook fails when the hardware is
not perfect, as depicted in Fig. 4 (b). This is because the
distorted array pattern incurred by the hardware impairment
makes the pointed classical beamsteering codebook beams
only able to capture a small portion of the transmitted power,
which further results in an inferior beamforming/combining
gain. The learned beam shown in Fig. 4 (a) is capable of
achieving more than 90% of the EGC upper bound with
approximately only 104 iterations, as shown in Fig. 4 (b). This
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transformation of 4

√
· is used to better show the finer structure of the beams.

(b) shows the learning process.

is especially interesting given that the proposed solution does
not rely on any channel state information. As it is known, the
channel estimation in this case relies first on a full calibration
of the hardware, which is a hard and expensive process.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we developed a DRL-based approach to learn
the optimized beam pattern for a single user or a group of
users with similar channels relying only on the receive power
measurements and without any channel knowledge. This ap-
proach relaxes the coherence/synchronization requirements
and is important for fully-analog or hybrid analog/digital ar-
chitectures that are commonly adopted by mmWave/terahertz
communication systems. The proposed learning framework
respects key hardware constraints such as the phase-only,
constant-modulus, and quantized-angle constraints. Simulation
results show that the proposed solution is capable of finding
the near optimal beam pattern which achieves a beamform-

ing/combining gain comparable to that of equal gain combin-
ing without any explicit channel knowledge.
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